
The Complexity of Computing Hard Core Predicates

Mikael Goldmann and Mats N~islund

Royal Institute of Technology,
Dept. of Numerical Analysis and Computing Science,

S-100 44 Stockholm, Sweden
e-mail : {migo, matsn}@nada, kth. se

Abstract. We prove that a general family of hard core predicates requires circuits
of depth (l-o(l)) ~ or super-polynomial size to be realized. This lower bound
is essentially tight, l~or constant depth circuits, an exponential lower bound on
the size is obtained. Assuming the existence of one-way functions, we explicitly
construct a one-way function f(x) such that for any circuit c from a family of
circuits as above, c(x) is almost always predictable from f(x).

Keywords: pseudo-randomness, small-depth circuit, one-way function

1 Introduction
One of the most useful cryptographic primitives is the pseudo-random generator. Ttfis
is a function that deterministically expands a short random seed to a longer, random
"looking" string. Blum and Micali [3], and Yao [13], showed a simple way to construct
such a generator, using the following method. Assume that f is a permutation and that
we have a set of boolean functions C. Choose c at random in C, a random x, and output
f (x) , c(x), and (the description of) c. Clearly it suffices that c(x) is unpredictable given
f (x) and c. Since computing c(x) is no harder than inverting f(x) , this in turn implies
that f (x) must be a so called one-way function. If we indeed have this situation, C is
said to be a family of hard core predicates for f .

For efficiency reasons, we would like the functions in C to be very simple to com-
pute, so that an essential question is: How simple can they be? It seems natural to
consider functions such as c(x) = "some bit ofx". Although there are examples of cer-
tain conjectured one-way functions f for which such simple c are hard core predicates,
e.g. see [1,3,7], these constructions are too simple to work in a general setting without
any assumptions on f . The reason for this is that a one-way function may depend on
a relatively small number of its input bits and output the rest of them unchanged. The
knowledge of these latter bits may be enough to deduce the value of such a "hard core".
Since the case when no assumptions on f (except that it's one-way) are needed clearly
is the most attractive, this is the case that we study in this paper.

Yao observed in [13] that although a one-way function may reveal many bits of the
input, it must hide at least some bits. We may in general not know which these bits are,
so a good candidate for a hard core should depend on all (or almost all) of its input
bits. The first construction of a hard core predicate for any one-way function is due
to Goldreich and Levin, [5], and uses the inner product modulo 2 of x and a random

binary string r. Two more constructions, affine functions in GF[2 n] and Zp, are due to
N~lund, [11,12]. These are functions depending on all bits in x. Though simple, it is
not obvious that we cannot use even simpler functions as long as they depend on all
bits.

In this paper we shall prove that the existing constructions are basically the simplest
possible. To measure the simplicity/complexity we will use the computational model of
circuits, i.e. how large/deep a circuit of boolean AND/OR/NOT-gates that is needed to
compute the hard core predicate. All the three general constructions mentioned above
can be computed by circuits of logarithmic depth, polynomial size, and constant fan-in,
that is, NCl-circuits. So, the next natural step-down in complexity would be to con-
sider AC~ circuits of constant depth, polynomial size, and unbounded fan-in.
There are numerous results indicating that this class of circuits is not very powerful. For
instance, it is known from [10] by Mansour, Nisan, and Tiwari that universal hash func-
tions (in general good candidates for hard core predicates) can not be computed by such
simple circuits. A similar negative result on the existence of so called p s e u d o - r a n d o m
func t ions was given by Linial, Mansour, and Nisan in [9].

The widely used technique for showing computational limitations of small-depth
circuits is the application of the H~stad switching lemma, see [6]. This proves to be
useful here too since the lemma basically says that knowing some of the inputs to a
small-depth circuit is very likely to be enough to deduce the output value of the circuit.
This method is probabilistic and will give non-uniform results. However, we show that
it is possible to obtain uniform results as well.

The paper is organized as follows. First we give some basic definitions and a proof
outline in Section 2. Section 3 describes some tools from the theory of circuit complex-
ity. Although perhaps known as a "folklore theorem", we prove in Section 4 that no
family of constant depth, constant fan-in circuits can be a family of hard core predi-
cates. We choose to do this since it illustrates the basic techniques. In Section 5 we then
prove that not even polynomial size, constant depth, and unbounded fan-in circuits can
be hard core predicates.

2 Preliminaries
I fx is a binary string, Ix I is the length ofx (ifS is a set IS I is the cardinality). By y EB S,
we mean a y chosen from S according to the distribution D. Here, U will denote the
uniform distribution on S. For two binary strings x,y, x o y denotes the concatenation of
the strings. I fx = x l x 2 . . "xn E {0,1} n and I C_ {1,2, . . . ,n} letxt = XilXi2.. "Xill I, i j E I,
il < i2 < "'" < ilt 1. x 7 is defined analogously by taking the complement of I.

Let B = {b: {0,1}* ~-~ {0,1}}, Bn = {b: {0,1} n ~-~ {0,1}}. A circuit is a di-
rected acyclic graph having gates as vertices. A gate can be of type OR, AND, or NOT
and computes the corresponding boolean function of its incoming edges, the incoming
edges being outputs of other gates or one of the inputs, xi, i = 1 , 2 , . . . , n or the negation
of an input ~. The fan- in of a gate is the number of incoming edges. There is a unique
gate the output of which is the output of the whole circuit. The size of the circuit is
the number of gates. By modifying the circuit (and making it slightly bigger), we can
assume that NOT-gates only appear at the inputs and that the circuit is leveled with the
gates at level i taking their inputs from gates at level i - 1 and that all gates at a given

level are of the same type (AND/OR), types alternating from level to level. Hence all
inputs xi are at level 0. The depth of the circuit is the number of levels.

A circuit c computing b E ~ is said to depend on m bits if there is a fixed I C_
{1,2, . . . ,n}, III = m , so that for all x, Ix[= n, c(x) is uniquely determined by x~. Notice
that a circuit c can be evaluated on input x by an algorithm whose running time is
polynomial in the size of c by simply traversing c's gates.

By NC ~ we mean the set of b E B so that for some c,d,k E O(1), for all n and
x E {0,1} n, b(x) is computable by a circuit with size, depth, and fan-in bounded by n c,
d, and k respectively. AC ~ is defined similarly but without the restriction on the fan-in.

An ensemble of circuits is a sequence, ~ = {~n}n>l, where each ~n is a probability
distribution on circuits computing functions in Bn. I f there is a probabilistic polynomial
time Turing machine (pptm) that on input 1 n outputs a c according to ~n, we shall say
that we have apolynomial ensemble of circuits. An ensemble of functions, ~ = {~n}n>l,
is defined analogously, but with each ~n being a distribution on functions mapp~-ng
{0, 1} n ~-~ {0, 1}*. An ensemble of circuits, {~n}n>l, is said to be (s(n),d(n),k(n))-
bounded if for all n, ~n has support only on circuits c with size(c) < s(n), depth(c) <
d(n), and fan-in bounded by k(n). I f one of the three parameters, e.g. the fan-in, is
unbounded we shall omit it and write (s(n),d(n),-)-bounded etc.

A function ~(n) is negligible if for every constant a > 0 and for every sufficiently
large n, ~(n) < n -a. A one-way function is a deterministic poly-time computable func-
tion f such that for every pptm, M, the probability that M(f(x)) E f - 1 (x) is negli-
gible. The probability is taken over x E~t {0,1} n and M's random choices. Referring
to a simple padding argument, we shall assume that all one-way functions are length-
preserving, If(x)l--Ixl.

Let ~ = {~n}n>l be a polynomial ensemble of circuits and let f be a one-way
function. An e(n)-adversary for ~ is a pptm a such that Pr[A(f(x), c) = c(x)] > 1/2 +
e(n), the probability taken over x E ~/{0, 1 }n, c chosen according to ~n, and A's random
choices. We call ~ a hard core predicate for f if no e(n)-adversary exists for non-
negligible e(n). Normally, ~n is the uniform distribution on some set of circuits, but
we shall here allow other distributions. If ~ is a hard core predicate for any one-way
function, we simply call ~ a (general) hard core predicate.

2.1 General Proof Outline

Assume that we have a one-way function 1 f of the form f (x) = g(xt) o x 7 where I C
{1,2, . . . ,n} and where g is another one-way function. In other words, f is defined by
applying g to a part of x and output the rest of x unchanged. (It may be the case that g
itself outputs some bits unchanged, but we shall see that this can only help us.)

Suppose now that we are the adversary A. Given f (x) and a circuit c, we want to
compute c(x). How would we go about this? Since we know the bits in x b a natural
approach would be to try to make a partial evaluation of c using only these bits. If,
for instance, we know that one of the inputs to an AND-gate in c is a zero, we can
simplify the circuit by deleting this gate and replacing it by the constant zero and so
on. If we are able to make enough simplifications from the information in x 7, the circuit

1 Without this assumption, the notion of hard core predicate is, of course, meaningless.

will be a constant, determined by x i, and independent of xl. It is not clear how to do
this simplification/evaluation in polynomial time, nor is it clear how to te l l / f the circuit
indeed is independent of xt. However, if it almost always is the case that c "collapses"
in this way, we can always act as if the value xt is unimportant, substitute an arbitrary
value z for xt, and then evaluate the circuit using z ,x 7. In the case where c doesn't
depend on xt, this strategy will give a correct value for c(x). Also, this is only a simple
evaluation, and can be done in time polynomial in size(c). (This is polynomial in A's
input, (f (x) , c), but it is not polynomial in n = Ixl unless size(c) is. We point out this
difference since we shall include larger circuits later in our study.)

The hardness of inverting f is now reduced to the hardness of inverting g and the
length of the argument of g (g's security parameter) is decreased. Hence, we lower the
security of f correspondingly. As long as this length reduction is within a polynomial
factor though, this is, at least from a theoretical standpoint, of no importance.

If we for the moment accept this idea, there remains one big concern. How should
we choose the set I that g is applied to? Surely, we cannot hope that a fixed I will
work as it seems likely that we could find a circuit that only uses the bits in xl that are
hidden to us and thus the circuit output would be unpredictable. We should therefore
use a random I each time. This randomness must be taken somewhere and there are
two ways of doing this; either we "hardwire" the randomness into f and we have a
non-uniform construction or, to get uniformity, we "borrow" randomness from x since
x is assumed to be random. This second approach can be realized as follows. Writing
x as x = x ~ ox" (we shall determine the lengths of x~,x n later), we now interpret (in
some way) x ~ as an encoding of a subset I of the bits in x". We then compute f as
f (x) = f (x rox") = g(~r) o ~ ox'. Since all information on I is available in x r which is
supplied to the circuit c, we must choose this encoding carefully to avoid c "figuring
out" which bits it should use, namely those in I, hidden by g.

These are the main ingredients and the bulk of the paper basically concerns three
things. 1. Find an encoding that circumvents the problem just mentioned. 2. Quantify
how many bits in x we (the adversary) will need to know (the size of I). 3. Analyze how
likely it is that the circuit indeed "collapses" given the bits in I.

3 Random Restrictions

The notion of "knowing" bits in x is formalized by random restrictions, introduced
in [4].

Definition 1. A restriction is a partial assignment to the inputs of a circuit c, assigned
inputs are given values in {0,1 } and the rest are assigned the symbol �9 to denote that
they remain variables. By R(n,p) we mean the set of restrictions assigning * to some
pn-subset of x l , . . . ,xn and values in {0,1} to the other n(1 - p) xis. A random restric-
tion in R (n,e) then, assigns �9 to a random pn-subset of the inputs and values in {0,1 }
independently, and with equal probability, to the other n(1 - p) inputs.

For a circuit c and a restriction p, c rp denotes the circuit computing the restricted

function of the remaining �9 after p is applied. For p E R (n'p), let *(p) be the np-subset
(of indices) that is assigned �9 by p. Since . (p) and the assignment to the other bits in x
uniquely determines p, we can by setting I = . (p) specify p by the notation [l;xi].

3.1 Encoding Restrictions as Integers

Consider restrictions in R (n,p). We will encode these as integers. For a p = [*(p);z], it
is trivial to encode z as a binary string, so the only possible problem is how to encode

n the set . (p) . We show how to do this. Note that there are (he) possibilities for *(p).

Lenmaa 2. Let u(n) = (nnp). For every v > 0 there is a polynomial time computable
surjectivefunction

Q,, : {0,1) [l~ ~ J = {III c {1 ,2 , . . . ,n}, I I I= np}

such that for h E r {0, 1 } [logu(n)]+v for every I E J:

(1),
1 - ~(n) < ~h [Qv(h) = I] <_ 1 + u(n)"

The proof is straightforward and therefore omitted. The main idea is to interpret the
integer q = h rood u(n) as "the lexicographically qth rip-subset".

As noted, there could still be a problem with how we perform the encoding, since
the circuits could gain information on the restriction. We will take care of this when
computing the value h that Qv is applied to and we return to this later. In the remainder
of this paper we abuse notation slightly and refer to the value h as coding a restriction
rather than Qv(h). As long as h is uniformly distributed in {0,1} [l~ this is by
the Lemma above basically the same thing.

4 There are no Hard Core Predicates in NC ~

The situation for NC ~ circuits is quite simple. Since such circuits have fan-in bounded
by k E O(1), they can depend on only ~epth(c) E O(1) of the inputs xi. The proofs in
this case are simple combinatorial arguments.

Proposition 3. Let c be a circuit of depth d, fan-in k, d ,k E O(1), computing some
function b E ~ and let p E u R (n'p), P <_ k -a. Then

Pr [c Ip is a constant function] > 1 - kdp.
.(p)

Furthermore, if this is the case then given p we can deterministically in time polynomial
in size(c) decide what this constant is.

Proof. Since c can depend on at most k d of its inputs, the probability that c depends on
an input xi such that i E *(p) is at most kd~ .

If c in this way collapses under p, we can simply evaluate the circuit by assigning an
arbitrary (even fixed) value to the xis for i E *(p) since c does not depend on these. []

4.1 Non-un i fo rm Case

Theorem 4. For any 8 ~ (0,1) there is a polynomial ensemble of one-way functions
3(8) = {3n}n___l and a deterministic polynomial time algorithm A such that for all con-
stants d,k, for any (.,d,k)-bounded ensemble of circuits { En},>_j, for every c supported
by En, andforal lx E {0,1} n,

[a(f(x),c) = c(x)] > 1 - O (n - (1 - 5)) . Pr
fern

Proof. Let g be a one-way function and let ~n be the uniform distribution on the fol-
lowing set o f one-way functions:

{It(x) = g(xl) oxToI I t C_ {1 ,2 , . . . ,n}, Itl = n~}.

For any c chosen according to ~n and any x, having a value of the form ft(x) for random

I, corresponds in a natural way to having a restriction p = [l;xi] in R (n,n-(l-% on the
input of c. The result now follows directly f rom Proposition 3. rn

By standard probabilistic arguments we get the Corollary below.

Coro l l a ry 5. For all constants d,k,8, 8 E (0,1), for any (-,d,k)-bounded ensemble
of circuits {~n}n_>l, there is a non-uniform one-way function f and a deterministic
polynomial time algorithm A so that for all x E {0, 1 }n,

Pr [A(f(x),c)= c(x)] > 1 - 0 (n-(]-a)).
cE ~n

4,2 Un i fo rm Case

In the construction of the one-way functions {ft} in the previous subsection we used
extra randomness when selecting I. To get a uniform result we must somehow eliminate
this. As mentioned in the outline, we cannot use a fixed subset I.

The idea is that since x, the argument of f (x) , is supposed to be a random string,
we will "borrow" a few random bits from x itself to "point out" which subset I to
use when computing g(xt) (and thus also which subset to output unaffected). We will
therefore need a mapping from, say the first l(n) bits of x to the set of all n&subsets
of {l(n) + 1, l(n) + 2 , . . . , n}. I f we split x as x = x ~ o x", we would like to interpret x ~
as an encoding of a random subset of the bits in x ~t. But we know how to do this from
L e m m a 2. We need roughly l(n) = Flog (~s) l < n~log n bits to encode all n&subsets. To

be more precise we should have l(n) = Ix'l = Flog (t~1)1, and since Ix"l = Ixl - Ix'l =

n -- l(n), l(n) n-l(n) �9 should in fact satisfy the equation l(n) -- Flog (n8)1" Instead o f s o l v m g
this equation we can cheat slightly and simply choose l(n) "large enough". This also
means that we will use a v-value greater than zero when referring to L e m m a 2 and this
will give a more uniform distribution on the restrictions.

We must also be slightly careful, since the subset we are to compute g on is now
supplied to the circuit c via x ~, and c might use that information to correlate itself to that
subset and maybe even become dependent on some of the bits hidden by g. To avoid
this we will use a slightly more elaborate encoding of the n&subsets as described in the
proof below.

Theorem 6. For any ~ E (0,1) there is a one-way function f and a deterministic poly-
nomial time algorithm A such that for all constants d,k, for any (.,d,k)-bounded en-
semble of circuits {En}n>l, for all sufficiently large n, for every c supported by En,

xeI~oo,1}~[A(f(x),c) : c(x)] > 1 - O (n - (1 - ~)) .

Consequently, there are no hard core predicates in NC ~

Proof." Let 0 < x < 1 - 5, let g be a one-way function and write x = x ~ o x" where x ~ is
the first l(n) = nXn~logn bits o f x andx" the last n - l(n) bits. Define

in s
hli)lx,) : m o d 2

j=(i-l)nX+l

(the exclusive-or over the ith nX-bit segment of x ~) and set

h(x I) = h (1) ix I) o h (2) (x I) o . - - o h (n~l~ Ix1).

Observe that h(x ~) is an n~logn-bit string where, for sufficiently large n, each individual
bit is totally random to the circuits we are considering. This holds since each bit is an
exclusive-or of n x bits, and the circuits we study can depend on no more than k d E O i l)
bits. Hence, i f x and therefore x ~ is ran-
dom, any such circuit is completely un-
correlated with h(xl). Now use h = h(x ~)
as described in L e m m a 2 to encode an
n~-subset of x". (To simplify notation, we
abuse it slightly by writing h(x ~) rather
than Qv(h(x')).) The encoding can be

X ~ X ~

x :

h(x')
viewed as in the figure above. Now define the one-way function

f (x) = f (x j ox") = g(xJ~(x,)) o x~-~-yo x ~.

For any c from ~n, given f(x), c(x) is now equivalent to a circuit c '(x") = c(x ~ o x")
upon which we have an (almost) random restriction p = [h(x~);~--~] in R (n-l(n)'p), p =

n~/(n - l(n)) = (n l - s - nX logn) -1. The distribution on the restrictions is not exactly the
uniform distribution, but by Lemma 2, no "bad" restriction (one that does not force d
to a constant) is chosen by more than twice the probability it is chosen by the uniform
distribution. (And this can also be made arbitrarily close to uniform distribution by
L e m m a 2.) Hence, by Proposition 3 the output of this circuit is completely determined
by p with probability at least 1 - 2ka(n 1-~ - nXlogn) -1, and if so, we can determine
the output in polynomial time. ra

5 There are no Hard Core Predicates in AC ~

For AC ~ we cannot use the same simple counting arguments since these circuits may
very well depend on all n bits in x. We therefore need some more powerful tools from
the theory of circuit complexity.

8

5.1 The Switching Lemma

The HEstad switching lemma, see [6], quantifies how much and how likely it is that a
circuit is simplified under a restriction. Similar results are known from [4] and [14]. We
have the following version of the switching lemma, derived from [2].

L e m m a 7 (The Switching Lemma). Let G be an AND-gate whose inputs are OR-
gates all of fan-in at most r and let p E u R (n'p), where p < 1/7. Then the probability
that G rp can be written as an OR of ANDs, each AND having fan-in strictly less than t
is at least 1 - (7pr) t.

A dual lemma holds by replacing AND by OR and vice versa. We can prove the fol-
lowing powerful result.

Lemma 8. For any ~ E (0,1), for all sufficiently large n the following holds. I f c is a

circuit of depth d(n) < logn and size s(n) < n--(1--8)/d(n)2~nO-S)/d(n), computing some
- - l o g l o g n

function in ~ , then with p = n -(1-~5),

Pr [c [p is a constant function] > 1 - 8n -(1-8)/d(n).
pE qlR (n'p)

I f this is the case, we can given p find this constant in time polynomial in size(c).

Proof. Let c be a circuit as mentioned in the lemma. We will choose p E R (n'p) in d(n)
steps, each step consisting of picking a random restriction Pi on the remaining unset
inputs. Our p will be the composition of all these restrictions. Let t = ln(1-5)/d(n).

The first step is needed to get fan-in at most t at level 1. Assume it consists of AND-
gates. For the purposes of the switching lemma, we view these gates as ANDs of ORs
where each OR has fan-in 1 (a variable xi or its negation). We pick a random restriction
from R (n,po), where P0 = 1/14. By the Switching Lemma we know that each AND of
fan-in-1 ORs can be replaced by an OR of ANDs of fan-in t with probability at least
1 - (7p0) t : 1 - 2 -t. The OR can now be "collapsed" into the level above, as that level
contains OR-gates.

In steps 2 through d(n) - 1 we reduce the circuit by applying the switching lemma
to the bottom two levels of the circuit, switch ANDs of ORs to ORs of ANDs (or
vice versa) and collapsing adjacent levels of OR-gates (or AND-gates) maintaining the
bound t on the bottom fan-in. This is done as follows.

Let Pl = (14t) -1, and let ni = po(Pl)i-Xn. At step i we pick a random restriction
Pi E~l R (ni-l'pl), where the domain of Pi is the input variables that have not been set by
Pl through Pi-1. Notice that after step i there are ni variables that remain unset.

For every AND of ORs (or OR of ANDs) that we consider, the probability that the
restriction doesn't allow us to switch is at most (7pit) t : 2 -t . Over steps 1 through
d(n) - 1 we invoke the Switching Lemma once for each gate in the circuit (except the
top gate), and each time the probability of failure is at most 2 -t . So with probability at
least 1 - s(n)2 -t the entire circuit has been collapsed to a single AND of ORs of fan-in
< t (or to an OR of ANDs of fan-in < t), and there are still ha(n)_ 1 = po(pl)d(n)-2n
variables unset.

Finally, in step d(n) we do as follows. Assume we have been successful in steps 1
through d(n) - 1, and that we are left with an AND of ORs, where each OR has fan-in

at most t. Let P2 = (14t2) -1 and pick Pd E~t R (nd(')-l'p2) �9 By the Switching Lemma, the
probability that the AND of ORs can be written as an OR of ANDs, each AND of fan-in
strictly less than 1 (and must thus be a constant) is at least 1 - (7p2t) = 1 - (2t) -1.

The probability that all the Pi are successful is at least 1 - s(n)2 -t - (2t) -1 3> 1 -
8n -(1-6)/a(n). Notice also that p = Pd(n) = PO(Pl)d(n)-2p2 = n-(1-5)-

Finally, to find the constant we substitute arbitrary values for xi, i E *(p), and eval-
uate the circuit like before�9 []

Notice that for the circuit depths covered by the Lemma, the failure probability,
8n -(1-8)/d(n) E o(1). Hence, almost surely, for such circuits, c Ip will be a constant.

5.2 Non-uniform Case

T h e o r e m 9. For any 8 E (0,1) there is a polynomial ensemble of one-way functions
{~n}n>l, and a deterministic polynomial time algorithm A for which the following hold.

For any (s (n) ,d(n) , .) -bounded ensemble of circuits {ffn}n_>l, where d(n) < logn and
- - l o g l o g n

s(n) <_ n-(1-8)/d(n)2~z n(1-~)/d(€ for all sufficiently large n, for every c supported by ~n,

Pr[A(f(x),c) = c(x)] = 1 - 0 (n-O-~)/d(n)),

the probability taken over x E~t {0, 1} n, and f chosen according to ~n.

Proof Let p = n-(1-~), assume that g is a one-way function and let ~n be the uniform
distribution on the one-way functions

(f l (x) = g(xl) o xTo l I I C {1 ,2 , . . . ,n},ll[= np).

Note that random for random x and 1, f t(x) corresponds to the random restriction p =
[/;xT] E R (n'p) on the input o fc .

The result now follows, since for any c chosen from ~n, the probability that c rp is

a constant is by L e m m a 8 at least 1 - 8n -(1-8)/d(n) and this constant can be found in
polynomial t ime using f /(x) . []

Again, by standard "averaging" arguments we have as an immediate Corollary:

Corollary 10. Let 5 E (0,1) and let {s be an (s(n),d(n), .)-bounded ensemble

of circuits where d(n) < ~ and s(n) < n-O-8)/d(n)2~ n(1-s)/a('). Then, there is a
non-uniform one-way function f and deterministic polynomial time algorithm A such
that for all sufficiently large n,

PrEa(f(x) ,c) : c(x)] = 1 - O

the probability taken over x E u {0,1 }n, and c chosen according to ~n.

10

5.3 U n i f o r m Case

In the bounded fan-in case we could derandomize our proofs by encoding the restriction
as a part of x, the argument to the one-way function. We had to choose this encoding so
that the circuit was completely uncorrelated with the restriction and this could be done
by observing that bounded fan-in circuits cannot "see" all bits in x. For unbounded
fan-in circuits however, the situation is more difficult, since theoretically at least, the
circuit can have full information on the restriction. We will still use the same principal
encoding of the restrictions, but we have to be more careful in the analysis.

We will now consider restrictions in R (n,n-(1-~)), i.e. leaving n E �9 for some ~ > 0.
We will encode them lexicographically like before. Let x = x' o x" where x ~ is the first
L(n) = nC~n ~ logn bits in x and x" is the n - L(n) last bits. The constants e and a will be
determined later. Now let

in ~

H(i) (x~) = Z ~ mod 2,
j=(i-1)nCt+l

i.e. the XOR over the ith niX-bit segment ofx ' , and let

�9 ~(~logn)
= o . . (x ')

which we by setting h = Ha,E(x') like in Lemma 2 interpret as an encoding of a restric-
tion on the bits in x". (We simplify, writing Ha,e(x') instead of Qv(Ha,e(s

We now get what in a natural way corresponds to restrictions on x = x ~ o x '1 of the
form p = [Ht~,~(xt);x ~ o x e n] What we would like to do is to analyze the probability ~,~() �9
that a circuit collapses when subjected to such a restriction. However, we now clearly do
not have the uniform distribution on restrictions, in particular we have all �9 concentrated
to the x"-part ofx. The simple combinatorial arguments applicable to NC~ can-
not be applied here. We must make a closer analysis of the induced distribution on the
restrictions to be able to apply the switching lemma.

Below we describe three distributions D1 (a), ff)2(ct), and if)3 (P, (~) on R (n,n-O-~)).
The plan is to show that for suitable choices of p, a , e,

(A) A random restriction from if)3 (P, a) will collapse our circuits with probability close
to 1. (This will be Lemma 13.)

(B) ff)3(P,(~) is equal to D2(ct). (See Lemma 14.)
(C) ff)2(a) is very close to ff~ (a). (Lemma 15.)

The distribution Dl((x) will be the one we actually have, and O3(p,a) is the one we
will analyze. Where will this lead? Like before, we shall construct a one way function,

S(x) = s (e o e ') = o e

(where again, g is another one-way function). For x E~t {0,1} n, f (x) will correspond

in a natural way to a random restriction p ED~ (a) R(n'n-(1-~))" Hence, using our previ-
ous strategy for evaluating circuits under restrictions (substituting arbitrary values for

11

unknown inputs), we have an algorithm A such that by (A), (B), and (C) above,

~x[A(f(x), c) = c(x)] > t~rct)[c rp is a constant]

~p.a)[c Ip is a constant]

= 1 - o (1) (by(A)) .

(by (B),(C))

With this program in mind, we now define the distributions.

DISTRIBUTION D1 (CX)
1. Choose x ~ uniformly at random in {0,1) L(n), and set I = Ha,e(x~).
2. Assign 0/1 with equal probability to the bits in ~ .
3. Assign �9 to all of ~ .

Let p = [I;x ~ o3d~] E R (n'n-(1-O) be the induced restriction on x.

DISTRIBUTION D2 (tX)
1. Choose I, a random ne-subset of the bits in x" and assign * to the bits in ~ .
2. Assign 0/1 with equal probability to the bits in Jd~

3. Choose x t uniformly at random in Hff, 1 (I).

Let p = [I;x t o ~] E R (n'n-O-O) be the induced restriction on x.

The difference between D1 (tx) and D2(a) is that in ~91 (tx) we choose the argument of
Ha,e and compute I from this, in D2(tx) we reverse the procedure. Intuitively, since the
"hash-function" Ha,E is well behaved, it should not matter too much in which order we
do these operations.

Finally we define a last distribution, the one that we will analyze. This last distribu-
tion is constructed in four steps where we first apply a random restriction from R (n,p) to
all of x, i.e. both tox ~ andx". For p E R (n'p), write p = p lop" where p~ and p" are the
parts of p assigning values to x ~ and x" respectively.

DISTRIBUTION D3 (p, IX)
1. Fix some bits in x~,x" by choosing a random p = pl o p" E u R(n'P), such that

(a) I*(p")l ___ ne and such that

(b) for i = 1 , . . . , n e logn, H (i) rp= . . (I.e. each H (i) (x ~) is undetermined by the
restriction pl on x~.)

2. Choose I, a random hE-subset of *(p") and let these remain as * in x".
3. Assign 0/1 with equal probability to the remaining �9 in ~d~.
4. Assign 0/1 with equal probability to the remaining �9 in x', but assert that x ~ E

Let p = [I;x ~ oJd~] E R (n'n-O-~)) be the induced restriction on x.

Let us give some motivation for studying this distribution. In step 1, we will fix some
of the bits in x ~, but by condition lb, they are not many enough to determine any of the

H (0 components of Hct,E at all. To be able to later fix x ~ so that H~,s(x ~) can take any
n~-subset of the indices in x" as a value, we need at least n e * in the x"-part and this
is asserted by condition la. Therefore, after step 1, all possibilities for I (determined

12

in step 2) are still at this stage equally likely. The point is now that if our circuit c
has collapsed after step 1, it will have done so without having any chance of obtaining
information concerning I. Later steps, 2, 3 and 4, will only decrease the number o f* and
thus c will remain collapsed. There is some hope to apply Lemma 8 to the restriction
we have at step 1 if we can show that it "almost" random. Finally, steps 2, 3, and 4 will
assert that the final restriction is consistent with distribution ~D1 (a).

We start by showing that the restriction obtained after step 1 above is "just as good"
as a uniformly distributed restriction. We first need two preparatory propositions.

Proposi t ion 11. Let p = n -(1-8), p E R (n'p). For any J C {1 ,2 , . . . ,n}, IJI = n ~ with
1 - ~ i < a < 1, then

1~. . [I *(P) nJI = 0] _< e - p ~
pEilRtn,P)

for all sufficiently large n.

We omit the elementary proof.

Proposi t ion 12. I f l C {1 ,2 , . . . ,n}, III = n-n~+elog n, 0 < e < ~ < 1, a + e < 1, and
p = n -(1-8), then for all sufficiently large n,

Pr [l*(p) n i l < n < e - �89
pE adR(n,p)

Proof The proposition follows from simple combinatorial arguments, approximating
the binomial coefficients involved by Stirling's formula. []

L e m m a 13. Assume 0 < e < 5 < 1, tx E (1 - 5, 1 - E), and let c be a circuit of depth
< logn d(n) lo-logn and stze s(n) < n-(1-8)/d(n)2~z n(l-~)/d("). Then with p = n -(I-~), for all

suffic~nt~ large n,

Pr ,1 ~, [clp isaconstantfunction]> 1--O(n-(1-8)/d(n)),
pE~93(p,eL)R(n,n-t - j)

and if so, given p, this constant can be found in time polynomial in s(n).

Proof By Lemma 8, if we for the moment consider all of R (n,p) (i.e. regardless of
whether or not it passes the constraints in step 1 in the definition of ~93 (p, r we have

P r .[c ~p is a constant function] > 1 - 8n -O-~)/a('O.
pE ~/R/ ,PJ

Let us call a restriction in R (n,p) bad if it does not satisfy the additional constraints in
step 1. Write p = p~ o p" as defined above. First we see that the probability that at least

one of the H(i)s (there are nElogn of them) becomes determined by p' (a violation of
constraint lb) is for large n by Proposition 11 bounded by

(n E logn)e -pna = (n ~ logn)e -n~-(1-s)

which is negligible since ~ > 1 - 5.

13

Furthermore, the probability that we get fewer than n e �9 in p" (violation of constraint

l a) is by Proposition 12 bounded by e-�89 (ns-~-l) since r + e < 1. Thus, for large n

P r ,[p is bad] < (nalogn)e -nr + e -�89
pEadRI ,P)

The lemma now follows since

Pr [c rp is a constant] > 1 - 8n -(1-5)/d(n) - ~ . [p is bad].
pE ~9 3 (p,a)R (n'n-(I -~)) - - pE r

This is actually the probability the circuit has collapsed already after step 1 in forming
D3 (p, tx), but as noted, the circuit will then surely remain collapsed. [3

Next, notice that the distributions D3(p,00, D2((x) are the same and furthermore,
that D1 (~), D2(ot) are close.

Lemma 14. With p = n -(1-fi), 0 < E < ~ < 1, a ~ (1 -- 5, 1 -- e), the two distributions
D3(p,o~), ff)2(t~) on R (n'n-(l-e)) are equal.

Proof. We prove that for both distributions: (/) The location of * in p", i.e. the set I,
have the same distribution. (ii) Non-* in p" are uniformly distributed in {0, 1}. (iii) The
p~-part is a uniformly distributed value consistent with Ha,e(x ~) = I. This will establish
the claim.

(i) In D2 ((x) we first choose a random ne-subset as * (p") so each such is chosen with

probability [Ix'l~-I In D3(p, oc) after step 1 in forming the distribution, let R1 be the
k n ~ I �9

random variable corresponding to . (p ') at this stage and let R2 similarly be the value
of *(p") after step 2. Since the final *(p") is obtained by first choosing R1 at random
and then R2 as a subset of R1, we have by symmetry that for any ne-subset I:

. r - ' DE~9.3(p,ot)R(n,n_(l_E:)) = Pr[lel I > n~].

But in 593(p,ct) we discard precisely those p for which IRll < n e, and thus each nE-set
is chosen with the same probability as by D2((x).

(ii) Note that there is no difference in the distribution on non-. in p" in the two
distributions since they are in both cases assigned 0/1 with equal probability.

(iii) Lastly, when assigning 0/1 to p' in D2(cx), we choose at random a x' E Hff, l(I).
By the XOR-construction of each H(j), we can in each nC~-bit segment of x ~ choose
any set of nct - 1 indices uniformly at random in {0,1} and the last bit in each block
will have to be assigned a unique value determined by the condition Ha,E(x ~) = I. In
D3(p, oc) we also choose I before choosing x ~. Since we in D3(p, oc) by constraint lb
have at least one �9 in each nC~-bit segment of 9' and all * were selected uniformly at
random, we can there also fix all but one of the remaining �9 as 0/1 at random and the
last bit is determined uniquely by Hct,~(x') = I. D

14

Lemma 15. For any fixed P0 E R (n'n-(1-t)),

2-' [p = r, ol <_)lp = po] _< 2){p: po].

Proof. Follows immediately from Lemma 2. []

Corollary 16. Let 0 < ~ < 5 < 1, a E (1 - 5 , 1 -E) , and let c be a circuit ofdepth
d(n) < logn and size s(n) < n-(l-8)/d(n)2~ nO-~)/d(n). Then, for sufficiently large n,

- - l og logn

Pr ,1 .' [C~p isaconstantfunction] >__ l - - O (n-(1-5)ld(n)),
p E ~ l (a) R (n , n - t - j)

and if so, this constant can from p be computed in time polynomial in s(n).

Proof. With p = n -(1-8), the result follows immediately from lemmas 13, 14, and 15.
[]

Theorem 17. For any 5 E (0,1) there is a one-way function f and a deterministic
polynomial time algorithm A for which the following hold. For all sufficiently large

�9 �9 < l o B n n, for any (s(n),d(n), .)-bounded ensemble of ctrcuits {~n}n_>l, where d(n) _ loglogn'

s(n) < n-(i-s)/a(n)2~z n(1-~)/d(n), for every c supported by ~n,

xeixP~o,1},,[A(f(x),c) = c (x)] : 1 - 0 (n-(1-8)ld(n)).
Proof. Choose e E (0,5), o~ E (1 - 5,1 - e), let g be a one-way function and define the
one-way function

l 0 # 0 f (x) = f (xS o xS') = g (x~#~E (sd)) xS~--C~ x #.

For any c E s for random x, f (x) gives a restriction p = [Hct,E(x~);x ~ o x ' ~] E

R (n,"-I~-~)) on c, and this p is chosen according to the distribution D1 (a). It follows
from Corollary 16 that c rp will be a constant with probability 1 - O(n-(1-8)/d(n)), and
if this is the case, we can use p (i.e. f(x)) to determine what this constant is in time
polynomial in size(c). []

We immediately get the following corollary.

Corollary 18. An (s(n),d(n), .)-bounded ensemble o f circuits, computing a (general)
l~ for every e > O, or otherwise, hard core predicate, requires depth d(n) > (l+e)loglogn

requires size s(n) > 2 ~176176 If d(n) is a constant, size s(n) > 2 nn(1) is required�9 In
particular, there are no hard core predicates computable in AC ~

The existing constructions of hard core predicates such as [5] can be computed by
polynomial size circuits of depth logn and hence, the lower bound in the Corollary is log logn
essentially tight.

15

6 Summary and Open Problems
This paper does not rule out the possibility of generating pseudo-random sequences
in AC ~ but it does tell us that "generic" constructions based on an arbitrary one-way
function and a hard core predicate does not work. For instance, the construction in [8]
could still be a pseudo-random generator since it is based on a particular conjectured
one-way function.

We have found an essentially tight lower bound on the complexity of computing
(general) hard core predicates. Note that with respect to AC ~ circuits, the results ob-
tained are uniform in a very strong sense: We have a fixed one-way function that has no
hard core predicates computable by any circuit family of constant depth d and size n r
regardless of d, r and the distribution on the circuits.

Together with existing constructions of hard core predicates, we now have a good
characterization o f them with respect to computational complexity. The next step would
therefore be to give, if possible, a more functional characterization of them.

Acknowledgment. We would like to thank Johan H~stad for fruitful discussions and
suggestions. We also thank Alex Russell and Jean-Pierre Seifert.

References

1. W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr: RSA andRabin Functions: Certain Parts
Are as Hardas the Whole. SIAM J. on Computing 17 (1988), no 2, pp. 194-209.

2. P. Beame: A Switching Lemma Primer. Manuscript, 1994.
3. M. Blum and S. Micali: How to Generate Cryptographically Strong Sequences of Pseudo-

random Bits. SIAM J. on Computing 13 (1986), no 4, pp. 850--864.
4. M. Furst, J. Saxe, and M. Sipser: Parity, Circuits, and the Polynomial Time Hierarchy. Proc.

22nd Symposium on Foundations of Computer Science, IEEE, 1981, pp. 260-270.
5. O. Goldreich and L. A. Levin: A Hard Core Predicate for all One Way Functions. Proc. 21st

Symposium on Theory of Computing, ACM, 1989, pp. 25-32.
6. J. H~stad: Computational Limitations of Small-Depth Circuits. ACM doctoral dissertation

award, 1986. MIT Press 1987.
7. J. Hfistad, A. W. Schrift, and A. Shamir: The Discrete Logarithm Modulo a Composite Hides

O(n) Bits. J. of Computer and System Sciences 47 (1993), pp. 376--403.
8. R. Impagliazzo and M. Naor: Ej~cient Cryptographic Schemes Provably as Secure as Subset

Sum. J. of Cryptology 9 (1996), no 4, pp. 199-216.
9. N. Linial, Y. Mansour, and N. Nisan: Constant Depth Circuits, Fourier Transform, and

Learnability. J. of the ACM 40 (1993), no 3, pp. 607-620.
10. Y. Mansour, N. Nisan, and P. Tiwari: The Computational Complexity of Universal Hashing.

Theoretical Computer Science 107 (1993), pp. 121-133.
11. M. N~islund: Universal Hash Functions & Hard Core Bits. Proc. Eurocrypt 1995, LNCS 921,

Springer Verlag, pp. 356--366.
12. M. N~lund: All Bits in ax + b mod p are Hard. Proc. Crypto 1996, LNCS 1109, Springer

Verlag, pp. 114-128.
13. A. C. Yao: Theory and Applications of Trapdoor Functions. Proc. 23rd Symposium on

Foundations of Computer Science, IEEE, 1982, pp. 80-91.
14. A. C. Yao: Separating the Polynomial-Time Hierarchy by Oracles. Proc. 26th Symposium

on Foundations of Computer Science, IEEE, 1985, pp. 1-10.

