Skip to main content

Non-exploratory self-stabilization for constant-space symmetry-breaking

  • Conference paper
  • First Online:
Algorithms — ESA '94 (ESA 1994)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 855))

Included in the following conference series:

Abstract

We introduce the notion of non-exploratory self-stabilizing algorithms. The notion minimizes what we call “exploration”- which is the additional (overhead) messages sent in an already stable system in order to assure stabilization maintenance. A non-exploratory algorithm implies significant reduction in overall communication complexity. We demonstrate the applicability of non-exploratory algorithms on the problems of randomized round-robin constant-space token-management, and symmetry breaking (leader election), solved on ring networks for hardware oriented systems (that is, constant space, constant message-size and uniform systems).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Abrahamson, L. Adler, L. Higham, and D. Kirkpatrick, Probabilistic solitude verification on a ring. Proc. 5th ACM Symp. on Principles of Distributed. Computing (1986).

    Google Scholar 

  2. Y. Afek and G.M. Brown, Self-stabilization over unreliable communication media, Distrib. Comput., 7: 27–34, 1993. (Previous version appeared as: Self-stabilization of the alternating-bit protocol, Proc. 8th IEEE Symp. on Reliable Distributed Systems (1989), 10–12.

    Article  Google Scholar 

  3. Y. Afek, S. Kutten, and M. Yung, Memory-efficient self-stabilization on general networks, Proc. 4th International Workshop on Distributed Algorithms, Lecture Notes in Computer Science, Vol 486, Springer-Verlag, New York, (1989), 12–28.

    Google Scholar 

  4. B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G. Varghese, Time Optimal Self-stabilizing Synchronization, Proc. 25th ACM Symp. on Theory of Computing (1993), 652–661.

    Google Scholar 

  5. D. Angluin, Local and global properties in networks of processors, Proc. 12th ACM Symp. on Theory of Computing (1980), 82–93.

    Google Scholar 

  6. C. Attiya, M. Snir and M. Warmuth, Computing on an anonymous ring, Journal of the ACM35(4) (1988), 845–875.

    Article  MathSciNet  Google Scholar 

  7. G.M. Brown, M.G Gouda, and C.L. Wu, Token systems that self-stabilize, IEEE Transactions on Computers38(6) (1989), 845–852.

    Article  MathSciNet  Google Scholar 

  8. J.E. Burns and J. Pachl, Uniform self-stabilizing rings, ACM TOPLAS11(2) (1989), 330–344.

    Article  Google Scholar 

  9. W. Bux, F.H. Closs, K. Kümmerle, H.J. Keller and H.R. Müller, Ar-chitecture and design of a reliable token-ring network, IEEE J. on Selected Areas in Comm., 1(5), (1983), 756–765.

    Google Scholar 

  10. I. Cidon and Y. Ofek, MetaRing — A full-duplex ring with fairness and spatial reuse, IEEE Transactions on Communications41(1):110–120 (1993).

    Article  Google Scholar 

  11. R. Cohen, and A. Segal, Distributed Priority Algorithms under One-Bit-Delay Constraint Proc. 11th ACM Symp. on Principles of Distributed. Computing (1992), 1–12.

    Google Scholar 

  12. E.W. Dijkstra, Self-stabilizing systems in spite of distributed control, Communications of the ACM17(11) (1974), 643–644.

    Article  MATH  Google Scholar 

  13. S. Dolev, A. Israeli and S. Moran, Resource bounds for self stabilizing message driven protocols, Proc. 10th ACM Symp. on Principles of Distributed. Computing (1991), 281–293.

    Google Scholar 

  14. G.N. Frederickson and N. Lynch, The impact of synchronous communication on the problem of electing a leader. J. of the ACM34(1) (1987), 98–115.

    Article  MathSciNet  Google Scholar 

  15. T. Herman, Probabilistic self-stabilization, Information Processing Letters35 (1990), 63–67.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Hopper and R. M. Needham, The Cambridge fast ring networking system, IEEE Transactions on Computers, 37(10) (1988), 1214–1223.

    Article  Google Scholar 

  17. A. Israeli and M. Jalfon, Token management schemes and random walks yield self stabilizing mutual exclusion, Proc. 9th ACM Symp. on Principles of Distributed. Computing (1990), 119–130.

    Google Scholar 

  18. A. Israeli and M. Jalfon, Self-Stabilizing Ring Orientation, Proc. 4th International Workshop on Distributed Algorithms, Lecture Notes in Computer Science, Vol 486, Springer-Verlag, New York, (1990), 1–14.

    Google Scholar 

  19. A. Itai and M. Rodeh, Symmetry breaking in distributive networks, Information and Computation88 (1990) 60–87.

    Article  MathSciNet  Google Scholar 

  20. A. Itai, On the power needed to elect a leader Proc. 4th International Workshop on Distributed Algorithms, Lecture Notes in Computer Science, Vol 486, Springer-Verlag, New York, (1989), 29–40.

    Google Scholar 

  21. L. Lamport, Solved problems, unsolved problems and non-problems in concurrency, Proc. 3rd ACM Symp. on Principles of Distributed Computing, (1984), 1–11.

    Google Scholar 

  22. L. Lamport and N.A. Lynch, Distributed computing models and methods, Handbook on Theoretical Computer Science, MIT Press/Elsevier, Ed. J. van Leeuwen, 1990, 1159–1199.

    Google Scholar 

  23. A. A. Lazar, A. T. Temple and R. Gidron, MAGNET II: A metropolitan area network based on asynchronous time sharing, IEEE J. on Selected Areas in Comm., 8(8), (1990), 1582–1594.

    Article  Google Scholar 

  24. C. Lin, and J. Simon, Observing Self-Stabilization Proc. 11th ACM Symp. on Principles of Distributed. Computing (1992), 113–124.

    Google Scholar 

  25. A. Mayer, Y. Ofek, R. Ostrovsky and M. Yung, Self-Stabilizing Symmetry Breaking in Constant-Space, Proc. 24th ACM Symp. on Theory of Computing (1992), 667–678.

    Google Scholar 

  26. Y. Ofek, Personal communication.

    Google Scholar 

  27. H. Ohnishi, N. Morita, and S. Suzuki, ATM ring protocol and performance, Proc. ICC'89, 13.1, (1989), 394–398.

    Google Scholar 

  28. J. Pachl, E. Korach and D. Rotem, A technique for proving lower bounds for distributed maximum-finding algorithms, Proc. 14th ACM Symp. on Theory of Computing (1982), 378–382.

    Google Scholar 

  29. F. E. Ross, FDDI — a Tutorial, IEEE Communication Magazine, 24(5), (1986), 10–17.

    Article  Google Scholar 

  30. P. Vitanyi, Distributed elections in an Archimedian ring of processors, Proc. 16th ACM Symp. on Theory of Computing (1984), 542–547.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan van Leeuwen

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parlati, G., Yung, M. (1994). Non-exploratory self-stabilization for constant-space symmetry-breaking. In: van Leeuwen, J. (eds) Algorithms — ESA '94. ESA 1994. Lecture Notes in Computer Science, vol 855. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0049408

Download citation

  • DOI: https://doi.org/10.1007/BFb0049408

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58434-6

  • Online ISBN: 978-3-540-48794-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics