Skip to main content

Abstract structures in spatial cognition

  • Chapter
  • First Online:
Foundations of Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1337))

Abstract

The importance of studying spatial cognition in cognitive science is enforced by the fact that the applicability of spatial concepts and spatial expressions is not limited to the spatial domain. We claim that common structures underlying both concrete, physical space and other domains are the basis for using spatial expressions, e.g., prepositions like between, with respect to space as well as time or other domains. This claim opposes the thesis that the common use is based upon an analogy between concrete space and other domains. The development of geometry from Euclid's Elements to more differentiated systems of diverse geometries and topologies can be perceived of as an example of the transfer from modeling concrete space towards describing abstract spatial structures.

Parts of this paper are based on Habel & Eschenbach (1995). The research reported in this paper was carried out in connection to the project ‘Axiomatik räumlicher Konzepte’ (Ha 1237/7) supported by the Deutsche Forschungsgemeinschaft (DFG).

Thanks to an anonymous referee for comments and suggestions for improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blank, A. (1958). Axiomatics of binocular vision: the foundations of metric geometry in relation to space perception. Journal of the Optical Society of America, 48, 328–333.

    Article  MathSciNet  Google Scholar 

  • Bullock, M.; Gelman, R. & Baillargeon, R. (1982). The development of causal reasoning. In: W.J. Friedman (ed.), The Developmental Psychology of Time (pp. 209–254). New York: Academic Press.

    Google Scholar 

  • Cresswell, M.J. (1976). The semantics of degree. In: B. Partee (ed.), Montague Grammar (pp. 261–292). New York: Academic Press.

    Google Scholar 

  • Eilan, N.; McCarthy, R. & Brewer, B. (eds.) (1993). Spatial Representations. Oxford: Blackwell.

    Google Scholar 

  • Eschenbach, C.; Habel, C. & Leßmöllmann, A. (1997). The interpretation of complex spatial relations by integrating frames of reference. Contribution to the Workshop “Language and Space”, AAAI-97.

    Google Scholar 

  • Eschenbach, C. & Kulik, L. (1997). An axiomatic approach to the spatial relations underlying left-right and in front of-behind. In: G. Brewka, C. Habel & B. Nebel (eds.), KI-97 — Advances in Artificial Intelligence. Berlin: Springer-Verlag.

    Google Scholar 

  • Euclid. Elements. [transl. by T.L. Heath (1956)]. New York: Dover.

    Google Scholar 

  • Freksa, C. (1992). Using orientation information for qualitative spatial reasoning. In: A. Frank, I. Campari & U. Formentini (eds), Theories and Methods of Spatio-Temporal Reasoning in Geographic Space (pp. 162–178). Berlin: Springer-Verlag.

    Google Scholar 

  • Freksa, C. & Habel, C. (1990). Warum interessiert sich die Kognitionsforschung für die Darstellung räumlichen Wissens? In: C. Freksa & C. Habel (eds.), Repräsentation und Verarbeitung räumlichen Wissens (pp. 1–15). Berlin: Springer.

    Google Scholar 

  • Gibbs, R.W. & Colston, H.L. (1995). The cognitive psychological reality of image schemata and their transformations. Cognitive Linguistics, 6, 347–378.

    Article  Google Scholar 

  • Gray, J. (1989; 2nd). Ideas of Space. Oxford: Clarendon Press.

    MATH  Google Scholar 

  • Habel, C. (1990). Propositional and depictorial representations of spatial knowledge: The case of path concepts. In: R. Studer (ed.), Natural Language and Logic (pp. 94–117). Lecture Notes in Artificial Intelligence. Berlin: Springer.

    Google Scholar 

  • Habel, C. & Eschenbach, C. (1995). Abstrakte Räumlichkeit in der Kognition. Kognitions-wissenschaft, 4, 171–176.

    Google Scholar 

  • Hernández, D. (1994). Qualitative Representation of Spatial Knowledge. Berlin: Springer-Verlag.

    MATH  Google Scholar 

  • Hilbert, D. (1956). Grundlagen der Geometrie. Stuttgart: Teubner.

    MATH  Google Scholar 

  • Huntington, E.V. (1938). Inter-relations among the four principal types of order. Transactions of the American Mathematical Society, 38, 1–9.

