Skip to main content

A foundation for computable analysis

  • Chapter
  • First Online:
Foundations of Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1337))

Abstract

While for countable sets there is a single well established computability theory (ordinary recursion theory), Computable Analysis is still underdeveloped. Several mutually non-equivalent theories have been proposed for it, none of which, however, has been accepted by the majority of mathematicians or computer scientists. In this contribution one of these theories, TTE (Type 2 Theorie of Effectivity), is presented, which at least in the author's opinion has important advantages over the others. TTE intends to characterize and study exactly those functions, operators etc. known from Analysis, which can be realized correctly by digital computers. The paper gives a short introduction to basic concepts of TTE and shows its general applicability by some selected examples.

First, Turing computability is generalized from finite to infinite sequences of symbols. Assuming that digital computers can handle (w.l.o.g.) only sequences of symbols, infinite sequences of symbols are used as names for “infinite objects” such as real numbers, open sets, compact sets or continuous functions. Naming systems are called representations. Since only very few representations are of interest in applications, a very fundamental principle for defining effective representations for T0-spaces with countable bases is introduced. The concepts are applied to real numbers, compact sets and continuous functions. The problem of zero-finding is considered. Computational complexity is discussed. The paper concludes with some remarks on other models for Computable Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oliver Aberth. Computable Analysis. McGraw-Hill, New York, 1980.

    MATH  Google Scholar 

  2. Oliver Aberth. Precise Numerical Analysis. Brown Publishers, Dubuque, 1988.

    MATH  Google Scholar 

  3. Errett Bishop und Douglas S. Bridges. Constructive Analysis, Band 279 der Reihe Grundlehren der mathematischen Wissenschaft. Springer, Berlin, 1985.

    Google Scholar 

  4. Vasco Brattka und Peter Hertling. Feasible real random access machines. In Keith G. Jeffrey, Jaroslav Král und Miroslav Bartosek, Hrsg., SOFSEM'96: Theory and Practice of Informatics, Band 1175 der Reihe Lecture Notes in Computer Science, Seiten 335–342, Berlin, 1996. Springer. 23rd Seminar on Current Trends in Theory and Practice of Informatics, Milovy, Czech Republik, November 23–30, 1996.

    Google Scholar 

  5. Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.

    MATH  Google Scholar 

  6. Markus Bläser. Uniform computational complexity of the derivatives of C-functions. In Ker-I Ko und Klaus Weihrauch, Hrsg., Computability and Complexity in Analysis, Band 190 der Reihe Informatik-Berichte, Seiten 99–104. FernUniversität Hagen, September 1995. CCA Workshop, Hagen, August 19–20, 1995.

    Google Scholar 

  7. A. Borodin und I. Munro. The Computational Complexity of Algebraic and Numeric Problems. Elsevier, New York, 1975.

    MATH  Google Scholar 

  8. R.P. Brent. Fast multiple-precision evaluation of elementary functions. Journal of the Association for Computing Machinery, 23(2):242–251, 1976.

    MATH  MathSciNet  Google Scholar 

  9. Leonore Blum, Mike Shub und Steve Smale. On a theory of computation and complexity over the real numbers: N P-completeness, recursive functions and universal machines. Bulletin of the American Mathematical Society, 21(1):1–46, Juli 1989.

    Article  MathSciNet  MATH  Google Scholar 

  10. G.S. Ceitin. Algorithmic Operators in Constructive Complete Separable Metric Spaces. Doklady Akad. Nauk, 128:49–52, 1959. (in Russian).

    MathSciNet  Google Scholar 

  11. Pietro Di Gianantonio. Real number computation and Domain Theory. Information and Computation, 127:11–25, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  12. Abbas Edalat. Domain theory and integration. Theoretical Computer Science, 151:163–193, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  13. Ryszard Engelking. General Topology, Band 6 der Reihe Sigma series in pure mathematics. Heldermann, Berlin, 1989.

    Google Scholar 

  14. Martin Hötzel Escardó. PCF extended with real numbers. In Ker-I Ko und Klaus Weihrauch, Hrsg., Computability and Complexity in Analysis, Band 190 der Reihe Informatik-Berichte, Seiten 11–24. FernUniversität Hagen, September 1995. CCA Workshop, Hagen, August 19–20, 1995.

    Google Scholar 

  15. Andrzej Grzegorczyk. Computable functionals. Fundamenta Mathematicae, 42:168–202, 1955.

    MATH  MathSciNet  Google Scholar 

  16. Andrzej Grzegorczyk. On the definitions of computable real continuous functions. Fundamenta Mathematicae, 44:61–71, 1957.

    MATH  MathSciNet  Google Scholar 

  17. Jürgen Hauck. Konstruktive reelle Funktionale und Operatoren. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 29:213–218, 1983.

    MATH  MathSciNet  Google Scholar 

  18. Peter Hertling. Unstetigkeitsgrade von Funktionen in der effektiven Analysis. Informatik Berichte 208, FernUniversität Hagen, Hagen, November 1996. Dissertation.

    Google Scholar 

  19. Ker-I Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston, 1991.

    Google Scholar 

  20. Boris Abramovich Kushner. Lectures on Constructive Mathematical Analysis, Band 60 der Reihe Translation of Mathematical Monographs. American Mathematical Society, Providence, 1984.

    Google Scholar 

  21. Christoph Kreitz und Klaus Weihrauch. A unified approach to constructive and recursive analysis. In M.M. Richter, E. Börger, W. Oberschelp, B. Schinzel und W. Thomas, Hrsg., Computation and Proof Theory, Band 1104 der Reihe Lecture Notes in Mathematics, Seiten 259–278, Berlin, 1984. Springer. Proceedings of the Logic Colloquium, Aachen, July 18–23, 1983, Part II.

    Google Scholar 

  22. Cristoph Kreitz und Klaus Weihrauch. Theory of representations. Theoretical Computer Science, 38:35–53, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  23. Christoph Kreitz und Klaus Weihrauch. Compactness in constructive analysis revisited. Annals of Pure and Applied Logic, 36:29–38, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ramon E. Moore. Methods and Applications of Interval Analysis. SIAM Journal on Computing, 1979.

    Google Scholar 

  25. Norbert Th. Müller. Uniform Computational Complexity of Taylor series. In Thomas Ottmann, Hrsg., Proceedings of the 14th International Colloquium on Automata, Languages, and Programming, Band 267 der Reihe Lecture Notes in Computer Science, Seiten 435–444, Berlin, 1987. Springer.

    Google Scholar 

  26. Erich Novak. The real number model in numerical analysis. Journal of Complexity, 11(1):57–73, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  27. Marian B. Pour-El und J. Ian Richards. Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer, Berlin, 1988.

    Google Scholar 

  28. Franco P. Preparata und Michael Ian Shamos. Computational Geometry. Texts and Monographs in Computer Science. Springer, New York, 1985.

    Google Scholar 

  29. Hartley Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.

    MATH  Google Scholar 

  30. A. Schönhage. Numerik analytischer Funktionen und Komplexität. Jahresbericht der Deutschen Mathematiker-Vereinigung, 92:1–20, 1990.

    MATH  MathSciNet  Google Scholar 

  31. A.S. Troelstra und D. van Dalen. Constructivism in Mathematics, Volume 1, Band 121 der Reihe Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1988.

    Google Scholar 

  32. Alan M. Turing. On computable numbers, with an application to the “Entscheidungsproblem”. Proceedings of the London Mathematical Society, 42(2):230–265, 1936.

    MATH  Google Scholar 

  33. Alan M. Turing. On computable numbers, with an application to the “Entscheidungsproblem”. A correction. Proceedings of the London Mathematical Society, 43(2):544–546, 1937.

    MATH  Google Scholar 

  34. Joseph F. Traub, G.W. Wasilkowski und H. Woźniakowski. Information-Based Complexity. Computer Science and Scientific Computing. Academic Press, New York, 1988.

    Google Scholar 

  35. Klaus Weihrauch. Type 2 recursion theory. Theoretical Computer Science, 38:17–33, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  36. Klaus Weihrauch. Computability, Band 9 der Reihe EATCS Monographs on Theoretical Computer Science. Springer, Berlin, 1987.

    Google Scholar 

  37. Klaus Weihrauch. Effektive Analysis. Correspondence course 1681, Fern Universität Hagen, 1994.

    Google Scholar 

  38. Klaus Weihrauch. A Simple Introduction to Computable Analysis. Informatik Berichte 171, FernUniversität Hagen, Hagen, Juli 1995. 2nd edition.

    Google Scholar 

  39. Klaus Weihrauch. A Foundation for Computable Analysis. In Douglas S. Bridges, Cristian S. Calude, Jeremy Gibbons, Steve Reevesund Ian H. Witten, Hrsg., Combinatorics, Complexity, and Logic, Discrete Mathematics and Theoretical Computer Science, Seiten 66–89, Singapore, 1997. Springer. Proceedings of DMTCS'96.

    Google Scholar 

  40. E. Wiedmer. Computing with infinite objects. Theoretical Computer Science, 10:133–155, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  41. Klaus Weihrauch und Ulrich Schreiber. Embedding metric spaces into cpo's. Theoretical Computer Science, 16:5–24, 1981.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Freksa Matthias Jantzen Rüdiger Valk

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weihrauch, K. (1997). A foundation for computable analysis. In: Freksa, C., Jantzen, M., Valk, R. (eds) Foundations of Computer Science. Lecture Notes in Computer Science, vol 1337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0052087

Download citation

  • DOI: https://doi.org/10.1007/BFb0052087

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63746-2

  • Online ISBN: 978-3-540-69640-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics