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Abstract. We prove that a general family of hard core predicates requires circuits 
of depth (l-o(l)) ~ or super-polynomial size to be realized. This lower bound 
is essentially tight, l~or constant depth circuits, an exponential lower bound on 
the size is obtained. Assuming the existence of one-way functions, we explicitly 
construct a one-way function f(x) such that for any circuit c from a family of 
circuits as above, c(x) is almost always predictable from f(x). 
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1 Introduction 
One of the most useful cryptographic primitives is the pseudo-random generator. Ttfis 
is a function that deterministically expands a short random seed to a longer, random 
"looking" string. Blum and Micali [3], and Yao [13], showed a simple way to construct 
such a generator, using the following method. Assume that f is a permutation and that 
we have a set of boolean functions C. Choose c at random in C, a random x, and output 
f (x) ,  c(x), and (the description of) c. Clearly it suffices that c(x) is unpredictable given 
f (x)  and c. Since computing c(x) is no harder than inverting f(x) ,  this in turn implies 
that f (x)  must be a so called one-way function. If  we indeed have this situation, C is 
said to be a family of  hard core predicates for f . 

For efficiency reasons, we would like the functions in C to be very simple to com- 
pute, so that an essential question is: How simple can they be? It seems natural to 
consider functions such as c(x) = "some bit ofx".  Although there are examples of cer- 
tain conjectured one-way functions f for which such simple c are hard core predicates, 
e.g. see [1,3,7], these constructions are too simple to work in a general setting without 
any assumptions on f .  The reason for this is that a one-way function may depend on 
a relatively small number of its input bits and output the rest of them unchanged. The 
knowledge of these latter bits may be enough to deduce the value of such a "hard core". 
Since the case when no assumptions on f (except that it's one-way) are needed clearly 
is the most attractive, this is the case that we study in this paper. 

Yao observed in [13] that although a one-way function may reveal many bits of the 
input, it must hide at least some bits. We may in general not know which these bits are, 
so a good candidate for a hard core should depend on all (or almost all) of its input 
bits. The first construction of a hard core predicate for any one-way function is due 
to Goldreich and Levin, [5], and uses the inner product modulo 2 of x and a random 



binary string r. Two more constructions, affine functions in GF[2 n] and Zp, are due to 
N~lund, [11,12]. These are functions depending on all bits in x. Though simple, it is 
not obvious that we cannot use even simpler functions as long as they depend on all 
bits. 

In this paper we shall prove that the existing constructions are basically the simplest 
possible. To measure the simplicity/complexity we will use the computational model of 
circuits, i.e. how large/deep a circuit of boolean AND/OR/NOT-gates that is needed to 
compute the hard core predicate. All the three general constructions mentioned above 
can be computed by circuits of logarithmic depth, polynomial size, and constant fan-in, 
that is, NCl-circuits. So, the next natural step-down in complexity would be to con- 
sider AC~ circuits of constant depth, polynomial size, and unbounded fan-in. 
There are numerous results indicating that this class of circuits is not very powerful. For 
instance, it is known from [ 10] by Mansour, Nisan, and Tiwari that universal hash func- 
tions (in general good candidates for hard core predicates) can not be computed by such 
simple circuits. A similar negative result on the existence of so called p s e u d o - r a n d o m  
func t ions  was given by Linial, Mansour, and Nisan in [9]. 

The widely used technique for showing computational limitations of small-depth 
circuits is the application of the H~stad switching lemma, see [6]. This proves to be 
useful here too since the lemma basically says that knowing some of the inputs to a 
small-depth circuit is very likely to be enough to deduce the output value of the circuit. 
This method is probabilistic and will give non-uniform results. However, we show that 
it is possible to obtain uniform results as well. 

The paper is organized as follows. First we give some basic definitions and a proof 
outline in Section 2. Section 3 describes some tools from the theory of circuit complex- 
ity. Although perhaps known as a "folklore theorem", we prove in Section 4 that no 
family of constant depth, constant fan-in circuits can be a family of hard core predi- 
cates. We choose to do this since it illustrates the basic techniques. In Section 5 we then 
prove that not even polynomial size, constant depth, and unbounded fan-in circuits can 
be hard core predicates. 

2 Preliminaries 
I fx  is a binary string, Ix I is the length ofx  (ifS is a set IS I is the cardinality). By y EB S, 
we mean a y chosen from S according to the distribution D. Here, U will denote the 
uniform distribution on S. For two binary strings x,y, x o y denotes the concatenation of 
the strings. I fx  = x l x 2 . .  "xn E {0,1} n and I C_ {1,2, . . .  ,n} letxt = XilXi2.. "Xill I, i j  E I, 
il < i2 < "'" < ilt 1. x 7 is defined analogously by taking the complement of I. 

Let B =  {b:  {0,1}* ~-~ {0,1}}, Bn = {b:  {0,1} n ~-~ {0,1}}. A circuit  is a di- 
rected acyclic graph having gates  as vertices. A gate can be of type OR, AND, or NOT 
and computes the corresponding boolean function of its incoming edges, the incoming 
edges being outputs of other gates or one of the inputs, xi, i = 1 , 2 , . . . ,  n or the negation 
of an input ~.  The  fan- in  of a gate is the number of incoming edges. There is a unique 
gate the output of which is the output of the whole circuit. The size of the circuit is 
the number of gates. By modifying the circuit (and making it slightly bigger), we can 
assume that NOT-gates only appear at the inputs and that the circuit is leveled with the 
gates at level i taking their inputs from gates at level i -  1 and that all gates at a given 



level are of the same type (AND/OR), types alternating from level to level. Hence all 
inputs xi are at level 0. The depth of the circuit is the number of levels. 

A circuit c computing b E ~ is said to depend on m bits if there is a fixed I C_ 
{1,2, . . .  ,n}, III = m ,  so that for all x, Ix[ = n, c(x) is uniquely determined by x~. Notice 
that a circuit c can be evaluated on input x by an algorithm whose running time is 
polynomial in the size of c by simply traversing c's gates. 

By NC ~ we mean the set of b E B so that for some c,d,k  E O(1), for all n and 
x E {0,1} n, b(x) is computable by a circuit with size, depth, and fan-in bounded by n c, 
d, and k respectively. AC ~ is defined similarly but without the restriction on the fan-in. 

An ensemble of  circuits is a sequence, ~ = {~n}n>l, where each ~n is a probability 
distribution on circuits computing functions in Bn. I f  there is a probabilistic polynomial 
time Turing machine (pptm) that on input 1 n outputs a c according to ~n, we shall say 
that we have apolynomial ensemble of  circuits. An ensemble of functions, ~ = {~n}n>l, 
is defined analogously, but with each ~n being a distribution on functions mapp~-ng 
{0, 1} n ~-~ {0, 1}*. An ensemble of circuits, {~n}n>l, is said to be (s(n),d(n),k(n))- 
bounded if for all n, ~n has support only on circuits c with size(c) < s(n), depth(c) < 
d(n), and fan-in bounded by k(n). I f  one of the three parameters, e.g. the fan-in, is 
unbounded we shall omit it and write (s(n),d(n),-)-bounded etc. 

A function ~(n) is negligible if for every constant a > 0 and for every sufficiently 
large n, ~(n) < n -a. A one-way function is a deterministic poly-time computable func- 
tion f such that for every pptm, M, the probability that M(f(x))  E f - 1  (x) is negli- 
gible. The probability is taken over x E~t {0,1} n and M's random choices. Referring 
to a simple padding argument, we shall assume that all one-way functions are length- 
preserving, If(x)l--Ixl. 

Let ~ = {~n}n>l be a polynomial ensemble of circuits and let f be a one-way 
function. An e(n)-adversary for ~ is a pptm a such that Pr[A(f(x), c) = c(x)] > 1/2 + 
e(n), the probability taken over x E ~/{0, 1 }n, c chosen according to ~n, and A's random 
choices. We call ~ a hard core predicate for f if no e(n)-adversary exists for non- 
negligible e(n). Normally, ~n is the uniform distribution on some set of circuits, but 
we shall here allow other distributions. If  ~ is a hard core predicate for any one-way 
function, we simply call ~ a (general) hard core predicate. 

2.1 General Proof Outline 

Assume that we have a one-way function 1 f of the form f (x)  = g(xt) o x 7 where I C 
{1,2, . . .  ,n} and where g is another one-way function. In other words, f is defined by 
applying g to a part of x and output the rest of x unchanged. (It may be the case that g 
itself outputs some bits unchanged, but we shall see that this can only help us.) 

Suppose now that we are the adversary A. Given f (x)  and a circuit c, we want to 
compute c(x). How would we go about this? Since we know the bits in x b a natural 
approach would be to try to make a partial evaluation of c using only these bits. If, 
for instance, we know that one of the inputs to an AND-gate in c is a zero, we can 
simplify the circuit by deleting this gate and replacing it by the constant zero and so 
on. If  we are able to make enough simplifications from the information in x 7, the circuit 

1 Without this assumption, the notion of hard core predicate is, of course, meaningless. 



will be a constant, determined by x i, and independent of xl. It is not clear how to do 
this simplification/evaluation in polynomial time, nor is it clear how to te l l / f  the circuit 
indeed is independent of xt. However, if it almost always is the case that c "collapses" 
in this way, we can always act as if the value xt is unimportant, substitute an arbitrary 
value z for xt, and then evaluate the circuit using z ,x  7. In the case where c doesn't  
depend on xt, this strategy will give a correct value for c(x). Also, this is only a simple 
evaluation, and can be done in time polynomial in size(c). (This is polynomial in A's 
input, ( f (x) ,  c), but it is not polynomial in n = Ixl unless size(c) is. We point out this 
difference since we shall include larger circuits later in our study.) 

The hardness of inverting f is now reduced to the hardness of inverting g and the 
length of the argument of g (g's security parameter) is decreased. Hence, we lower the 
security of f correspondingly. As long as this length reduction is within a polynomial 
factor though, this is, at least from a theoretical standpoint, of no importance. 

If  we for the moment accept this idea, there remains one big concern. How should 
we choose the set I that g is applied to? Surely, we cannot hope that a fixed I will 
work as it seems likely that we could find a circuit that only uses the bits in xl that are 
hidden to us and thus the circuit output would be unpredictable. We should therefore 
use a random I each time. This randomness must be taken somewhere and there are 
two ways of doing this; either we "hardwire" the randomness into f and we have a 
non-uniform construction or, to get uniformity, we "borrow" randomness from x since 
x is assumed to be random. This second approach can be realized as follows. Writing 
x as x = x ~ ox" (we shall determine the lengths of x~,x n later), we now interpret (in 
some way) x ~ as an encoding of a subset I of the bits in x". We then compute f as 
f ( x )  = f ( x  rox") = g(~r) o ~  ox'.  Since all information on I is available in x r which is 
supplied to the circuit c, we must choose this encoding carefully to avoid c "figuring 
out" which bits it should use, namely those in I, hidden by g. 

These are the main ingredients and the bulk of the paper basically concerns three 
things. 1. Find an encoding that circumvents the problem just mentioned. 2. Quantify 
how many bits in x we (the adversary) will need to know (the size of I). 3. Analyze how 
likely it is that the circuit indeed "collapses" given the bits in I. 

3 Random Restrictions 

The notion of "knowing" bits in x is formalized by random restrictions, introduced 
in [4]. 

Definition 1. A restriction is a partial assignment to the inputs of a circuit c, assigned 
inputs are given values in {0,1 } and the rest are assigned the symbol �9 to denote that 
they remain variables. By R(n,p) we mean the set of restrictions assigning * to some 
pn-subset of x l , . . .  ,xn and values in {0,1} to the other n(1 - p) xis. A random restric- 
tion in R (n,e) then, assigns �9 to a random pn-subset of the inputs and values in {0,1 } 
independently, and with equal probability, to the other n(1 - p) inputs. 

For a circuit c and a restriction p, c rp denotes the circuit computing the restricted 

function of the remaining �9 after p is applied. For p E R (n'p), let *(p) be the np-subset 
(of indices) that is assigned �9 by p. Since . (p)  and the assignment to the other bits in x 
uniquely determines p, we can by setting I = . (p )  specify p by the notation [l;xi]. 



3.1 Encoding Restrictions as Integers 

Consider restrictions in R (n,p). We will encode these as integers. For a p = [*(p);z], it 
is trivial to encode z as a binary string, so the only possible problem is how to encode 

n the set . (p) .  We show how to do this. Note that there are (he) possibilities for *(p). 

Lenmaa 2. Let u(n) = (nnp). For every v > 0 there is a polynomial time computable 
surjectivefunction 

Q,, : {0,1)  [l~ ~ J = {III c {1 ,2 , . . .  ,n}, I I I=  np} 

such that for  h E r {0, 1 } [logu(n)]+v for  every I E J: 

(1), 
1 - ~(n) < ~h [Qv(h) = I] <_ 1 + u(n)" 

The proof is straightforward and therefore omitted. The main idea is to interpret the 
integer q = h rood u(n) as "the lexicographically qth rip-subset". 

As noted, there could still be a problem with how we perform the encoding, since 
the circuits could gain information on the restriction. We will take care of this when 
computing the value h that Qv is applied to and we return to this later. In the remainder 
of this paper we abuse notation slightly and refer to the value h as coding a restriction 
rather than Qv(h). As long as h is uniformly distributed in {0,1} [l~ this is by 
the Lemma above basically the same thing. 

4 There are no Hard Core Predicates in NC ~ 

The situation for NC ~ circuits is quite simple. Since such circuits have fan-in bounded 
by k E O(1), they can depend on only ~epth(c) E O(1) of the inputs xi. The proofs in 
this case are simple combinatorial arguments. 

Proposition 3. Let c be a circuit of  depth d, fan-in k, d ,k  E O(1), computing some 
function b E ~ and let p E u R (n'p), P <_ k -a. Then 

Pr [c Ip is a constant function ] > 1 - kdp. 
.(p) 

Furthermore, if  this is the case then given p we can deterministically in time polynomial 
in size(c) decide what this constant is. 

Proof. Since c can depend on at most k d of its inputs, the probability that c depends on 
an input xi such that i E *(p) is at most kd~ .  

If c in this way collapses under p, we can simply evaluate the circuit by assigning an 
arbitrary (even fixed) value to the xis for i E *(p) since c does not depend on these. [] 



4.1 Non-un i fo rm Case 

Theorem 4. For any 8 ~ (0,1) there is a polynomial ensemble of  one-way functions 
3(8)  = {3n}n___l and a deterministic polynomial time algorithm A such that for all con- 
stants d,k, for any (.,d,k )-bounded ensemble of  circuits { En},>_j, for every c supported 
by En, andforal lx  E {0,1} n, 

[a(f(x),c) = c(x)] > 1 -  O ( n - ( 1 - 5 ) ) .  Pr 
fern 

Proof. Let g be a one-way function and let ~n be the uniform distribution on the fol- 
lowing set o f  one-way functions: 

{It(x) = g(xl) oxToI  I t C_ {1 ,2 , . . .  ,n}, Itl = n~}. 

For any c chosen according to ~n and any x, having a value of the form ft(x) for random 

I,  corresponds in a natural way to having a restriction p = [l;xi] in R (n,n-(l-% on the 
input of  c. The result now follows directly f rom Proposition 3. rn 

By standard probabilistic arguments we get the Corollary below. 

Coro l l a ry  5. For all constants d,k,8, 8 E (0,1), for any (-,d,k)-bounded ensemble 
of  circuits {~n}n_>l, there is a non-uniform one-way function f and a deterministic 
polynomial time algorithm A so that for all x E {0, 1 }n, 

Pr [A(f(x),c)= c(x)] > 1 - 0  (n-(]-a)). 
cE ~n 

4,2 Un i fo rm Case 

In the construction of  the one-way functions {ft} in the previous subsection we  used 
extra randomness when selecting I. To get a uniform result we must somehow eliminate 
this. As mentioned in the outline, we cannot use a fixed subset I. 

The idea is that since x, the argument of  f (x) ,  is supposed to be a random string, 
we will "borrow" a few random bits from x itself to "point out" which subset I to 
use when computing g(xt) (and thus also which subset to output unaffected). We will 
therefore need a mapping from, say the first l(n) bits of  x to the set of  all n&subsets 
of  {l(n) + 1, l(n) + 2 , . . . ,  n}. I f  we split x as x = x ~ o x", we would like to interpret x ~ 
as an encoding of  a random subset of  the bits in x ~t. But we know how to do this from 
L e m m a  2. We need roughly l(n) = Flog (~s) l < n~log n bits to encode all n&subsets. To 

be more precise we should have l(n) = Ix'l = Flog (t~1)1, and  since Ix"l = Ixl - Ix'l = 

n -- l(n), l(n) n-l(n) �9 should in fact satisfy the equation l(n) -- Flog ( n8 )1" Instead o f s o l v m g  
this equation we can cheat slightly and simply choose l(n) "large enough". This also 
means that we will use a v-value greater than zero when referring to L e m m a  2 and this 
will give a more uniform distribution on the restrictions. 

We must  also be slightly careful, since the subset we are to compute g on is now 
supplied to the circuit c via x ~, and c might use that information to correlate itself to that 
subset and maybe  even become dependent on some of  the bits hidden by g. To avoid 
this we will use a slightly more elaborate encoding of the n&subsets as described in the 
proof  below. 



Theorem 6. For any ~ E (0,1) there is a one-way function f and a deterministic poly- 
nomial time algorithm A such that for all constants d,k, for any (.,d,k)-bounded en- 
semble of circuits {En}n>l, for all sufficiently large n, for every c supported by En, 

xeI~oo,1}~[A(f(x),c) : c(x)] > 1 -  O ( n - ( 1 - ~ ) ) .  

Consequently, there are no hard core predicates in NC ~ 

Proof." Let 0 < x < 1 - 5, let g be a one-way function and write x = x ~ o x" where x ~ is 
the first l(n) = nXn~logn bits o f x  andx"  the last n - l(n) bits. Define 

in s 
hli)lx,) : m o d 2  

j=(i-l)nX+l 

(the exclusive-or over the ith nX-bit segment of  x ~) and set 

h(x I) = h (1) ix I ) o h (2) (x I) o . - - o  h (n~l~ Ix1). 

Observe that h(x ~) is an n~logn-bit  string where, for sufficiently large n, each individual 
bit is totally random to the circuits we are considering. This holds since each bit is an 
exclusive-or of  n x bits, and the circuits we study can depend on no more than k d E O i l )  
bits. Hence, i f  x and therefore x ~ is ran- 
dom, any such circuit is completely un- 
correlated with h(xl). Now use h = h(x ~) 
as described in L e m m a  2 to encode an 
n~-subset of  x". (To simplify notation, we 
abuse it slightly by writing h(x ~) rather 
than Qv(h(x')).) The encoding can be 

X ~ X ~ 

x :  

h(x') 
viewed as in the figure above. Now define the one-way function 

f (x )  = f ( x  j ox")  = g(xJ~(x,)) o x~-~-yo x ~. 

For any c from ~n, given f(x),  c(x) is now equivalent to a circuit c '(x") = c(x ~ o x") 
upon which we have an (almost) random restriction p = [h(x~);~--~] in R (n-l(n)'p), p = 

n~/(n - l(n)) = (n l - s -  nX logn) -1. The distribution on the restrictions is not exactly the 
uniform distribution, but by Lemma  2, no "bad" restriction (one that does not force d 
to a constant) is chosen by more than twice the probability it is chosen by the uniform 
distribution. (And this can also be made arbitrarily close to uniform distribution by 
L e m m a  2.) Hence, by Proposition 3 the output of  this circuit is completely determined 
by p with probability at least 1 - 2ka(n 1-~ - nXlogn) -1, and if so, we can determine 
the output in polynomial  time. ra 

5 There are no Hard Core Predicates in AC ~ 

For AC ~ we cannot use the same simple counting arguments since these circuits may 
very well depend on all n bits in x. We therefore need some more powerful tools from 
the theory of  circuit complexity. 
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5.1 The Switching Lemma 

The HEstad switching lemma, see [6], quantifies how much and how likely it is that a 
circuit is simplified under a restriction. Similar results are known from [4] and [14]. We 
have the following version of the switching lemma, derived from [2]. 

L e m m a  7 (The Switching Lemma).  Let G be an AND-gate whose inputs are OR- 
gates all of  fan-in at most r and let p E u R (n'p), where p < 1/7. Then the probability 
that G rp can be written as an OR of ANDs, each AND having fan-in strictly less than t 
is at least 1 - (7pr) t. 

A dual lemma holds by replacing AND by OR and vice versa. We can prove the fol- 
lowing powerful result. 

Lemma 8. For any ~ E (0,1), for all sufficiently large n the following holds. I f  c is a 

circuit of  depth d(n) < logn and size s(n) < n--(1--8)/d(n)2~nO-S)/d(n), computing some 
- -  l o g l o g n  

function in ~ ,  then with p = n -(1-~5), 

Pr [c [p is a constant function ] > 1 - 8n -(1-8)/d(n). 
pE qlR (n'p) 

I f  this is the case, we can given p find this constant in time polynomial in size(c). 

Proof. Let c be a circuit as mentioned in the lemma. We will choose p E R (n'p) in d(n) 
steps, each step consisting of picking a random restriction Pi on the remaining unset 
inputs. Our p will be the composition of all these restrictions. Let t = ln(1-5)/d(n). 

The first step is needed to get fan-in at most t at level 1. Assume it consists of AND- 
gates. For the purposes of the switching lemma, we view these gates as ANDs of ORs 
where each OR has fan-in 1 (a variable xi or its negation). We pick a random restriction 
from R (n,po), where P0 = 1/14. By the Switching Lemma we know that each AND of 
fan-in-1 ORs can be replaced by an OR of ANDs of fan-in t with probability at least 
1 - (7p0) t : 1 - 2 -t. The OR can now be "collapsed" into the level above, as that level 
contains OR-gates. 

In steps 2 through d(n) - 1 we reduce the circuit by applying the switching lemma 
to the bottom two levels of the circuit, switch ANDs of ORs to ORs of ANDs (or 
vice versa) and collapsing adjacent levels of OR-gates (or AND-gates) maintaining the 
bound t on the bottom fan-in. This is done as follows. 

Let Pl = (14t) -1, and let ni = po(Pl)i-Xn. At step i we pick a random restriction 
Pi E~l R (ni-l'pl), where the domain of Pi is the input variables that have not been set by 
Pl through Pi-1. Notice that after step i there are ni variables that remain unset. 

For every AND of ORs (or OR of ANDs) that we consider, the probability that the 
restriction doesn't  allow us to switch is at most (7pit) t : 2 -t .  Over steps 1 through 
d(n) - 1 we invoke the Switching Lemma once for each gate in the circuit (except the 
top gate), and each time the probability of failure is at most 2 -t .  So with probability at 
least 1 - s(n)2 -t  the entire circuit has been collapsed to a single AND of ORs of fan-in 
< t (or to an OR of ANDs of fan-in < t), and there are still ha(n)_ 1 = po(pl)d(n)-2n 
variables unset. 



Finally, in step d(n) we do as follows. Assume we have been successful in steps 1 
through d(n) - 1, and that we are left with an AND of  ORs, where each OR has fan-in 

at most  t. Let P2 = (14t2) -1 and pick Pd E~t R (nd(')-l'p2) �9 By the Switching Lemma,  the 
probability that the AND of  ORs can be written as an OR of  ANDs, each AND of  fan-in 
strictly less than 1 (and must thus be a constant) is at least 1 - (7p2t) = 1 - (2t) -1. 

The probability that all the Pi are successful is at least 1 - s(n)2 -t - (2t) -1 3> 1 - 
8n -(1-6)/a(n). Notice also that p = Pd(n) = PO(Pl)d(n)-2p2 = n-(1-5)- 

Finally, to find the constant we substitute arbitrary values for xi, i E *(p), and eval- 
uate the circuit like before�9 [] 

Notice that for the circuit depths covered by the Lemma,  the failure probability, 
8n -(1-8)/d(n) E o(1). Hence, almost surely, for such circuits, c Ip will be a constant. 

5.2 Non-uniform Case 

T h e o r e m  9. For any 8 E (0,1) there is a polynomial ensemble of  one-way functions 
{~n}n>l, and a deterministic polynomial time algorithm A for which the following hold. 

For any (s (n) ,d(n) , . ) -bounded ensemble of circuits {ffn}n_>l, where d(n) < logn and 
- -  l o g l o g n  

s(n) <_ n-(1-8)/d(n)2~z n(1-~)/d(€ for all sufficiently large n, for every c supported by ~n, 

Pr[A(f(x),c) = c(x)] = 1 - 0  (n-O-~)/d(n)), 

the probability taken over x E~t {0, 1} n, and f chosen according to ~n. 

Proof Let p = n-(1-~),  assume that g is a one-way function and let ~n be the uniform 
distribution on the one-way functions 

( f l (x)  = g(xl) o xTo l I I C {1 ,2 , . . .  ,n},ll[ = np).  

Note that random for random x and 1, f t(x) corresponds to the random restriction p = 
[/;xT] E R (n'p) on the input o fc .  

The result now follows, since for any c chosen from ~n, the probability that c rp is 

a constant is by L e m m a  8 at least 1 - 8n -(1-8)/d(n) and this constant can be found in 
polynomial  t ime using f /(x) .  [] 

Again, by standard "averaging" arguments we have as an immediate Corollary: 

Corollary 10. Let 5 E (0,1) and let {s be an (s(n),d(n), .)-bounded ensemble 

of  circuits where d(n) < ~ and s(n) < n-O-8)/d(n)2~ n(1-s)/a('). Then, there is a 
non-uniform one-way function f and deterministic polynomial time algorithm A such 
that for all sufficiently large n, 

PrEa(f(x) ,c)  : c(x)] = 1 - O 

the probability taken over x E u {0,1 }n, and c chosen according to ~n. 
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5.3 U n i f o r m  Case  

In the bounded fan-in case we could derandomize our proofs by encoding the restriction 
as a part of x, the argument to the one-way function. We had to choose this encoding so 
that the circuit was completely uncorrelated with the restriction and this could be done 
by observing that bounded fan-in circuits cannot "see" all bits in x. For unbounded 
fan-in circuits however, the situation is more difficult, since theoretically at least, the 
circuit can have full information on the restriction. We will still use the same principal 
encoding of the restrictions, but we have to be more careful in the analysis. 

We will now consider restrictions in R (n,n-(1-~)), i.e. leaving n E �9 for some ~ > 0. 
We will encode them lexicographically like before. Let x = x' o x" where x ~ is the first 
L(n) = nC~n ~ logn bits in x and x" is the n - L(n) last bits. The constants e and a will be 
determined later. Now let 

in ~ 

H(i) (x~) = Z ~ mod 2, 
j=(i-1)nCt+l 

i.e. the XOR over the ith niX-bit segment ofx ' ,  and let 

�9 ~(~logn) 
= o . .  ( x ' )  

which we by setting h = Ha,E(x') like in Lemma 2 interpret as an encoding of a restric- 
tion on the bits in x". (We simplify, writing Ha,e(x') instead of Qv(Ha,e(s 

We now get what in a natural way corresponds to restrictions on x = x ~ o x '1 of the 
form p = [Ht~,~(xt);x ~ o x e n ]  What we would like to do is to analyze the probability ~,~( ) �9 
that a circuit collapses when subjected to such a restriction. However, we now clearly do 
not have the uniform distribution on restrictions, in particular we have all �9 concentrated 
to the x"-part ofx. The simple combinatorial arguments applicable to NC~ can- 
not be applied here. We must make a closer analysis of the induced distribution on the 
restrictions to be able to apply the switching lemma. 

Below we describe three distributions D1 (a), ff)2(ct), and if)3 (P, (~) on R (n,n-O-~)). 
The plan is to show that for suitable choices of p, a ,  e, 

(A) A random restriction from if)3 (P, a)  will collapse our circuits with probability close 
to 1. (This will be Lemma 13.) 

(B) ff)3(P,(~) is equal to D2(ct). (See Lemma 14.) 
(C) ff)2(a) is very close to ff~ (a). (Lemma 15.) 

The distribution Dl((x) will be the one we actually have, and O3(p,a)  is the one we 
will analyze. Where will this lead? Like before, we shall construct a one way function, 

S(x) = s ( e  o e ' ) =  o e 

(where again, g is another one-way function). For x E~t {0,1} n, f (x )  will correspond 

in a natural way to a random restriction p ED~ (a) R(n'n-(1-~))" Hence, using our previ- 
ous strategy for evaluating circuits under restrictions (substituting arbitrary values for 
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unknown inputs), we have an algorithm A such that by (A), (B), and (C) above, 

~x[A(f(x), c) = c(x)] > t~rct)[c rp is a constant] 

~p.a)[c Ip is a constant ] 

= 1 - o ( 1 )  (by(A)) .  

(by (B),(C)) 

With this program in mind, we now define the distributions. 

DISTRIBUTION D1 (CX) 
1. Choose x ~ uniformly at random in {0,1) L(n), and set I = Ha,e(x~). 
2. Assign 0/1 with equal probability to the bits in ~ .  
3. Assign �9 to all of ~ .  

Let p = [I;x ~ o3d~] E R (n'n-(1-O) be the induced restriction on x. 

DISTRIBUTION D2 (tX) 
1. Choose I, a random ne-subset of the bits in x" and assign * to the bits in ~ .  
2. Assign 0/1 with equal probability to the bits in Jd~ 

3. Choose x t uniformly at random in Hff, 1 (I). 

Let p = [I;x t o ~ ]  E R (n'n-O-O) be the induced restriction on x. 

The difference between D1 (tx) and D2(a) is that in ~91 (tx) we choose the argument of 
Ha,e and compute I from this, in D2(tx) we reverse the procedure. Intuitively, since the 
"hash-function" Ha,E is well behaved, it should not matter too much in which order we 
do these operations. 

Finally we define a last distribution, the one that we will analyze. This last distribu- 
tion is constructed in four steps where we first apply a random restriction from R (n,p) to 
all of  x, i.e. both tox  ~ andx". For p E R (n'p), write p = p lop"  where p~ and p" are the 
parts of p assigning values to x ~ and x" respectively. 

DISTRIBUTION D3 (p, IX) 
1. Fix some bits in x~,x" by choosing a random p = pl o p" E u R(n'P), such that 

(a) I*(p")l ___ ne and such that 

(b) for i = 1 , . . . ,  n e logn, H (i) rp= . .  (I.e. each H (i) (x ~) is undetermined by the 
restriction pl on x~.) 

2. Choose I, a random hE-subset of *(p") and let these remain as * in x". 
3. Assign 0/1 with equal probability to the remaining �9 in ~d~. 
4. Assign 0/1 with equal probability to the remaining �9 in x', but assert that x ~ E 

Let p = [I;x ~ oJd~] E R (n'n-O-~)) be the induced restriction on x. 

Let us give some motivation for studying this distribution. In step 1, we will fix some 
of the bits in x ~, but by condition lb, they are not many enough to determine any of the 

H (0 components of Hct,E at all. To be able to later fix x ~ so that H~,s(x ~) can take any 
n~-subset of the indices in x" as a value, we need at least n e * in the x"-part and this 
is asserted by condition la. Therefore, after step 1, all possibilities for I (determined 
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in step 2) are still at this stage equally likely. The point is now that if  our circuit c 
has collapsed after step 1, it will have done so without having any chance of  obtaining 
information concerning I. Later steps, 2, 3 and 4, will only decrease the number o f*  and 
thus c will remain collapsed. There is some hope to apply Lemma 8 to the restriction 
we have at step 1 if  we can show that it "almost" random. Finally, steps 2, 3, and 4 will 
assert that the final restriction is consistent with distribution ~D1 (a).  

We start by showing that the restriction obtained after step 1 above is "just as good" 
as a uniformly distributed restriction. We first need two preparatory propositions. 

Proposi t ion 11. Let p = n -(1-8), p E R (n'p). For any J C {1 ,2 , . . .  ,n}, IJI = n ~ with 
1 - ~ i <  a <  1, then 

1~. . [ I  *(P) nJI = 0] _< e - p ~  
pEilRtn,P) 

for all sufficiently large n. 

We omit the elementary proof. 

Proposi t ion 12. I f l  C {1 ,2 , . . .  ,n}, III = n-n~+elog n, 0 < e < ~ < 1, a + e  < 1, and 
p = n -(1-8), then for all sufficiently large n, 

Pr [l*(p) n i l  < n < e - �89 
pE adR(n,p) 

Proof The proposition follows from simple combinatorial arguments, approximating 
the binomial coefficients involved by Stirling's formula. [] 

L e m m a  13. Assume 0 < e < 5 < 1, tx E (1 - 5, 1 - E), and let c be a circuit of depth 
< logn d(n) lo-logn and stze s(n) < n-(1-8)/d(n)2~z n(l-~)/d("). Then with p = n -(I-~), for all 

suffic~nt~ large n, 

Pr ,1 ~, [clp isaconstantfunction]> 1--O(n-(1-8)/d(n)), 
pE~93(p,eL)R(n,n-t - j) 

and if so, given p, this constant can be found in time polynomial in s(n). 

Proof By Lemma 8, if we for the moment consider all of  R (n,p) (i.e. regardless of  
whether or not it passes the constraints in step 1 in the definition of  ~93 (p, r we have 

P r  .[c ~p is a constant function ] > 1 - 8n -O-~)/a('O. 
pE ~/R/ ,PJ 

Let us call a restriction in R (n,p) bad if  it does not satisfy the additional constraints in 
step 1. Write p = p~ o p" as defined above. First we see that the probability that at least 

one of  the H(i)s (there are nElogn of  them) becomes determined by p' (a violation of  
constraint lb)  is for large n by Proposition 11 bounded by 

(n E logn)e -pna = (n ~ logn)e -n~-(1-s) 

which is negligible since ~ > 1 - 5. 
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Furthermore, the probability that we get fewer than n e �9 in p" (violation of constraint 

l a) is by Proposition 12 bounded by e-�89 (ns-~-l) since r + e < 1. Thus, for large n 

P r  ,[p is bad] < (nalogn)e -nr + e -�89 
pEadRI ,P) 

The lemma now follows since 

Pr [c rp is a constant ] > 1 - 8n -(1-5)/d(n) - ~ . [p is bad ]. 
pE ~9 3 (p,a)R (n'n-( I -~) ) - -  pE r 

This is actually the probability the circuit has collapsed already after step 1 in forming 
D3 (p, tx), but as noted, the circuit will then surely remain collapsed. [3 

Next, notice that the distributions D3(p,00, D2((x) are the same and furthermore, 
that D1 (~), D2(ot) are close. 

Lemma 14. With p = n -(1-fi), 0 < E < ~ < 1, a ~ (1 -- 5, 1 -- e), the two distributions 
D3(p,o~), ff)2(t~) on R (n'n-(l-e)) are equal. 

Proof. We prove that for both distributions: (/) The location of * in p", i.e. the set I, 
have the same distribution. (ii) Non-* in p" are uniformly distributed in {0, 1}. (iii) The 
p~-part is a uniformly distributed value consistent with Ha,e(x ~) = I. This will establish 
the claim. 

(i) In D2 ((x) we first choose a random ne-subset as * (p") so each such is chosen with 

probability [ Ix'l~-I In D3(p, oc) after step 1 in forming the distribution, let R1 be the 
k n  ~ I �9 

random variable corresponding to . ( p ' )  at this stage and let R2 similarly be the value 
of *(p") after step 2. Since the final *(p") is obtained by first choosing R1 at random 
and then R2 as a subset of R1, we have by symmetry that for any ne-subset I: 

. r  - '  DE~9.3(p,ot)R(n,n_(l_E:)) = Pr[lel I > n~]. 

But in 593(p,ct) we discard precisely those p for which IRll < n e, and thus each nE-set 
is chosen with the same probability as by D2((x). 

(ii) Note that there is no difference in the distribution on non-. in p" in the two 
distributions since they are in both cases assigned 0/1 with equal probability. 

(iii) Lastly, when assigning 0/1 to p' in D2(cx), we choose at random a x' E Hff, l(I). 
By the XOR-construction of each H(j ), we can in each nC~-bit segment of x ~ choose 
any set of nct - 1 indices uniformly at random in {0,1} and the last bit in each block 
will have to be assigned a unique value determined by the condition Ha,E(x ~) = I. In 
D3(p, oc) we also choose I before choosing x ~. Since we in D3(p, oc) by constraint lb 
have at least one �9 in each nC~-bit segment of 9' and all * were selected uniformly at 
random, we can there also fix all but one of the remaining �9 as 0/1 at random and the 
last bit is determined uniquely by Hct,~(x') = I. D 
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Lemma 15. For any fixed P0 E R (n'n-(1-t)), 

2-' [p = r, ol <_ )lp = po] _< 2 ){p: po]. 

Proof. Follows immediately from Lemma 2. [] 

Corollary 16. Let 0 < ~ < 5 < 1, a E (1 - 5 , 1  -E) ,  and let c be a circuit ofdepth 
d(n) < logn and size s(n) < n-(l-8)/d(n)2~ nO-~)/d(n). Then, for  sufficiently large n, 

- -  l og logn  

Pr ,1 .' [C~p isaconstantfunction] >__ l - - O  (n-(1-5)ld(n)), 
p E ~ l ( a ) R ( n , n - t  - j )  

and if  so, this constant can from p be computed in time polynomial in s(n). 

Proof. With p = n -(1-8), the result follows immediately from lemmas 13, 14, and 15. 
[] 

Theorem 17. For any 5 E (0,1) there is a one-way function f and a deterministic 
polynomial time algorithm A for which the following hold. For all sufficiently large 

�9 �9 < l o B n  n, for  any (s(n),d(n), .)-bounded ensemble of  ctrcuits {~n}n_>l, where d(n) _ loglogn' 

s(n) < n-(i-s)/a(n)2~z n(1-~)/d(n), for  every c supported by ~n, 

xeixP~o,1},,[A(f(x),c) = c ( x ) ]  : 1 - 0 (n-(1-8)ld(n)). 
Proof. Choose e E (0,5), o~ E (1 - 5,1 - e), let g be a one-way function and define the 
one-way function 

l 0 # 0 f ( x ) = f ( xS o xS' ) = g ( x~#~E ( sd ) ) xS~--C~ x #. 

For any c E s for random x, f (x)  gives a restriction p = [Hct,E(x~);x ~ o x ' ~ ]  E 

R (n,"-I~-~)) on c, and this p is chosen according to the distribution D1 (a). It follows 
from Corollary 16 that c rp will be a constant with probability 1 - O(n-(1-8)/d(n)), and 
if this is the case, we can use p (i.e. f(x))  to determine what this constant is in time 
polynomial in size(c). [] 

We immediately get the following corollary. 

Corollary 18. An (s(n),d(n), .)-bounded ensemble o f  circuits, computing a (general) 
l~ for  every e > O, or otherwise, hard core predicate, requires depth d(n) > (l+e)loglogn 

requires size s(n) > 2 ~176176 If  d(n) is a constant, size s(n) > 2 nn(1) is required�9 In 
particular, there are no hard core predicates computable in AC ~ 

The existing constructions of hard core predicates such as [5] can be computed by 
polynomial size circuits of depth logn and hence, the lower bound in the Corollary is log logn  
essentially tight. 
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6 Summary and Open Problems 
This paper does not rule out the possibility of  generating pseudo-random sequences 
in AC ~ but it does tell us that "generic" constructions based on an arbitrary one-way 
function and a hard core predicate does not work. For instance, the construction in [8] 
could still be a pseudo-random generator since it is based on a particular conjectured 
one-way function. 

We have found an essentially tight lower bound on the complexity of  computing 
(general) hard core predicates. Note that with respect to AC ~ circuits, the results ob- 
tained are uniform in a very strong sense: We have a fixed one-way function that has no 
hard core predicates computable by any circuit family of  constant depth d and size n r 
regardless of  d, r and the distribution on the circuits. 

Together with existing constructions of  hard core predicates, we now have a good 
characterization o f  them with respect to computational complexity. The next step would 
therefore be to give, if possible, a more functional characterization of  them. 
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