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Abstract .  Blind digital signatures were introduced by Chaum. In this 
paper, we show how security and blindness properties for blind digital 
signatures, can be simultaneously defined and satisfied, assuming an ar- 
bitrary one-way trapdoor permutation family. Thus, this paper presents 
the first complexity-based proof of security for blind signatures. 

1 Introduct ion 

A digital signature scheme allows one to "sign" documents in such a way that  
everyone can verify the validity of authentic signatures, but no one can forge 
signatures of new documents. The strongest definition of security for a digital 
signature scheme was put forth by Goldwasser, Micali, and Rivest [15]. Several 
schemes, based on both specific and general complexity assumptions, were sub- 
sequently shown to satisfy this strongest definition. A variation on basic digital 
signatures, known as blind digital signatures, was proposed by Chaum. Blind 
digital signature schemes include the additional requirement that  a signer can 
"sign" a document (which is given to him in some "encrypted" form) without 
knowing what the document contains. Blind digital signatures play a central role 
in anonymous electronic cash applications. In this paper, we show how security 
and blindness properties in digital signatures can be simultaneously defined and 
satisfied, assuming an arbitrary one-way trapdoor permutation family. 

While our construction achieves the strongest guarantees under general com- 
plexity assumptions and runs in polynomial time (in all the parameters), it is 
quite complicated and inefficient. The contribution of this paper is therefore 
twofold: (1) we show that  the notions of blindness and security can be simul- 
taneously formalized and (2) we exhibit a "constructive proof of existence" of 

* Part of this work was done while this author was at U.C. Berkeley under NSF Grant 
CCR-9505448. 
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a blind digital signature scheme which satisfies these strong requirements. The 
current paper leaves open the question of an efficient implementation. We stress, 

though, that it was previously not clear whether the strong security guarantees 

for blind digital signatures could be satisfied under any complexity assumptions. 

We preface definitions and our main result with some background. 

Digital Signatures: Informally, a signature scheme allows a user with a public 
key and a corresponding private key to sign a document in such a way that every- 

one can verify the signature of the document (using her public key) but no one 

else can forge the signature of another document. Digital signatures were origi- 

nally defined by Dime and Hellman [9], and the first implementation was based 
on the RSA trapdoor function [23]. Goldwasser, Micali, and Rivest [151 defined 
the strongest known "existential adaptive chosen-message attack" against digi- 
tal signature schemes. They also demonstrated the first scheme which is secure 
against such an attack 4 assuming the existence of claw-free permutations, which 
in turn may be based on the hardness of factoring. Subsequently, signatures se- 
cure against existential adaptive chosen-message attacks were shown assuming 
the existence of trapdoor permutations [2], one-way permutations [19], and gen- 
eral one-way functions [24]. More efficient schemes secure against such an attack 
were shown in [8], and schemes with additional properties were considered in 
[11, 3, 16]. 

Blind Signatures: Chanm [6] proposed the notion of "blind digital signatures" 

as a key tool for constructing various anonymous electronic cash instruments. 
These are instruments for which the bank cannot trace where (and hence for what 

purpose) a user spends her electronic currency. In this paper we do not address 

the broad issues of electronic commerce, but concentrate our attention solely on 

blind signatures. Informally, a blind digital signature scheme may be thought 

of as an abstract game between a "user" and a "bank". The user has a secret 
document for which she needs to get the signature from the bank. She should 
be able to obtain this signature without revealing to the bank anything about 
her document except its length. On the other hand, the security of the signature 
scheme should guarantee that it is difficult for the user to forge a signature of 
any additional document, even after getting from the bank a number of blind 
signatures. Blind/untraceable signatures have attracted considerable attention 
in the literature (see, for example, [7, 20, 1, 22] and references therein), and are 
used in several proposed electronic digital cash systems. Researchers use two 

4 We remark that [23] is not secure against existential adaptive chosen-message attacks 
since there are signatures that can be forged under this attack. 
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different approaches for proving the security of signature schemes: complexity- 
based proofs of security [9, 15, 2, 19, 24, 3, 16, 8] and random-oracle model proofs 
of security [10, 4, 21, 22]. Let us elaborate on these two notions of security: 

Two Not ions  o f  Security for Digital  Signatures: 

- Complex i ty -based  proofs: The complexity-based approach was put forth 
by Diffie and Hellman [9]. They suggested that the security of a cryptographic 
primitive could be reduced to a hardness assumptions of certain fundamental 
problems, such as the existence of one-way functions. The approach proved 
very successful, as a large number of cryptographic primitives, including 
pseudo-random generators, signatures and secure protocols were shown to 
exist based on general complexity assumptions. 

- Proofs  based on random oracle model:  In the case when complexity- 
based proofs seem to be difficult to attain, the approach used, for example 
in [10, 4, 21, 22], is to assume that a cryptographic primitive (such as DES 
or MD5) behaves like a truly random function. The security of the scheme is 
then shown under the assumption that the underlying primitive behaves in 
a near ideal fashion. Such proofs are weaker than complexity-based proofs. 
(For a related discussion see [5]). 

Clearly, the complexity-based proofs of security are preferable to random-oracle 
model proofs of security. Until now, however, the only proofs of security for 
blind digital signature schemes have been in the random oracle model. This 
paper presents the first blind signature scheme with complexity-based proof of 
security. 

Pointcheval and Stern [22] address the security of several blind digital signa- 
tures schemes, including blind variants of the Okamoto [20], Schnorr [25], and 
Guillou-Quisquater [17] signature schemes. In particular, [22] proves the secu- 
rity of Okamoto-Schnorr and Okamoto-Guillou-Quisquater blind signatures in 
the random oracle model. Thus, Pointcheval and Stern consider blind signatures 
which rely on number-theoretic assumptions and show proofs of security only in 
the random-oracle model. In addition, their security proofs, while polynomial in 
the size of the cryptographic keys, are exponential in the number of blind digital 
signatures obtained before the break (i.e. if the number of signatures that are 
required before the break is greater than logarithmic, then the reduction is not 
polynomial.) The authors pose as an open problem the question of whether one 
can achieve a scheme where the security of the reduction can be made poly- 
nomial both in the number of signatures obtained by the adversary before the 
break and in the size of the keys. 
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Our Resul t :  In the next section, we formally define the notion of security of 
a blind digital signature scheme. Informally, a blind digital signature scheme 
is secure if it satisfies both a blindness and a non-forgeability property. The 
blindness property was formulated in the original paper of Chaum [6], and non- 
forgeability was considered in the paper of Pointeval and Stern [22] (where it 
is called called "one more" forgery). Again, informally, (see the next section for 
formal definitions) blindness means that a signer can not distinguish, except 
with negligible probability, the order in which she issued signatures, and non- 
forgeability means that after getting t signatures, it is infeasible for the receiver 
to compute l + 1 signatures. We consider a non-forgeability requirement where 
the forger is allowed to run many parallel protocol executions for many blind 
signatures, in an arbitrarily interleaved and adaptive fashion, and to abort many 
such executions in the middle of the protocol, without having to count them 
as signatures. We call such an attack an adaptive interleaved chosen-message 
attack. We demonstrate a blind digital signature scheme which is secure against 
this attack, and which can be implemented based on any one-way trapdoor 
permutation. 

M A I N  T H E O R E M :  Assume that one-way trapdoor permutations exist. Then 
there exists polynomial-time blind digital signature scheme, secure against an 
adaptive interleaved chosen-message attack. 

Our scheme has both advantages and disadvantages. We list them below. 

Advantages: 

- We give the first complexity-theoretic proof of security for blind digital sig- 
natures; our scheme is shown to be secure against the adaptive interleaved 
chosen-message attack. (All previous proofs of security for blind digital signa- 
tures were in the random-oracle model only and were not fully polynomial.) 

- We show how to achieve our protocol based on any one-way trapdoor permu- 
tation. (All previous blind digital signatures schemes were based on number- 
theoretic assumptions only). 

- Our scheme and proof of security are fully polynomial in all suitable param- 
eters, including the number of blind signatures requested before the break. 
(We thus resolve in the affirmative the open question posed by Pointcheval 
and Stern [22].) 

Disadvantages: 

- Our scheme, while polynomial in all suitable parameters, is inefficient. Thus, 
it should be viewed merely as a proof of existence which should pave the 
way for efficient future implementations. 
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Organ iza t ion  o f  t he  Pape r :  The remainder of this paper is organized as 
follows. In section 2, we present the definitions of blindness and security to be 
used in this paper. We discuss some of the complications and solutions involved 
in constructing a blind signature scheme in section 3. We present our blind 
signature scheme in section 4 and sketch a proof of its security in section 5. We 
conclude in section 6 with a brief discussion of the significance of our result to 
the area of anonymous electronic cash. 

2 Definit ions 

In the proof and the construction of blind digital signatures, we will use the 
security of standard digital signatures, as defined by Goldwasser, Micali, and 
Rivest [15]. Hence, before we give the definition of blind digital signatures, we 
remind the reader of the standard signature definitions. 

Signa tu re  schemes: The standard signature scheme is a triple of algorithms, 
(Gen, Sign, Verify), where Gen(1 k) is a probabilistic polynomial time key-generation 
algorithm, which takes as an input a security parameter i k and outputs a pair 
(pk, sk) of public and secret keys. The signing algorithm Sign(pk, sk, m) is a prob- 
abilistic polynomial time algorithm which takes as an input a public key pk a secret 
key sk a message m to be signed and outputs a signature of a message a(m) as well 
as a new (i.e., updated) secret key sk I. (In a memorylesssignature scheme, the secret 
key sk stays the same throughout.) A verification algorithm Verify(pk, m, a(m)) is 
a deterministic polynomial time algorithm which takes as an input a public key pk a 
message m and a purported signature o'(m) and outputs accept/reject. We require, 
of course, that for all signatures computed by first executing a key generation algo- 
rithm and then signing a sequence of messages according to the above process, the 
verification algorithm always output accept. 

As mentioned above, security against the existential adaptive chosen-message 
attack of Goldwasser, Micali, and ttivest is the strongest known security measure 
for signatures [15]. 

Secur i ty  of  S igna tu re  Schemes:  In this attack, an adversary A, which is a 
probabilistic polynomial-time machine, is given a public key pk generated by the 
key-generation algorithm. The adversary A can request in an adaptive fashion a 
polynomial number of signatures of his choice. A must then produce a valid signature 
on a document for which he has not yet seen a signature. If he can produce any such 
document/signature pair which is accepted by the verification algorithm, then the 
attack is successful. A signature scheme is defined to be secure if for all constants 
c, and for all probabilistic polynomial-time A, there exists a security parameter kc,A 
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such that for all k > kc,A the probability (taken over coin-flips of the adversary) 
that A is successful is less then 1/k c. 

We shall use the term polynomiaily bounded in this paper to refer to a quantity 
which is polynomial in the security parameter. Similarly, we shall denote by 
1/poly the inverse of a polynomially bounded quantity. 

We are now ready to give a formal definition of a blind signature scheme and its 
security. In the definition below, digital signatures are treated as an interactive 
protocols between two players: a Signer (who "blindly" signs a document m) and 
the User (who obtains the signature of her document m). We rely on the formal- 
ism of Interactive Turing machines, defined by Goldwasser, Micali and Rackoff 
[13]. The security of a blind digital signature consists of two requirements: the 
b l indness  property and the non-forgeabi l i ty  of additional signatures. We say 
the blind digital signature scheme is secure if it satisfies both properties, as de- 
fined below. (We remark that our non-forgeability definition follows the definition 
of "one-more" forgery by Pointcheval and Stern [22]) 

Bl ind Digi ta l  Signatures :  A blind digital signature scheme is a four-tuple, 
consisting of two Interactive Turing machines (Signer, User) and two algorithms 
(Gen, Verify). Gen(1 k) is a probabilistic polynomial time key-generation algorithm 
which takes as an input a security parameter I k and outputs a pair (pk, sk) of pub- 
lic and secret keys. The Signer(pk, sk) and User(pk, m) are a pair of polynomially- 
bounded probabilistic Interactive Turing machines, where both machines have the 
following (separate) tapes: read-only input tape, write-only output tape, a read/write 
work tape, a read-only random tape, and two communication tapes, a read-only and 
a write-only tape. They are both given (on their input tapes) as a common input 
a pk produced by a key generation algorithm. Additionally, the Signer is given on 
her input tape a corresponding secret key sk and the User is given on her input 
tape a message m, where the length of all inputs must be polynomial in the security 
parameter i k of the key generation algorithm. The User and Signer engage in the in- 
teractive protocol of some polynomial (in the security parameter) number of rounds. 
At the end of this protocol the Signer outputs either completed or not-completed 
and the User outputs either failor ~,(m). The Verify(pk, m, ~r(m))is a deterministic 
polynomial-time algorithm, which outputs accept~reject with the requirement that 
for any message m, and for all random choices of key generation algorithm, if both 
Signer and User follow the protocol then the Signer always outputs completed, and 
the output of the user is always accepted by the verification algorithm. 

We now describe the security of blind signatures. 

The  Secur i ty  of  Bl ind  Digi tal  S ignature :  a blind digital signature scheme is 
secure if for all constants c, and for all probabilistic polynomial-time algorithms A, 
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there exists a security parameter /Cc,A such that for all k > I%,A the following two 
considerations hold: 

- B l i n d n e s s  p r o p e r t y :  Let b 6 a  {0, 1} (i.e. b is a random bit which is kept 
secret from A). A_ executes the following experiment (where A controls the 
"signer", but not the "user", and tries to predict b): 
�9 ( S t e p  1): (pk, sk) ~--Gen(1 k) 
�9 ( S t e p  2): {m0, rnz} ~ A(lk,pk, sk) (i.e. A produces two documents, 

polynomial in I k, where {too, ml }  are by convention lexicographically or- 
dered and may even depend on pk and sk). 

�9 (S tep  3): We denote by {rnb, mZ-b} the same two documents {rn0, ml } ,  
ordered according to the value of bit b, where the value of b is hidden 
from A. A(lk,p~,sk, rno, rnz) engages in two parallel (and arbitrarily in- 
terleaved) interactive protocols, the first with User(pk, rob) and the second 
with User(pk, ml-b). 

�9 (Step 4): If the first User outputs on her private tape ~(mb) (i.e. does 
not output fai D and the second user outputs on her private tape ~(ml-b)  
(i.e., also does not output fail) then A is given as an additional input 
{O'(/nb), O'(~rr~l-b)} ordered according to the corresponding (m0, mz) order. 
(We remark that we do not insist that this happens, and either one or both 
users may output fail) 

�9 (S tep  5):  A outputs a bit b (given her view of steps 1 through 3, and if 
conditions are satisfied of step 4 as well). 

Then the probability, taken over the choice of b, over coin-flips of key-generation 
algorithm, the coin-flips of A, and (private) coin-flips of both users (from step 
3), that l )=  b is at most 21- -{- 1 .  

- N o n - f o r g e a b i l i t y  p r o p e r t y :  A executes the following experiment (where A 
controls the "user ", but not the "signer", and tries to get "one-more" signature): 

�9 ( S t e p  1): (pk, sk) ~--Gen(1 k) 
�9 (S tep  2):  A(pk) engages in polynomially many (in k) adaptive, parallel and 

arbitrarily interleaved interactive protocols with polynomially many copies of 
Signer(pk, sk), where A decides in an adaptive fashion when to stop. Let s 
denote the number of executions, where the Signer outputted completed in 
the end of Step 2. 

�9 (Step 3): A outputs a collection { (mz ,~ (m l ) ) , . . . (m j ,~ ( rn j ) )  subject 
to the constraint the all (mi,~(rni))  for 1 < i < j are all accepted by 
ve f (pk, m,, 

Then the probability, taken over coin-flips of key-generation algorithm, the coin- 
flips of A, and over the (private) coin-flips of the Signer, that j > s is at most 
1 
/r 
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Remarks  on  B l indnes s  Property :  

- We stress that we do not require the adversary to follow the signing pro- 
tocol, nor do we require the protocol to terminate with the valid signature. 
Moreover, we require that the probability bound holds even if the protocol 
is aborted in the middle of execution. 

- By standard hybrid arguments, the above definition is as general as the 
definition in which polynomially many signatures are obtained and then 
recalled, leaving A to distinguish between the last two signatures. 

- Finally, we note that since the User does not have any special ID or other 
special identification (or else embeds such information in the message to be 
signed), we restrict our view to a single user program. 

3 Towards  Our S c h e m e  

As mentioned in the introduction, our scheme is somewhat complicated. Instead 
of presenting it immediately, we shall offer a sequence of refinements which in 
the end yields a correct scheme. Our aim is twofold: (1) to explain why the com- 
plications in our the scheme are necessary and (2) to elaborate on the subtleties 
of the problem, even when using general completeness results. 

Basic  Ingredien ts :  The two basic ingredients we start with are the secure 
signature scheme of Naor-Yung [19], and the two-party completeness theorem 
of Yao and Goldreich, Micali and Widgerson [26, 14]. Let us briefly recall both 
ingredients. 

- The signature scheme of Naor-Yung is secure against existential adaptive 
chosen-message attack and can be built based on any one-way permutation 
f [19] (we remark that we do not need the result of [24] which is based 
on weaker assumptions since other tools in our protocol require one-way 
permutations anyway.) 

- The two-party completeness theorem of Yao and Goldreich, Micali and 
Wigderson [26, 14] basically says that for any two parties A, and B, where 
A is given a secret input z and B is given a secret input y, and for any 
polynomial-time computable function g(., .) there exists a protocol for com- 
puting g(x, y) such that nothing except the output of the function is revealed 
to the players. Moreover, the schemes could be easily extended to require that 
only one player learns g(x, y), while for the other player learns nothing (i.e. all 
interactions are computationally indistinguishable.) Furthermore, the value 
of g(z, y) can be learned by one of the players only as the last message of the 
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protocol, with the condition that if the protocol is aborted before this last 
message, then again no information is revealed (i.e. all interactions are com- 
putationally indistinguishable.) In fact, we use a stronger definition, used by 
[26, 14]: that there exists a polynomial-time simulator which can simulate 
the views of the players, even in the case of Byzantine (i.e. malicious) faults. 
(For details see the above references.) Furthermore, the two-party protocol 
can be augmented to leave part of the input of one of the players unspec- 
ified, and allow this player to set this value in an arbitrary fashion during 
the actual protocol execution. 

A first simple idea would be to use these two general theorems in order to con- 
struct blind signatures in the following way: instead of having the User request 
that the Signer sign the message in the clear, engage in the two-party private 
protocol, at the end of which the User learns the signature of the document, and 
the Signer learns nothing. This "solution" suffers from several problems, which 
we now elaborate upon. 

P r o b l e m  1: The scheme of Naor-Yung is not "memoryless", and future signa- 
tures reveal previous signatures, which violates the blindness property. 

So lu t ion  to  P r o b l e m  1: Goldreich [11] showed how to make any signature 
scheme (including the signature scheme of Naor and Yung) "memoryless" [11], 
using pseudo-random functions of [12]. In our setting, the key-generation algo- 
rithm can add to the secret key a seed s for pseudo-random function and add to 
a public key a commitment [18] of this seed. Then, during secure two-party com- 
putation, the Signer must generate all of her random choices (and a random tree 
of [19, 11]) using an agreed-upon pseudo-random function with the committed 
seed. 

P r o b l e m  2: Let us take a closer look at the proof of security of Naor-Yung 
scheme [19]. Their scheme takes as its basis a tree; messages are inserted in the 
leaves of this tree, and a signature involves the construction of a path from the 
root of the tree to the appropriate leaf. Naor and Yung show that if there exists 
a Forger that can replace the User and forge the signature of a new document, 
then this Forger can be used as a subroutine to invert a one-way permutation on 
a random input in this tree. The key idea of their proof is to replace the Signer 
with an Inverter which is able to set a "trap" in this tree as follows: in order to 
forge a signature, the Forger must diverge from the path of previous signatures 
in the tree (see, for example, [19, 11, 8]), and if the Inverter can guess where in 
the path this divergence takes place (which she can do with 1/poly probability) 
then it can place an output of a one-way permutation at this point and force the 
forger to invert. The problem is that for this proof to work, the Inverter must 
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know all the previous signatures, in order to know where to set a "trap". But 
the knowledge of previous signatures on the part of the Signer is exactly what 
blind signatures are trying to prevent! These would seem to be contradictory 
requirements. 

Solu t ion  to  P r o b l e m  2: Since the Inverter is deployed in a simulation of the 
signature process, the Inverter is allowed to "reset" the Forger. So how can we 
assure that the Signer (who can not "reset") does not know which documents 
she signs while the Inverter (which is allowed to "reset") has full information? 
The idea is to use a variant of a proof of knowledge procedure. The User first 
commits to a random string r and to her message exclusive-ored with r. The 
Signer requests to see the decommitment of either one or the other commit- 
ment (but not both). The Inverter will be able to retrieve the message by first 
requesting to see one commitment, then resetting the state of the Forger, and 
then requesting to see the other commitment. We call such a commitment an 
extractable commitment. 

We should point out that since both commitments (and their decommit- 
ments) are now part of the input (public and private) of the secure two-party 
completeness protocol, they are included in the execution of the two-party com- 
pleteness protocol and hence force correct behavior of both players (see [26, 14]). 

P r o b l e m  3: In the scheme of [11] for rendering the signature scheme memory- 
less, it was not necessary for the Signer to prove that she is only using coin-flips 
that come from a pseudo-random function. In order to achieve the blindness 
property, however, we must insist that this is always the case. (This is done 
through use of the completeness theorem in conjunction with a published com- 
mitment of the pseudo-random seed S, as we shall see.) The memoryless prop- 
erty of the signature guarantees that the Signer can not "mark" the signatures 
in any way, an absolutely necessary property for blind signatures! In the proof 
of security, though - i.e., when dealing with a forger - the Inverter must be 
able to replace a pseudo-random string by a "trap". This trap is a completely 
random input (on which the forger will invert with 1/poly probability). Again, 
these would seem to be contradictory requirements, since if the Signer can insert 
new random bits into the singing process, then it can "mark" the signature and 
violate blindness property. 

Solut ion to  P r o b l e m  3: Again, the ability of the Inverter to "reset" the Forger 
is vital to the resolution of the above somewhat paradoxical issue. The idea is 
again to have the Signer commit (in an extractable form - see above) to some 
poly-long string X. The Signer picks a secret input Y of the same length as X; 
both X and Y are used as private inputs for the secure protocol guaranteed by 
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the two-party completeness theorem. We modify our secure function evaluation 
protocol to allow the Signer to deviate from the above pseudo-random choices 
and insert other inputs, but only in case when X = Y. If X r Y we demand 
that the Signer follow the protocol as before. The chances that the Signer can 
correctly "guess" X are negligible, so the signature scheme remains blind with 
overwhelming probability. On the other hand, the Inverter, by resetting the 
Forger, can find out what X is, set her guess Y to the same value, and then set 
a trap. 

P r o b l e m  4: Since the definition of the non-forgeability property allows the 
Inverter to run many parallel sessions interleaved in an arbitrary fashion, we 
must be assured that it can insert a "trap" (on which the Forger will invert 
during forging of a "one-more signature") in a consistent manner in all the runs. 
The Inverter must therefore be able to specify a point in the exposed sub-tree 
of signatures (see [19, 11]) at which to insert her trap. But how can this be 
consistently specified, not knowing the order or the interleaving nature of the 
adversary? 

Solu t ion  to P r o b l e m  4: The solution is as follows: if X = Y the Signer/In- 
verter can insert arbitrary values at an arbitrary point (i.e. it does not commit 
where to insert the trap) and thus can consistently do so during parallel inter- 
leaving sessions in the same fashion as before, i.e. consistently at some point in 
an exposed sub-tree of signatures (see [19, 11]) We now give details how this can 
be done. 

Recall that we use a secure computation protocol in such a way that the 
User/Forger receives no information about the signature prior to the last round 
from the signer. We refer to this as the atomic signature property. Recall that the 
Forger may request at most a polynomial number of signatures, say p(k), before 
producing her forgery. The Inverter therefore chooses a number r uniformly at 
random from [1, p(k)]. This specifies the interaction with the Forger in which she 
will try to plant her trap. The Inverter also chooses a height a of a tree uniformly 
at random at which to plant her trap. The Inverter specifies in interaction r 
that trap w will be planted at height a. Once the message m in interaction r 
has been specified, the Inverter may determine the node v in which she has 
chosen to plant her trap. With probability 1/poly, the Inverter will have chosen 
to plant her trap in such a way that no previously issued signature has yet 
made use of the node v; thus planting of the trap will not invalidate signatures 
issued previous to interaction r. We say in this case that the trap choice has 
been successful: the Inverter plants her trap with impunity. On the other hand, 
if the Inverter has chosen an address for her trap such that previous signatures 
would be invalidated, then we say that the trap choice has been unsuccessful. 
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In this case, the Inverter does not plant the trap in node v. By the atomic 
signature property, no information about signatures has been divulged to the 
User/Forger in any other interaction. Therefore, the Inverter may continue to 
plant her trap in node v in a consistent fashion for all incomplete interactions. 
Since the simulation is successful with probability 1/poly, a trap is planted as 
in Naor and Yung's scheme with probability 1/poly. It follows that the Inverter 
causes the Forger to invert w with 1/poly probability. 

4 T h e  B l i n d  S i g n a t u r e  S c h e m e  

We shall now assemble all of the above and describe our blind signature scheme. 
We shall denote by c(z) the secure commitment of a string z. We shall denote by 
c* (z) an extractable commitment of z. (Recall from above that such a commit- 
ment reveals nothing about z to the Signer, but enables an Inverter, by rewinding 
a Forger, to extract z.) 

The scheme works as follows. The Signer publishes c(s), that is, a commit- 
ment of her secret pseudo-random key s, along with her public key pk, and the 
one-way permutation f used in the Naor and Yung [19] scheme. (Also made 
public are the pseudo-random generation function g, as well as a set of public 
hash functions required by the scheme of Naor and Yung.) 

Each time a signature is to be issued, the Signer and User engage in a secure 
two-party computation. The User provides as input to the computation the 
message m to be signed, as well as a random string X. In addition, the User 
provides extractable commitments c* (X) and c* (m). Through a variation on the 
standard secure two-party computation protocol, these two commitments are 
passed in the clear to the Signer. (Recall that in the Inverter/Forger scenario, 
these commitments enable the Inverter, by rewinding the Forger, to learn X and 
m, thereby effectively circumventing the blindness of the scheme.) 

The Signer provides to the secure computation (of [26, 14]) her private infor- 
mation as well as information respecting the trap she may wish to plant (when 
she plays the role of the Inverter). In particular, the Signer provides to the com- 
putation her secret signing key sk and her secret pseudorandom seed s. She also 
provides a string Y constituting her guess of X. Finally, the Signer provides to 
the computation a specification of the trap she wishes to have inserted. More 
precisely, the Signer specifies w, the value she wishes to have planted in the sig- 
nature tree, and either a node v in a tree where she wishes to put w (in case v 
is already known from other sessions) or a boolean value indicating that in the 
current signature, on its way to the leaf, at height a in the tree at which trap w 
should be inserted. 

The memoryless property [11] is incorporated into our our scheme as follows. 
The secure two-party computation protocol produces a choice of leaf in which 
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to insert the message m; this is computed to be the output of the pseudo- 
random generation function g of [12] with secret seed s and index m (truncated 
appropriately to yield a uniform selection of leaves). If the Signer's guess Y is 
successful, i.e., if Y = X, then the signer can deviate from g,(m) path and 
insert instead w at a node v as specified above. (If the current signature does 
not use v, no trap is planted and g,(m) is followed.) On successful completion of 
the protocol (i.e., if cheating during secure computation was not detected) the 
decodinbg of signature ~r(rn) (with or without trap) is sent to the User. 

5 S e c u r i t y  o f  o u r  s c h e m e  

The blindness of the scheme follows from the properties of two-party secure 
computation of [26, 14]. The security of the computation is violated only when 
the guess Y of the Signer is correct, and consequently X - Y. This happens 
with negligible probability. 

It now remains to be seen that if there exists a successful Forger for this 
scheme, then this Forger may be used by the Inverter in a polynomial-time 
algorithm Q capable of inverting the one-way permutation f on an arbitrary 
value with probability 1/poly. 

Since the Forger makes extractable commitments of X and m, the Forger 
can be used by the Inverter to rewind the protocol and extract X and m. By 
setting X = Y (which is indistinguishable for any polynomial-time Forger from 
the case X ~ Y), the Inverter can now plant a trap in a consistent manner. 

When signatures are issued sequentially, therefore, by making use of its 
knowledge of the history of issued signatures, the Inverter may set a "trap" in 
exactly the way that this was done in a memoryless analog of Naor and Yung's 
scheme. The ability of algorithm Q to invert f now follows from the security of 
the memoryless version of Naor and Yung's memoryless analog [11, 19]. 

When signatures are issued over the course of multiple, interleaved executions 
of the blind signature protocol, the same "trap" may be planted consistently over 
many executions using the method described in Section 3 (in response to Problem 
4). Thus, the Inverter remains capable of inverting with probability 1/poly even 
over interleaved protocol executions. 

6 C o n c l u s i o n :  A n o n y m o u s  E l e c t r o n i c  C a s h  

As mentioned in the introduction to this paper, blind digital signatures are 
principally of interest to the cryptographic community for their importance in 
anonymous electronic cash schemes. In many of these schemes, a coin consists 
of a pair (d, ~(d)), where d is selected from a suitable message space, and ~(d) 
represents a blind signature of d or of a digest of d. 
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An early example of an electronic cash scheme of this sort is a paper by 
Chaum, Naor, and Fiat [7]. (Their system has in fact been deployed with some 
additional apparatus in a real-world implementation.) Here a coin assumes the 
form (d, fl/3(d)), where f is a suitable hash function, such as MD5. Compu- 

tations are performed in ZN for some product of primes N - pq, where N is 
published, and p and q are held in secret by the Signer (the bank). A coin is 
issued as follows. The User generates the value d and a random blindness factor 
r, and sends the quantity rSf(d) to the Signer. The Signer computes rf l /3(d),  
and sends it to the User. On dividing out r from this last quantity, the User 
computes fl/S(d), and has therefore obtained a valid coin pair (d, fl/3(d)). It 

is easy to see that the described scheme is blind. (It is, in fact, blind in an in- 
formation theoretic sense.) The scheme would also appear at first glance to be 
secure since, given d, it is hard to compute f l /3(d),  and vice versa. We wish to 
point out, however, that this rationale does not give a proof of security, and is 
in fact deceptive: there might nonetheless be some computationally feasible way 
of generating the pair of values constituting the coin simultaneously. 

This and similar weaknesses appear to vex many implementations of anony- 
mous digital cash. Although a proof of security of several blind digital signature 
schemes based on the random oracle model was given by Pointcheval and Stern 
[22], the current paper gives the first complexity-based proof for this important 
primitive. We have therefore shown that secure anonymous digital cash is pos- 
sible to achieve in a complexity-based sense, i.e. we have shown that it may be 
as secure as, say, factoring. As mentioned above, however, our protocol is ineffi- 
cient. Combining the requirements of efficiency and provable security to create 
a new blind digital signature scheme is an interesting open problem. 
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