    Article  MathSciNet  Google Scholar 

  • Indow, T. (1991). A critical review of Luneberg's model with regard to global structure of visual space. Psychological Review, 98, 430–453.

    Article  Google Scholar 

  • Klein, F. (1872). Vergleichende Betrachtungen über neuere geometrische Forschungen. published 1893 in Mathematische Annalen, 43, 63–100.

    Article  Google Scholar 

  • Kline, M. (1972). Mathematical Thought — From Ancient to Modern Times. New York: Oxford University Press.

    MATH  Google Scholar 

  • Lakoff, G. (1987). Women, Fire, and Dangerous Things. Chicago: University of Chicago Press.

    Google Scholar 

  • Landau, B. & Jackendoff, R. (1993). “What” and “where” in spatial language and spatial cognition. Behavioral and Brain Sciences, 16, 217–238, 255–266.

    Article  Google Scholar 

  • Langacker, R.W. (1982). Space grammar, analysability, and the English passive. Language, 58, 22–80.

    Article  Google Scholar 

  • Langacker, R.W. (1986). An introduction to cognitive grammar. Cognitive Science, 10, 1–40.

    Article  Google Scholar 

  • Leslie, A.M. & Keeble, S. (1987). Do six-month-old infants perceive causality? Cognition, 25, 265–288.

    Article  Google Scholar 

  • Miller, G.A. (1978). Semantic relations among words. In: M. Halle, J. Bresnan & G. Miller (eds.), Linguistic Theory and Psychological Reality (pp. 60–117). Cambridge, MA: MIT-Press.

    Google Scholar 

  • Newton-Smith, W.H. (1980). The Structure of Time. London: Routledge & Kegan Paul.

    Google Scholar 

  • Pinkal, M. (1990). On the logical structure of comparatives. In: R. Studer (ed.), Natural Language and Logic (pp. 146–167). Lecture Notes in Artificial Intelligence. Berlin: Springer.

    Google Scholar 

  • Randell, D.A.; Cui, Z. & Cohn, A.G. (1992). A spatial logic based on regions and connection. In: B. Nebel, C. Rich & W. Swartout (eds), Principles of Knowledge Representation and Reasoning (KR'92) (pp. 165–176). San Mateo, CA: Morgan Kaufmann.

    Google Scholar 

  • Reichenbach, H. (1958). The Philosophy of Space and Time. New York: Dover.

    MATH  Google Scholar 

  • Roberts, F.S. & Suppes, P. (1967). Some problems in the geometry of visual perception. Synthese, 17, 173–201.

    Article  MATH  Google Scholar 

  • Russell, B. (1903). Principles of Mathematics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Schlieder, C. (1995a). Reasoning about ordering. In: A.U. Frank & W. Kuhn (eds.), Spatial Information Theory (pp. 341–349). Berlin et al: Springer-Verlag.

    Google Scholar 

  • Schlieder, C. (1995b). Qualitative shape representation. In: A. Frank (ed.), Spatial Conceptual Models for Geographic Objects with Indeterminate Boundaries (pp. 123–140). London: Taylor & Francis.

    Google Scholar 

  • Talmy, L. (1983). How language structures space. In: H. Pick & L. Acredolo (eds.), Spatial Orientation (pp. 225–282). New York: Plenum.

    Google Scholar 

  • Tarski, A. (1959). What is elementary geometry? In: L. Henkin, P. Suppes & A. Tarski (eds), The Axiomatic Method, with Special Reference to Geometry and Physics (pp. 16–29). Amsterdam: North-Holland Publ.

    Google Scholar 

  • Tarski, A. (reprinted in: J. Hintikka (ed.) (1969), The Philosophy of Mathematics (pp. 164–175). Oxford: Oxford University Press.)

    Google Scholar 

  • van Fraassen, B. (1985; 2nd.). An Introduction to the Philosophy of Time and Space. New York: Columbia University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Freksa Matthias Jantzen Rüdiger Valk

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Habel, C., Eschenbach, C. (1997). Abstract structures in spatial cognition. In: Freksa, C., Jantzen, M., Valk, R. (eds) Foundations of Computer Science. Lecture Notes in Computer Science, vol 1337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0052105

Download citation

  • DOI: https://doi.org/10.1007/BFb0052105

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63746-2

  • Online ISBN: 978-3-540-69640-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics