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A b s t r a c t .  In a graph G = (V, E), the eccentricity e(v) of a vertex v is 
max{d(v,u) : u E V}. The center of a graph is the set of vertices with 
minimum eccentricity. A graph G is chordal if every cycle of length at 
least four has a chord. We present an algorithm which computes in linear 
time a central vertex of a chordal graph. The algorithm uses the metric 
properties of chordal graphs and Tarjan and Yannakalds linear-time test 
for graph chordality. 

1 I n t r o d u c t i o n  

All graphs in this paper are connected and simple, i.e. finite, undirected, loopless 
and without multiple edges. In a graph G = (V, E) the length of a path from a 
vertex v to a vertex u is the number of edges in the path. The distance d(u, v) 
from vertex u to vertex v is the length of a minimum length path from u to v 
and the interval I(u, v) between these vertices is the set 

i(u, v) = {w e v: d(u, v) = a(u, w) + a(~, v)}. 
The eccentricity e(v) of a vertex v is the maximum distance from v to any vertex 
in G. Denote by D(v) the set of all farthest from v vertices, i.e. O(v) = {w r 
V : d(v, w) = e(v)}. The radius r(G) is the minimum eccentricity of a vertex 
in G and the diameter d(G) the maximum eccentricity. The center C(G) of G 
is the subgraph induced by the set of all central vertices , i.e. vertices whose 
eccentricities are equal to r(G). A clique of G is a set of pairwise adjacent vertices. 
A vertex v of G is called simplicial if its neighborhood is a clique. 

A graph G is chordal (triangulated) if every cycle of length greater than three 
possesses a chord, i.e. an edge joining two nonconsecutive vertices on the cycle. 
Chordal graphs arise in the study of Gaussian elimination of sparse symmetric 
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matrices. They were first introduced by Hajnal & Suranyi [10] and then studied 
extensively by many people, see [6,9] for general results. Recently, the metric 
properties of chordal graphs were also investigated, see [1-7,13,15]. In particular, 
the inequality 2r(G) _> d(G) >_ 2r(G) - 2 was proven [1,3,4] and the: centers of 
chordal graphs were characterized [4]. The class of chordal graphs contains trees, 
block graphs, maximal outerplanar graphs, k-trees, interval graphs and strongly 
chordal graphs. 

In this paper we will present a linear time algorithm for finding a central 
vertex of a chordal graph. Note that  for general graphs with n vertices and m 
edges the upper bound on the time complexity of this problem is O(nm)  and the 
lower bound is fl(m). Hence the presented algorithm is optimal. Linear time 
algorithms for finding the central vertices are known for trees [11,12], 2-trees 
and maximal outerplanar graphs [8], strongly chordal graphs [5] and interval 
graphs [14]. 

The key idea of our algorithm is that with a few applications of breadth first 
search, it is possible to find two vertices y, z such that  the distance d(y, z) is at 
most two less than the diameter of the chordal graph G. Intuitively, it makes 
sense to look for a central vertex in the vicinity of the middle of shortest y, z -  
paths. We either find a central vertex of G in this set or we replace the pair y, z 
by a new pair of vertices at distance one step closer to the diameter of G. 

2 M e t r i c  P r o p e r t i e s  o f  C h o r d a l  G r a p h s  

In this section we present the metric properties of chordal graphs, used in our 
algorithms. 

L e m m a  1 [1] For any two vertices z and y of a chordal graph G and integer 
k < d(z, y) the set L(~, k, y) = {z E I(~, y ) :  d(z, z) = k} is a clique. 

L e m m a  2 [1] In a chordal graph G, if C is a clique and x is a vertex not in 
C such that d ( z , y )  = k is a constant for all y E C then there exists a vertex 

e y) : e c} adjacent to all vertices from C. 

Such a vertex z* we will call a gate of a vertex z in C. 

L e m m a  3 [3] I f  x, y, u, v E V are distinct vertices of a chordal graph G, such 
that x E I(u, y), 
y E I ( z ,  v) and d(z,  y) = 1 then d(u, v) > d(u, ~c) + d(y, v). The equality holds if 
and only if there is a vertex w E I(x,  v) n I(u, y) adjacent to x and y. 

For any subset M C V and any vertex v we denote by 

P r ( v , M )  = {y E M :  d(v,y)  = d ( v , M ) }  

the metric projection of v on M (recall that  d(v, M) = min{d(v, z ) :  z E M}).  

L e m m a  4 In a chordal graph G, for any clique C and any adjacent vertices 
u, v r C the metric projections Pr(u ,  C) and Pr(v ,  C) are comparable, i.e. either 
Pr(u ,  C) C_ Pr(v ,  C) or Pr(v,  C) C Pr(u ,  C). 
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P r o o f  Since vertices u and v are adjacent  I d(u, C ) -  d(v, C ) l <  1. W i t h o u t  loss 
of  generali ty assume tha t  d(u, C) >__ d(v, C). If  d(u, C) = d(v, C) + 1 then for any 
vertex w e Pr(v, C) we have d(u, w) <_ d(u, C) and therefore w E Pr(u, C),  i.e. 
Pr(v, C) C_ Pr(u, C). Now assume tha t  d(u, C) = d(v, C), but  the sets Pr(u, C) 
and P r ( v ,  C) are incomparable .  Then  we find the vertices 

x e Pr(v, C)\Pr(u, C), y e Pr(u, C)\Pr(v, C). 

Since x E I(v, y) and y E I(u, x), by L e m m a  3 we have 

d(u, v) >_ d(u, y) + d(x, v) = 2d(u, C) > 2, 

thus yielding a contradict ion.  [ ]  

L e m m a  5 For any graph G if d(x, y) = d(G) = 2r(G)  then 
C(G) C L(x, r(a), y). 

L a m i n a  6 For any vertex v of a chordal graph G and any vertex u that is farthest 
from v we have e(u) >_ 2r(G)  - 3. 

P r o o f  Assume the contrary and among  the vertices which fail our  a s se r t ion  
choose a vertex v with minimal  eccentricity. Let u E D(v) be a vertex for 
which e(u ) < 2r (G)  - 3. From our assumpt ion  we deduce tha t  for any vertex 
x E n(v, 1, u) we have u ~ D(x) ,  i.e. e(x) >__ e(v). If  e(x) > e(v) for some vertex 
x E L(v, 1, u) then v E I (x ,  y) for any vertex y E D(x) .  By L e m m a  3 

d(u,y) > e ( v ) -  1 + e(x) - 1 > 2e(v) - 1 > 2r(G)  - 1. 

Hence all vertices f rom L(v, 1, u) have the same eccentricity e(v). Now, if for 
some vertex x �9 L(v, 1, u) there is a vertex z �9 D(x)\D(v), then v �9 I(z, x) and 
by L e m m a  3 

d(u, z) >_ e(v) - 1 + e(x) - 1 _> 2r(G)  - 2. 

Final ly assume tha t  U{D(x)  : x �9 L(v, 1, y)} C D(v). Let x* be a vertex f rom 
L(v, 1, u) having a m i n i m um  number  of  far thest  vertices and let y* �9 D(x*). 
Since d(v,y*) = d(x*,y*) by L e m m a  2 there is a vertex x �9 I(v ,y*)NI(x*,y*) 
adjacent  to v and x*. If  x ~ I(v,u) then x* �9 I(x,u) and again, by L e m m a  
3 d(u, y*) >_ 2e(v) - 2 > 2r(G) - 2. Therefore x �9 I(v, u). From our choice of  
the vertex z* there exists a vertex y �9 D(x)\D(x*). Since the vertices x and 
x* are adjacent and equidistant  f rom u, according to L e m m a  2 there is a vertex 
w �9 [(x ,u)NI(z*,u)  adjacent to x and x*. Since x* �9 I(x,y) and x �9 I (x*,  y*) 
d ( w ,  > e (v )  - 1 and  y) > e (v )  - 1. 

If  x �9 [(w, y*) or x* �9 I(w, y) then by L e m m a  3 at least one of the following 
inequalities holds 

d(u,y*) > d(x,y*) + d(w,u) = 2e(v) - 3 > 2r(G)  - 3, 

y) >_ d(x*, y) + d(w, u) = 2e(v) - 3 > 2 r ( a )  - 3. 

So d(w, y*) = d(x, y*) and d(w, y) = d(x*, y). Again,  by L e m m a  2 there exist 
vertices s �9 I(x,y*) N I(w,y*) and t �9 I(x*,y) N I(w,y) adjacent  to x , w  
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and x*, w correspondingly. Note that  w ~ I(s, u) U I(t, u), otherwise s, t, w E 
L(v, 2, u) and by Lemma 1 the vertices s and t must be adjacent. The ob- 
tained cycle (t, ~*, x, s, t) has one of the chords (x, t) or (x*, s), thus violating 
that x E I(x*,y*) and x* E I(x,y). Without loss of generality assume that  
w E l( t ,  u). By Lemma 3 d(u, y) > d(u, w) + d(t, y) >_ 2r(G) - 4 and equality 
holds if and only if there exists a vertex z ~ E I(w, y) n I(t, u) adjacent to w and 
t. We distinguish two cases. 

Case 1 ~(s, ~) = d(w, ~). 

By Lemma 2 there is a common neighbour u" E I(s, u) n I(w, u) of verti- 
ces s and w; see Fig. 1. Since vertices w and z ~ are equidistant from u they 
have a common neighbour u I E I(w, u) N I(z', u). Since u', u" E l(w, u) the 
vertices u ~ and u p, are adjacent or coincide. In any case we obtain the cycle 
(x*, x, s, u", u I, z t, t, x*); see Fig. 1. From the previous conditions on vertices 
v,x, x*, y, y*, u we deduce that  vertices x and x* do not have a common neigh- 
bout among the vertices of this cycle. Therefore there is no triangulation of  
this cycle in which the edge (x, x*) belongs to some triangle, contradicting the 
ehordality of the graph G. 
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Fig. 1 Fig. 2 

C ~ e  e d(,,  u) = a(w, u) + t 

By Lemma 3 d(u, y*) > d(y*, s) + d(w, u) > 2r(G) - 4 and equality holds 
only if there is a vertex z" E I(w, y*) M I(s, u) adjacent go w and s; see Fig. 
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2. As in the first case, since d(z', u) = d(w, u) = d(z", u), there exist vertices 
u' E I(w, u ) n  I(z', u) and u" E I(w, u ) n  I(z", u) adjacent to z', w and z, w 
respectively. Then u ~ and u"  either are adjacent or coincide. In any case we 
obtain the cycle (x*, x, s, z", u", u', z', t, x*). As in the first case there is no 
common neighbour of z and x* among the vertices of this cycle, yielding a 
contradiction. 

So the assumption that  for some vertex u e D(v) we have e(u) < 2r(G)  - 3 
leads to a contradiction, o 

The  following example (see Fig. 3) show the sharpness of  the inequality 
e(u) _> 2r(a) - 3. 

u 

Fig.  3 (u E D(v) and e(u) = 3 = 2r(G) - 3) 

Corollary For any vertex v of a chordal graph G and any vertex u that is 
farthest from v we have r > d(G) - 2. 

Proof By L e m m a  6 it is enough to consider only the case when d(G) = 2r(G)  
and v E C(G). Then according to L e m m a  5 v E n(x,  r(G), y) for any vertices 
x , y  E V such that  d(x ,y)  = d(G). For any u E D(v) let t be a vertex f rom 
I(v, u) adjacent to v. As in the proof of Lemma  6 we can show tha t  vertices 
v and t are equidistant from both vertices x and y, otherwise we received the 
required inequality for u. By Lemma  2 there are vertices s ~ E I(v, y) N I(t, y) 
and s" E I(v,x) n I(t,z).  Again, as in Lemma  6 vertices v , s '  and s" are 
equidistant from u and therefore s ~, s" E I(v, u). By L e m m a  1 these vertices 
must  be adjacent. Since s '  E L(z, r(G) + 1, y) and s" E L(x, r(G) - 1, y) this is 
impossible. [] 

3 C o m p u t i n g  the  Gates  and Di s tances  of  Ver- 
t ices  to Cl ique 

In this section we present a l inear- t ime algorithm for computing the distances 
from all vertices to any fixed clique C of a chordal graph G. For any vertex v E V 
besides the distance dist(v)= d(v, C) we find some gate 

gate(v) n{/(v, e Pr(v, C)}, 
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and also the size hum(v) of this projection Pr(v, C). Note that the existence 
of such a vertex gate(v) follows from Lemma 2. The algorithm is based on a 
modification of a maximum cardinality search; see Tarjan and Yannakakis [16]. 
Their  l inear-t ime test for graph chordality numbers the vertices of a graph from 
n to 1. A vertex adjacent to the largest number of previously numbered vertices 
will be the next selected vertex. In our algorithm we process the vertices of the 
graph beginning with the vertices of the clique C. As in [16] we maintain an 
array of sets set(i) for 0 < i < m - 1. We store in set(i) all unnumbered vertices 
adjacent to exactly i numbered vertices. Initially set(O) contains all the vertices. 
After steps (1)-(13) any vertex w ~ C adjacent to some vertex of the clique 
C is included in set(size(w)), where size(w) is the number of vertices from C 
adjacent to w, all other vertices stay in set(O). Further we maintain the largest 
index j such that  set(j) is nonempty. Then we remove a vertex v from set(j) and 
number it. For each unnumbered vertex w adjacent to v, we move w from the 
set containing it, say set(i), to set(i+1) (steps (16)-(21)). Among the numbered 
vertices adjacent to v we find a vertex z with minimal dist(z)= d(z, C) and if 
there are several such vertices a vertex z with maximal hum(z) is chosen. In 
other words this is a vertex with the largest projection on the clique C (steps 
(22)-(23)). Finally for the vertex v define 

dist( v ) = dist( z ) + 1, hum(v) = hum(z), gate(v) = gate(z) 

(steps (24)-(26)). The correctness of these steps follows from Lemma 4. Note 
that  v is a simplicial vertex of a subgraph induced by all numbered vertices, 
i.e. the set C(v) of numbered vertices adjacent to v is a clique. According to 
Lemma 4 the projections of any two vertices from C(v) are comparable. Hence 
in C(v) there is a vertex, whose projection covers any other projection on C. 
Obviously, any vertex with maximal projection, in particular the vertex z, has 
this property. Since the subgraph induced by numbered vertices is a distance- 
preserving subgraph of a graph G, dist(v) computed in steps (25) or (26) is a 
distance from v to the clique C. After all this we add one to j and while set(j) 
is empty we update the value of j. As i n  the maximum cardinality search we 
represent each set by a doubly linked list of vertices and maintain for each vertex 
v the index of the set containing it, denoted by size(v). Since the complexity of 
the updates of j is bounded by the total number of times j is incremented and 
the access to a set element requires a constant time, the whole complexity of the 
algorithm is O(m). 

P r o c e d u r e  distance_to_clique 

Input: A chordal graph and its clique C; 
O u t p u t :  For all vertices of the graph the pairs dist(v) and gate(v); 

b e g i n  
(1) for i E {0, 1 , . . . , n -  1} do set(i) := 0; 
(2) for v E vertices do 
(3) if  (v E C) then 
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(4) 

(5) 
(6) 
(7) 
(s) 

(9) 
(10) 
(11) 

(12) 
(13) 

(14) 
(15) 
(16) 
(17) 
(IS) 
(19) 
(20) 
(21) 

(22) 
(23) 
(24) 
(25) 

(26) 

(27) 
(2s) 

e n d ;  

b e g i n  size(v) := -1 ;  dist(v) := O; num(v) := 1; gate(v) = ^  end;  
else 

b e g i n  size(v) := 0; a d d  v to  set(O) end;  
j :=  0;k := 0; 
fo r  v E C do  beg in  

for  (v, w) E E such  t h a t  size(w) >_ 0 do  
b e g i n  

de le te  w f r o m  set(size(w)); 
size(w) := size(w) + 1;k := 1;num(w) := size(w); 
a d d  w to  set(size(w)) 

end;  
i f  (k = 1) t h e n  

beg in  j := j + 1; k := 0 end;  
end;  

i :=1 C I +1; (* I C I is the number of vertices in clique C * )  
whi le  (i < n) do  beg in  

v := de le te  a n y  f r o m  set(j); size(v):= -1 ;  
d := ~ ; n m  := 0; 
for  (v, w) E E do  

if  (size(w) _> 0) t h e n  beg in  
de le te  w f r o m  set(size(w)); size(w):= size(w)+ 1; 
a d d  w to  set(size(w)) 

end;  
else (* size(w)= -1  *) 

if  (dist(w) < d or  (dist(w) = d a n d  hum(w) >nm)) t h e n  
beg in  z := w; d := dist(w); nm := num(w) end;  

i f  (dist(z) = 0) t h e n  
beg in  dist(v) := 1; gate(v) := v end;  

else 
beg in  

dist(v) := dist(z) + 1; num(v) := num(z); gate(v) = gate(z) 
end;  

i := i+  l; j  := j + l; 
while  (j > 0 a n d  set(j) = O) do j := j -  1; 

end;  

4 C o m p u t i n g  t h e  R a d i u s  a n d  a C e n t r a l  V e r t e x  
o f  a C h o r d a l  G r a p h  

The a lgor i thm presented below for finding a central vertex is based on the pro- 
perties of  chordal graphs s tated in Lemmas  3, 5 and 6. 

P r o c e d u r e  central_vertex 

I n p u t :  A chordal  graph G; 
O u t p u t :  A central vertex and the radius of  G; 
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b e g i n  
(1) z :=  a n y  ve r t ex  o f  g raph ;  
(2) d :=  o; 
(3) y :=  t he  f a r t h e s t  ve r t ex  f r o m  x; 
(4) delta :=  d(x, y); 
(5) whi le  (d < delta ) do  beg in  
(6) z :=  y; d :=delta ; 
(7) y :=  t h e  f a r t h e s t  ve r t ex  f r o m  z; 
(8) delta :=  d(y, z) 

end;  
(9) C :=  t he  set  L(y, [delta/2J, z); 
(10) call  t he  p r o c e d u r e  distance_to_clique for  t he  c l ique  C; 
(11) R := m ~ x { d i s t ( . )  : ~ e vertices}; 
(12) for  v �9 vertices d o  . . r e ( v )  :=  0; 
(13) param := 0; 
(14) for  v �9 vertices do  
(15) i f  (dist(v) = R) t h e n  
(16) beg in  param :=  param + 1; num(gate(v)) := num(gate(v)) + 1 end;  
(17) for  v �9 C do  size(v) := 0; 
(18) for  v �9 C do  
(t9) for  (v, w) �9 E do  size(v) :=  size(v) + num(w); 
(20) c := ve r t ex  in  C w i t h  m a x i m a l  size(); 
(21) i f  (size(c) = param) t h e n  (* e(c) = R *) 
(22) beg in  c is c e n t r a l  ve r t ex  o f  G; r := R; s top  end;  

e l s e  (* s i r e ( c )  < param ~nd so e(c) = R + 1 *) 
(23) if((delta is even) a n d  (R=delta/2)) t h e n  
(24) beg in  c is a cen t r a l  ve r t ex  o f  G; r := R + 1; s t o p  end;  

else 
(25) beg in  x :=  t h e  f a r the s t  ve r t ex  f r o m  c; d:=delta ; 
(26) go to  step (3) 

end;  
e n d ;  

T h e o r e m  The centraLvertex algorithm correctly finds a central vertex of a chor- 
dal graph G in time O(m).  

P r o o f  We begin with the description of  the algori thm. First  we find a pair  of  
mutua l ly  far thest  vertices (steps (1)-(8)) .  To find these vertices, we choose an 
a rb i t ra ry  vertex x, find a far thest  vertex y f rom x, and then find a farthest  vertex 
z f rom y. Pu t  delta = d(y, z). By Corol lary  delta > d(G) - 2. I f  e(z) > e(y) 
then we add one to delta and choose the far thest  vertex f rom z. Denote this 
vertex by y and repeat  the same operat ions  until delta = e(y) = e(z). Since 
delta <_ d(G) and initially delta >_ d(G) - 2 there are at  mos t  two improvements  
of  the value of  delta. Hence the procedure of  finding far thest  vertices and fu ture  
improvement  of  this pair  requires a total  computa t iona l  effort of  O(m).  

In step (9) in t ime O(m)  we find the clique 

c = L(y ,  LdeUa/2J ,  z) ,  
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where y and z is the pair of mutual ly  farthest vertices computed in steps (3) -  
(8). In order to do this, by the breadth first search algori thm we compute  the 
distances from y and z to all other vertices of G and select whose vertices v E V 
for which the equalities d(v, y) = [delta/2J and d(v, z) = d(y, z ) -  [delta/2J 
hold. At the following step using the procedure distance_to_clique we compute  
dist(v) and gate(v) for the clique C and all vertices v E V. Using the list dist 0 
we compute the maximal  distance R from vertices of G to C (step (I1)).  Pu t  
D* = {v �9 Y : d(v, C) = R}. At the steps (12)-(16) for each vertex from the 
list gate() we compute hum(w) : the number  of vertices v from D* for wh ich  
gate(v)--w. These steps can be done in O(n) time. At the following step for 
each vertex v �9 C find size(v), which is the number  of vertices from D* whose 
projections on C contain vertex v (this operation takes O(m) t ime).  Further we 
choose a vertex c �9 C with maximal  size(c), i.e. a vertex of C which belongs to 
projections of a m a x i m u m  number  of vertices from D*. As we will show below 
either c is a central vertex of G or for any vertex �9 �9 D(c) e(x) > delta and we 
improve the value of delta. Since initially delta > d(G) - 2 there are at most  two 
returns from step (26) to the step (3). All steps of the algori thm require linear 
t ime and therefore the algorithm computes a central vertex of G in O(m) t ime. 

We now finally come to proving the correctness of our algorithm. 

Claim 1 I f  delta is even (delta = 2k) then R _< k + 1. 

Proof of Claim 1 Assume the contrary and let u �9 D* , i.e. d(u, C) = R > k + 2. 
Denote by v some vertex from metric projection of u on C and by w some 
vertex of the interval I(u, v) adjacent to v. Then either w �9 I(v, y) U I(v, z) or 
w ~ I(y, z). In the first case, if, say w �9 I(v, y), then by L e m m a  3 d(z, u) > 
d(z, v) + d(w, u) = k + R - 1 > delta, contradicting our assumption tha t  y 
and z are mutual ly  farthest vertices. Now assume tha t  w q~ I(y, z). Then 
v �9 I(w, y) U I(w, z). Therefore if, say v �9 I(y, w), then again by L e m m a  3 

d(y, u) > d(y, v) + d(w, u) = k + R -  1 > delta, 

which is a contradiction. [] 

C1aim2I fde l ta  is odd (delta= 2 k - l )  then R =  k , i .e ,  d(u,C) < k for any 
u E V .  

Proof of Claim 2 Assume that  there exists a vertex for which d(u, C) > k + 1, and 
let v E Pr(u,  C). Recall that  C = L(y, k - 1, z), i.e. d(y, v) = k - 1, d(z, v) = k. 
Denote by w some vertex of the interval I(v, u) adjacent to v . We distinguish 
two cases. 

Case 1 w E I(y, z), i.e. w E I(y, v) U I(v, z). 

tf  w E I(y, v), then v E I(w, z) and by Lemma  3 

d(z, u) >_ d(z, v) + d(w, u) > 2k, 

in contradiction with the assumption that  y and z are mutual ly  farthest vertices. 
Now assume that  w E I(v, z). Then from Lemma  3 

d(y, u) > d(y, v) + d(w, u) > 2k - 1. 
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Since z �9 D(y) the equality holds d(y,u) = 2 k -  1~ From the second part of 
the same lemma this equality holds iff there is a vertex x �9 I(v, u) (1 I(w, y) 
adjacent to v and w. Since I(w, y) C I(z,  y) we get x �9 L(y, k - 1, z) = C and 
d(u, x) < d(u, v), contradicting our assumption that v �9 Pr(u,  C). 

Case 2 w r I(y, z), i.e. v ~ I(w, y) U I(w, z). 

If  v E I(w, z) then by Lemma 3 d(u, z) > 2k, contradicting our assumption 
that  e(z)=della. Therefore v �9 I(y, w) and d(w, z) = d(v, z). From this equality 
and Lemma 2 we deduce that there exists a vertex x �9 I(w, z) M I(v, z) adjacent 
to w and v. Note that w �9 I(u, x), otherwise x E I(v, u) and we get in conditions 
of Case 1. Since in addition v �9 I(y, w), from Lemma 3 we deduce that 

y) > + > - 1, 

d(z, u) > d(z, x) + d(w, u) > 2k - 1. 

Since e(y) = e(z) -- 2k - 1 we obta in  that d(y,u) = d(z,u) -- 2k - 1. By 
the second part of Lemma 3 there exist two vertices s �9 I(w, y) Q I(v, u) and 
t �9 I(x,  u) M I(w, z) adjacent to w, v and w, x correspondently (Fig. 4). Vertices 
s , t  and w are equidistant from u. So by Lemma 2 there exist vertices u'  �9 
I(s, u) M I(w, u) and u" �9 I(w, u) Q I(t, u) adjacent to s, w and w, t respectively. 
As u', u" �9 L(w, 1, u) then these vertices either are adjacent or coincide. In any 
case we obtain t-he cycle (v, s, u ' ,u" , t ,  x, v). In every triangulation of this cycle 
the edge (v, z) belongs to at least one triangle. Since u', u" �9 L(v, 2, u) the third 
vertex of such a triangle is one of the vertices s or t. This means that either 
s �9 I(v, u) n I(z, y) or t �9 I(v, u) n I(y, z) and we get in the conditions of the 
preceding case. [:3 

C/aim 3 If e(c) > [delta/2J + 1 then for any vertex u �9 D(c) e(u) > delta. 

Proof of Claim 3 Put p = [delta/2J § 1. By Claims 1 and 2 d(u, C) <_ p and 
therefore e(c) = p -# I and there is a vertex w �9 I(c, u) N C. Since u �9 D* and c 
is a vertex which belongs to a maximum number of projections of vertices from 
D* to the clique C, there is such a vertex u' �9 D* that  c �9 I(w, u'). By Lemma 
3 d(u, u') > d(u, w) + d(e, u') = 2p and so e(u) > delta, o 

Our final claim will complete the proof of the theorem. 

Claim 4 c �9 C(G), except the case when e(c) > [delta~2] + 1. 

Proof of Claim 4 First we note that r(G) >_ [delta + lJ /2.  If delta is odd then 
either e(e) = R = [delta + lJ /2  and so e �9 C(G) or by Claim 3 for any vertex 
u �9 D(c) e(u) > delta. Now assume that della is even. If e(c) > delta/2+l then 
by Claim 3 e(u) > delta for any u �9 D(c). Hence suppose that e(c) < delta/2+l.  
In order to show that c �9 C(G) it is enough to consider only the case when 
r(G) = delta~2. Then d(e)  = d(y, z) = 2r(G) and by Lamina 5 

C(G) C L(y, r(C), z) = C. 
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On the other hand R = r(G) and all metric projections of vertices from D* on 
C have a non-empty  intersection. From our choice the vertex c must  be in this 
intersection. Hence e(e) = r(G) and therefore c E C(G) o 

~ U 

/ /  
/ / 

/ \ 

Y k - 1  v x k - 1  

Fig .  4 

R e m a r k  1 Using this algorithm we can solve the following more general center 
problem : 

for a given subset M C V of vertices of a chordal graph G find a 
vertex v E V such that  eM(V) is minimal,  where 

eM(V) = m a x { d ( v , u ) : u  E M}.  

R e m a r k  2 As a consequence of our algorithm we obtain that  the interval I(u, v) 
between any diametral  vertices u and v intersects the center C(G) of a chordal 
graph G. According to the algorithm either L(u, [d(u, v)/2J,  v) N C(G) ~ 0 or 
we find a pair of vertices with a larger distance that  is impossible in this case. 

O p e n  p r o b l e m  Find subquadratic t ime algorithms for computing the diameter  
d(G) and the whole center C(G) of a chordal graph G. 
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