Skip to main content

On the reasons for average superlinear speedup in parallel backtrack search

  • Conference paper
  • First Online:
Computer Science Logic (CSL 1993)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 832))

Included in the following conference series:

  • 147 Accesses

Abstract

Backtracking searches for one solution only can easily be parallelized: Each processor searches a subtree of the search tree and all processors stop when one of them has found a solution. It has raised some interest that the average speedup observable may be ≩ the number of processors, a phenomenon which is called average superlinear speedup. As this observation does not seem to be provable for principal reasons (stochastic dependencies) models from which the speedup is proved are developed. In the series of papers [MoSpVo 86], [SpMoVo 87], [Sp 88] a model to explain the speedup observable with the propositional satisfiability problem is presented. This model is based on the intuitively appealing assumption (which can be verified experimentally) that some processors search subtrees with a higher proportion of solutiòn leaves than others, i.e. the solution leaves are clustered within the search tree. A similar argument is given in [RaKu 88]. We give strong evidence that these models — at least with respect to the satisfiability problem — have serious defects and develop an improved model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Monien, E. Speckenmeyer, O. Vornberger, Superlinear speedup for parallel backtracking, Technical Report No 30, Dept. of Math. and Comp. Sci. University of Paderborn, 1986.

    Google Scholar 

  2. E. Speckenmeyer, B. Monien, O. Vornberger, Superlinear speedup for parallel backtracking, Proc. Supercomputing 1987, LNCS 297, 985–993.

    Google Scholar 

  3. E. Speckenmeyer, Is average superlinear speedup possible? Proc. 2nd Workshop on Comp. Sci. Logic 1988, LNCS 385, 301–312.

    MathSciNet  Google Scholar 

  4. V.N. Rao, V. Kumar, Superlinear speedup in parallel state space search, Proc. 8th Conf. on Foundations of Software Technology and Theoretical Comp. Sci. 1988, LNCS 338, 161–174.

    Google Scholar 

  5. G.A.P. Kindervater, J.K. Lenstra, Parallel computing in Combinatorial Optimization, Annals of OR 14, 1988, 245–289.

    MathSciNet  Google Scholar 

  6. S. Chakravarty, A. Shekhawat, Parallel and serial heuristics for the minimum set cover problem, Journal of Supercomputing 5, 1992, 331–345.

    Google Scholar 

  7. W. Ertel, Parallele Suche mit randomisiertem Wettbewerb in Inferenzsystemen. PhD Thesis, Technical University of Munich, 1992.

    Google Scholar 

  8. D.P. Helmbold, C.E. McDowall, Modeling Speedup(n) greater than n, IEEE Trans. on Par. and Distr. Systems, 1(2), 1990, 250–256.

    Google Scholar 

  9. R. Mehrotra, E.F. Geringer, Superlinear speedup through randomized algorithms, Proc. Conf. on Parallel Processing 1985, 291–300.

    Google Scholar 

  10. J. Franco, M. Paull, Probabilistic analysis of the Davis-Putnam procedure for the satisfiability problem, Discr. Appl. Math. 5, 1983, 77–87.

    Article  MathSciNet  Google Scholar 

  11. C.A. Brown, P.W. Purdom, An average time analysis of backtracking, SIAM Jour. on Comp. 10, 1981, 583–593.

    MathSciNet  Google Scholar 

  12. A. Ranade, Optimal speedup for backtracking search on a butterfly network, SPAA 1991, 40–48.

    Google Scholar 

  13. D.M. Nicol, Expected performance of m-solution backtracking, SIAM Journ. on Comp. 17(1), 1988, 114–127.

    MATH  MathSciNet  Google Scholar 

  14. V. Chvatal, B. Reed, Mick gets some (the odds are on his side), Proc. FOCS 1992.

    Google Scholar 

  15. A. Goerdt, A threshold for unsatisfiability, Proc. MFCS 1992, LNCS 629, 264–275.

    MathSciNet  Google Scholar 

  16. R. Matuschka, R. Niedermeier, Verschiedene Heuristiken für die parallele Behandlung des Erfüllbarkeitsproblems auf dem IPSC, Report of a Fortgeschrittenenpraktikum for Computer Scientists at the Technical University Munich, 1990.

    Google Scholar 

  17. R.L. Graham, D.E. Knuth, O. Patashnik, ”Concrete Mathematics”, Addison Wesley, Reading, Massachusetts, 1989.

    Google Scholar 

  18. H.A. David, Order statistics, Wiley and Sons Inc., New York, 1981.

    Google Scholar 

  19. Greene, D.E. Knuth, Mathematics for the analysis of algorithms, Birkhäuser.

    Google Scholar 

  20. M. Kendall, A. Stuart, J.K. Ord, Kendall's advanced theory of statistics, vol. 1, Griffin, London, 1987.

    Google Scholar 

  21. D.S. Mitrinovic, Analytic inequalities, Springer, Berlin, 1970.

    Google Scholar 

  22. H.O. Hartley, H.A. David, Universal bounds for mean range and extreme observation, Ann. Math. Statist 25, 1954, 84–99.

    MathSciNet  Google Scholar 

  23. I. Althöfer, Communication of I. Althöfer about a talk of de la Vega.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Egon Börger Yuri Gurevich Karl Meinke

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goerdt, A., Kamps, U. (1994). On the reasons for average superlinear speedup in parallel backtrack search. In: Börger, E., Gurevich, Y., Meinke, K. (eds) Computer Science Logic. CSL 1993. Lecture Notes in Computer Science, vol 832. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0049327

Download citation

  • DOI: https://doi.org/10.1007/BFb0049327

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58277-9

  • Online ISBN: 978-3-540-48599-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics