A Multiplicative Attack Using LLL Algorithm on
RSA Signatures with Redundancy

Jean-Frangois Misarsky

France Télécom - Branche Développement
Centre National d'Etudes des Télécommunications
42, rue des Coutures, B.P. 6243
14066 Caen Cedex, FRANCE
jeanfrancois.misarsky @cnet.francetelecom. fr

Abstract. We show that some RSA signature schemes using fixed or
modular redundancy and dispersion of redundancy bits are insecure.
Our attack is based on the multiplicative property of RSA signature
function and extends old results of De Jonge and Chaum [DIC] as well
as recent results of Girault and Misarsky [GM]. Our method uses the
lattice basis reduction [LLL] and algorithms of Ldszl6 Babai [B]. Our
attack is valid when the length of redundancy is roughly less than half
the length of the public modulus. We successfully apply our attack to a
scheme proposed for discussion inside ISO. Afterwards, we also
describe possible adaptations of our method to attack schemes using
mask or different modular redundancies. We explain limits of our attack
and how to defeat it. -
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1 Introduction

Let n be a RSA modulus [RSA], ¢ the public exponent, and d the secret exponent. We
can define P(x) = x¢ (mod n) the public function and S(x) = x4 (mod n) the secret one.
The multiplicative property of RSA, i.e. the fact that S(xy) = S(x)S(¥) (mod n), leads to
potential weaknesses, especially when used for signatures. We will make an extensive
use of this property in our attack.

When a forger wants the signature of a message m, he generates two messages x and y
that satisfy m = xy (mod n). If he obtains the signatures of x and y, as exponentiation
preserves the multiplicative structure of the input, he simply computes the signature of
m as the product of S(x) and S(y), S(m) = S(x) S(y) (mod n). This is a chosen-message
attack.

Two standard ways exist to eliminate this potential weakness. One is to sign a hashed
value of the message rather than the message itself. The other is to add some
redundancy to the message to be signed. These different signature schemes are
sometimes called, respectively, schemes with appendix and schemes with message -
recovery ((MOV], pp.428-432).
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Only the redundancy solution is concerned by this paper. It is of particular interest
when the message is short, because it prevents from specifying and implementing a
hash-function (a rather delicate cryptographic challenge), and it allows to construct
very compact signed messages, since messages can be recovered from the signatures
themselves (and hence need not any longer be transmitted or stored). Let R be the
invertible redundancy function. The signature of a message m is £(m) = S[R(m)] and
the signer only sends Z(m) of the receiver. The latter applies P to X(m), and verifies
that the result complies with the redundancy rule, i.e. is an element of the image set of
R. Then he recovers m by discarding the redundancy, i.e. by applying R to this result.
At Crypto’85 conference, De Jonge and Chaum [DJC] showed that simple redundancy
does not avoid all the chosen-message attacks. In their paper, they show that it is not
sufficient to append trailing ‘0’ bits to the right or the left of the message. They study
the case when redundancy is an affine function of m, i.e. the signature Z(m) to m is
computed as XZ(m) = S(wm+a). Their attack is based on Euclid’s algorithm and is
valid for any message m for:

ea =0, and any value of @ such that the amount of redundancy is less than half

the length of the public modulus 7.
ew =1, a small value of a, and when the amount of redundancy is less than one
third of the length of the public modulus 7.

Girault and Misarsky [GM] recently extended these results. Their attack uses an affine
variant of Euclid’s algorithm due to Okamoto and Shiraishi [OS]. It is valid for any
constant @, any constant a, any message m provided that the amount of redundancy is
less than half the length of the public modulus n. Moreover, they study the case when
modular redundancy is used, i.e. when the amount of redundancy is obtained by
appending to m the remainder of m modulo some fixed value. In this case, the
signature is still subject to a chosen-message attack when redundancy is less than half
the length of the public modulus, minus the length of remainder. They give three
solutions that prevent their attack; one of them consists in dispersing the message in
different parts and another one in using two different modular redundancies.
We show in this paper that a multiplicative attack is feasible on signature scheme that
uses dispersion of redundancy bits and fixed or modular redundancy. We precisely
explain our attack in this case. But our attack is also valid on more simple schemes or
schemes with mask or different modular redundancies.
Our method makes use of the lattice basis reduction, which has not been used in
multiplicative attacks yet. But, lattice reduction has already been applied successfully
in cryptoanalysis: against Merkle-Hellman public key cryptosystem (S], against
Okamoto’s cryptosystems [VGT1], against RSA cryptosystem with small exponent
[H], or against RSA encryption with small exponents and random padding [C], for
instance.
We successfully apply our method on ISO 9796 Part 3, Working Draft, December
1996 [1SO2], a scheme using dispersion of redundancy bits and modular redundancy.
Afterwards, we explain limits of our attack and how to defeat it.
Throughout this paper, we call bitlength (or length in short) of an integer the number
of bits of its binary representation. We denote by l ml the bitlength of m.
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2 Our Results
We describe a method using lattice basis reduction that finds solutions x and y of the
equation R(m)R(x) = R(y) (mod n) where:

* R is a redundancy function

* m is a message of which we want to forge a signature
If signatures of x and y can be obtained, i.e. respectively Z(x) = S(R(x)) (mod n) and
Z(y) = S(R(y)) (mod n), then the signature of m can be easily forged:

(m) = Ey;(mod n)

In the sequel, we denote by:

@,,0,,... : miscellaneous multiplicative redundancies constants

a : fixed redundancy constant

m : a message

ky : the number of parts of m

m; : the i** part of m. The message m is split up into k; parts which have not

necessary the same length:

m= l mi [ 473 I .............. L m; J ......... [ My, I

o(m) : modular redundancy of the message m i.e. the remainder of m modulo a
fixed value

k2 : the number of parts of ¢(m)

o(m); : the j* part of @(m). The modular redundancy is split up into k. parts

which have not necessary the same length:

om)= | omyi | om)y || om) | p(m)

n : RSA modulus

m, : redundancy modulus (@(m) =m (mod m,))

The redundancy function R can take several forms, with increasing complexity:
i) R(m)= wom+a
ii) R(m)= om+w,p(m)+a

iii) R(m)= imm +a

iv) R(m)= Zma) +i<p(m) @, +a

The case iv) generalizes the others and we only study it in the sequel.
Example: when all @, are powers of two in the case iv), one could have:

Rm)=[10111... | m; | @(m), |..1001.. | oxm), | m | @m)s | ... | ..1011.. ]

witha=]10111... [0..0{0......0]..1001.. Jo.....0]0..0]0.....0]..].1011. |
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Remark: we call the number of bits of redundancy the length of n minus the length of
m. Note that the number of bits of modular redundancy is included in the number of
bits of redundancy.

Main result:
If a signature scheme uses this kind of redundancy function:

k, £.
Rm) = Yma, + Y. 0(m),a,, +a
=1 J=1

then our attack is valid when the number of bits of redundancy is roughly less
than half the length of the public modulus n, minus the number of bits of modular
redundancy (when the latter is present):

|redundancy|<-;-|n|—|m,|

Another version of our attack, requiring more computation and memory, is valid
when the number of bits of redundancy is roughly less than half the length of the
public modulus n.

3 System: Definition and Solution

Solving R(m)R(x) = R(y) (mod n) is equivalent to finding the different parts of R(x)
and R(y), i.e. respectively (x;)isise, (@X))1 5,51, and )rsise, (@F))15j5k,

Let (X):s:s« be the different parts of R(x) to find, i.e. all or only part of (x;):s.sx and
(@(X)hsjse. Let (Y1554 be the different parts of R(y) to find, i.e. all or only part of
(Y)rsis, and (@) sjsk,. The modular redundancy, the fact that x = ¢(x) (mod m,)
and y = @(y) (mod m,), implies two equations:

) alXi + aXs +...+ GiXey = Xy + by (mod m,)
(ll) bY1+b.Yo+. .+ bl =Y+ h; (mod m,)

with (@)1 sisi1, (Bi)isiser, fn and b, fixed integers.

Note that:

e hi and h; are present only when some parts of R(x) and R(y) are fixed, i.e. one or
several xi;, ¢(x);, y: or @(y); are fixed.

e our method requires the coefficients of X, and Y, to be equal to one. It is easily
obtained by a division modulo m,. We have deliberately omitted to describe this
step.

R(m)R(x) = R(y) (mod n) also implies an other equation:
(lll) Xy + C2X2 +ot Xy + d]Y[ + szz +...+ dHYH = Yk + hg (mod n)

with (Ci)1 <iSk,s (di)] ikl and k; fixed integers.
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Let (SI) be the system:

aX+.+a,_X,, X, +h (modm) (i)
&))] bY+.4b, Y, = Y, +h (modm) (i)
X +.4c. X, +d¥+. .44, Y, , Y, +h, (modn) (iii)

(SD) is a system with constraints on value of (X;);<;s: and (Y)1<:se
Wehavefor1<i<k:

0 <X < 2L=nglhof&epulx,inblls

OS. )’i< zmm“mepm};mbin

When modular redundancy is not used in the signature scheme, (i) and (ii) are useless.
Only (iii) is necessary.

In the first part of our study, we define a lattice where all points give a solution to this
system without second member, h; = h; = hy = 0, and without constraints on values of
Xi<isx and (¥));s:se. Next, we define a method to find a solution to (SI) without
constraints on values of (X)):si<x and (Y.)1s,s: by using this lattice. After, we explain
how to obtain solutions to the system (SI) with additional constraints on values of
(X)15:sx and (¥3):1<;<x Finally we study the efficiency of our method.

3.1 First Step: Determination of the Lattice

We define an integer lattice L such that any element of this lattice is solution to (S).
(S) is the system (SI) without second member and without constraints on values of
Xsiseand (V)i sise.

aX+.+a, X, , = X, (modm)
® bY+.4b Y, = Y (modm,)
cX+.+c. X, +dY+.4d, Y, = Y  (modn)

Hence, we define a lattice L of dimension 2k such that any vector v = (v, vz, ...,Vae1,
va) verifies:

(@) AV + Gva +oF GV = W (mod m,)
(b) bV + byvg +.o ot bV = Vi (mod m,)
(C) CVi + Cova +oo+ GV + d;vm + d2vk+2 +oot eV =Vu (mod n)

Let M be the matrix of lattice L. Columns vectors of M are a basis of L, and for any
element v of L, there is a column vector & with integer components such that:
Ma=v

Now, we construct this matrix M.
We denote by M, an identity matrix of dimension 2k where the row k is replaced by:

(a‘, A2yer eyt My, 0, 0,...,0)
Then, for any vector o with integer components, v = M, a is a vector with components
satisfying (a). Remark that v, = oy with 1 <i <2k, i # k and:
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@ Vi= @y + G2V2 +uout GeiVis + Ok 11,

We gather equations (b) and (c) together with the Chinese Remainder Theorem. It is
possible because n is the public modulus of RSA and is prime with m, (otherwise we
have a factor of n ).
We denote by Chinese the Chinese remainder function:
Chinese(a (mod m), b (mod n)), with m and n relatively primes, returns x such that:
x = a (modm)
b (modn)

x
Let (f)1si<x such that:

= Chinese(0 (mod m,), ¢; (mod n)) when 1 <i<k

f; = Chinese(b.x (mod m,), dx (mod n)) whenk+1<i<2k-1
We obtain:
(f) f|V| +f2Vz + ... +ﬂ-1Vk.| +ﬁvk +fk+|Vh| +fg+2Vk¢2 + ... +fu.1Vu.1 =Va (mod m, n)

But o is different from vi. We use (d) to replace v, in (f). We finally obtain an
equation (e), equivalent to (b) and (c), that has this form:

(e) e+ éVr+ ... + CriVit + €0k + €1 Vi + EriaViez + ... + GtV = Vi (IIlOd m, n)

with: ei=fi +aifi when 1 <i<k-1
e.=fim,
e=fi whenk+1<i<2k-1
Finally, the matrix M is the matrix M; where the latest row is replaced by the vector:
(el) €2y oo y €k1y €y Chely -ov 5 €2k mr n)
We have:
08 1 O
0
0 0 1
M=ya .. .. a, m 0O
0 0 1
0
0 ... e. v . ... O 1 0
€ € v eer eee e Ey, €y, MR

A solution to the system (S) is obtained by multiplying matrix M by an integer vector
a. The result v gives a solution to (S): vi,...., v Will be Xj,...., Xi and v,...., va will be
Yi,...., Yx. The reciprocal can be easily demonstrated and consequently we have:
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Proposition 3.1.1:
A vector is in L if and only if it is a solution to (S).

3.2 Second step: System with a Second Member

Let (S°) be the system (S) with a second member. (S’) is the initial system (SI) but
without constraints on values of solutions. The same lattice L is used to solve (S”).

Proposition 3.2.1:
Letv = (vy, vy ...,Vap, Vi) be a vector of L.
Let P = (0, 0,...,0 Do 0,..0, pzk) with
DPr h
Pz Chinese(h; (mod m,), hs (mod n)) + Chinese(0 (mod m,), cx (mod n)).h;
Then B =v - P gives a solution to (S’).
ﬁ], seey ﬁk will be X],...., Xk and ﬂku,...., sz will be Y[,...., Yk

Proof:

B = whenie {1,2,3, .., k1, k+1, k+2, ..., 2k-1}
ﬂk = Ve-Di

= avi+amvi+ .t GeVea + Oem, - by

= a.ﬂ. + azﬂz + ..+ aHBH +opm,-h
Bx= vu-px

= eI+ ...+ € Vit + 60Ok + €riViet + €i2Vie2 + oo+ €V + O M N - D
And we have:
ﬂu (mod m,) = bV + baVea + oot braVa - 2

= blﬂk-ﬂ + bzﬁk+2 + ...+ bk—\ﬁ&-\ -hy

Bu(modn) = cvi+cave+... +cvi+diVier + ... + deivas - B3 - Gl

Clﬁl + Czﬁz + .. + c.(vk - h]) + dlﬁh—l + ...+ dHﬂuq - h3

As Vi - by = vi - pr = B, we have:

Bax(modn) = cfi+cf+.. +afi+dif+ ...+ diifur- b3

Thus, f gives a solution to (5°). n

3.3 Third step: Additional Constraints

We always consider the system (S’), but we take into account the initial constraints on
values of (X,):<:<x and (Y))15:5:. Hence, we solve (SI).

First case: same bounds

Let B be a positive integer. Find X; and Y; such that 0< X;<Band 0<Y,<B for any i
such that 1 £i<k.

Proposition 3.3.1:
Let HC be a ball of radius B/2, relative to the norm sup, centred on Q = P + (B/2,
B2, ..., B/2), where the point P is defined in the proposition 3.2.1. Let v be a
vector of L inside HC, and B=v - P.
Then B gives a solution to (S’) and satisfies additional constraints.
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Proof:
Proposition 3.2.1 shows that S gives a solution to (S°).
vinside HC implies 0Sv;-p, < B,i.e. 0< < B, forany 1 Si<2k u

Second case: distinct bounds

Let (B)is:sz be a family of positive integers. Find X; and ¥, such that: 0 <X, < B; and
0<Y,<Bi.foranyisuchthat 1 <i<k.

We apply a method of expansion-contraction to the lattice L to obtain another lattice
L’, see [VGT1] and [VGT?2] for more details. We denote by M’ the matrix of lattice
L.

2k 2k
Define B as B* = HB, . Let (A)1sis2 such that A = Bg Then the product Hl, is

i=1 B =1

equal to 1. M’ is the matrix M where each row i, 1 <i < 2k, is multiplied by A:

A0 0
0

0 .. 0 A, O
M =|Aa, ... .. Aa,_, Am O
0 . o .. 0 A, O

0 i e e e 0 Ay, 0
22kel A2ke2 b b b b A!k e2k—2 )leZk—l A)kmr n)

Remark that det(M) = det(M’) = m n.

Proposition 3.3.2:
Let P’ =(0,0,....,0, pih, 0, ..., 0, puha), where P is defined in the proposition
3.2.1. Let HC be a ball, relative to the norm sup, of radius B/2 centred on
Q=P +(B2,B/2, .., B2). Let v’ be an element of L’ inside HC and B’ = v’ - P’.
Then B= (M, ... Ma'Ba’) gives a solution to (S’) and satisfies additional
constraints.

Proof:
ﬂ': (xl-lﬁl’, eey M'lﬂu’) = (M'l(w’ -p’) s M’x(Vzk’ -px’))
= (7\.1'1V1' B 2T }vzg'l\’u, 'ka)
Letv= v, ., Awtvy’) and B=v - P.
Then v € L and proposition 3.2.1 shows that 8 gives a solution to (S”).
v’ inside HC implies 0<v/’ -p/ <B,i.e.0< B < B, forany 1 <i<2k. u
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Remark: the first case is a particular case of the second. In the sequel, we will
consider always the lattice L’ and its matrix M’.

3.4 How to Generate a Solution?

Proposition 3.3.2 shows that a point of lattice L’ inside HC gives a solution to the
system (SI). To find one, take a point x inside HC and find a close lattice point inside
HC.
First, apply the LLL algorithm [LLL] to the matrix M’. A reduced basis of L’ is
obtained. Next, apply one of two algorithms of L4sz16 Babai, Rounding Off or Nearest
Plane, described in [B] to find a solution.
Let u be the nearest lattice point of x and d the dimension of lattice L’.
¢ ROUNDING OFF: this algorithm finds a lattice point v’ such that:

b - v'1 < Ca bx - l with C = 1 +2d(9/2)"
¢ NEAREST PLANE: this algorithm finds a lattice point v’ such that:

e - I < Calx - ul with Cs = 2"

Remark that, if the dimension d of lattice increases, then the probability that one of
these algorithms finds a lattice point inside HC decreases.

3.5 Efficiency: Heuristic Approach

Heuristically, if the ratio of the HC volume to the lattice determinant is greater than 1,
then there is at least one lattice point in HC.
The Nearest Plane algorithm certainly finds this point when the dimension 4 of the
lattice is not too large. When d increases, the term C;= 2” increases too, and the
probability to obtain a point inside HC decreases.
We study the general case where the redundant version of m is:
X,
R(m) = Zm,w, +,2’¢(m) 0, +a

This is the most complicated case, and the solutions to the others can be derived from
the following analysis.
We denote by:

t : the bitlength of n

b;: the length of the part m; of m

k;

b: such thatzb, =b

=1
¢;: the length of the part ¢(m); of ¢(m)
c: such thatic, =c
J=1
First method: modular redundancies are fixed

Modular redundancies ¢(x) and ¢(y) are fixed. Finding two messages x and y such that
R(m)R(x) = R(y) (mod n) is equivalent to solve (SI) with k = k;.

Lattice dimension : d =2k,
Lattice determinant : det(L) = det(L”) =m, n< (2‘)2 2!
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DX I
HC volume : < 24 ) =2%

Heuristically, there is one point in HC if:

2h
2 1
22:4{
2b > 2c+t
b > i+c
2
t-b < -E--c
2

redundancy|<-;—|n|—|m,|

Second method: modular redundancies are not fixed

Finding two messages x and y such that R(m)R(x) = R(y) (mod n) is equivalent to
solve (SI) with k = k, + k,. But, there is a disadvantage when modular redundancies are
not fixed. The dimension of lattice increases and therefore the probability to find a
lattice point in HC with Babai’s algorithms decreases.

Lattice dimension  : d = 2(k: + ky)
Lattice determinant : det(L)= m,zn < (2”)2 2'

: < 2M >d=22“’+‘>

HC volume ¢

Heuristically, there is one point in HC if:

22(b+c)

2Ab+c) > 2c+t

b > L
2

t-b < !
2

redundancy I < %| n l
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4 Application

We applied our attack on a project of digital signature schemes giving message
recovery ISO/IEC 9796-3, Working Draft, December 1996 [ISO2]. It is supposed to
avoid the known attacks against RSA [GQLS]. This part of ISO/IEC 9796 specifies a
digital signature scheme for messages of limited length, so that the message is
completely recovered from the signature. It uses a check-function to save bits and
computations. This check-function is a modular redundancy, it is the remainder of the
message to be signed modulo 2”+1. The modular redundancy takes the form:

&y k;
R(m) = Z]miwl +§(o(m)j(0,+,l ta

with all(@,),,., .., powers of two. We experiment our attacks on this scheme with a

public modulus 7 of 640 bits of length. In this case the project defines an intermediate
string IS:
Structure of the intermediate string IS (640-80 = 560 bits)

Header Padding Field Data field Trailer
Three bits 640 - k. - 87 bits kn bits Four bits
Set at 010 640 - k. - 88 bits set to 0 followed Message m Setto 0110

by one bit set to 1

The structure of the valid message (640 bits) is:
Binary pattern (check-code in bold)
12+4+28+4+28 +4+ ..+28 +4 +28 + 4 +16 = 640 bits

We applied the first method, i.e. we fixed the check-code. We found several solutions
by using the Rounding Off algorithm. We give an example of solution:

Public modulus:

fEffffff 78f6c555 06¢59785 e871211le
el20b0b5 dd644aa7 96482413 ad7b2457
3flbe574 5b5cd995 O0f6b389b 52350d4e
01e90009 669a8720 Dbf265a28 65994190
a66ldea3 c7828e2e 7calbl96 5ladc2ds
Message m:
fedcba98 76543210 fedcba98 76543210
fedcba98 76543210 fedcba98 76543210
fedcba98 76543210 fedcba98 76543210
fedcba98 76543210 fedcba98 76543210
Check-code:

0f6e 4af3 aObl 3571 358b



Valid message of m:
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Sr(m) = 4bbO0bbbb bbbfafed cba69876 543e210f
edcd4ba98 765a4321 Ofefdcba 98736543
210afedc ba908765 432bl10fe dcbla987
65433210 fedScba9 87675432 10fledcb
a9837654 32150fed <cbha89876 543b2106

Message x:

x = fedcbale 2fff215a 00200blf 17a18638
3212ac94 21061f58 0619a4f0 £9129104
bd3220e3 f4bB8064c 89f15211 880c5445
612748¢c9 1a336791 5b962f17 a8386210

Message y:

y = fedcbald 7597b137 39d420f85 33b07f20
cdl335d1 308be96c 14b053d1 4230e40f
02b2fl4a 39f709a6 ebalede5 aelf6313
50f4eafl 1a2f2381 064c2f0f f3ffa210

Valid message of x:

Sr(x) = 4bbObbbb bbbfafed cbab0e2f ff2el5al
02040blf 17aal1863 832fl2ac 94231061
£58a0619 a4f00f91 291b0dbd 32210e3f
4b83064c 89f51521 18870c54 45611274
8c931a33 679515b9 62f817a8 386b2106

Valid message of y:

Sr(y) = 4bb0Obbbb bbbfafed cba61475 97bel373
9d240£85 33ba07f2 0cdf1335 di13308be
96caldb0 53d01423 0ed4b0f02 b2fll4da3l
9f7309a6 ebab0ede 5ae71f63 13510fde
afl3la2f 23851064 <c2f80ff3 ffab2106

We obtained this result within 30 minutes on a Pentium 166MHz by using GP/PARI
CALCULATOR Version 1.39 (ftp: megrez.math.u-bordeaux. fr/pub/pari). It is
the time necessary to apply LLL algorithm to the initial matrix. After, we can easily
obtain different messages x and y in a few seconds by using Rounding Off or Nearest
Plane algorithm on different points inside HC.

5 Extensions

We have described an attack on a signature scheme using one modular redundancy.
But it is possible to increase the number of modular redundancies. If the different
moduli are relatively prime, they can be gathered into one equation with the Chinese
Remainder theorem and solved with the first method. If these moduli are not relatively
prime, we use the second method, then the probability to find a solution is lower
because the dimension is high.
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We denote by mask a k»-bit fixed string. Our attack also succeeds on a scheme that
uses a modular redundancy and a mask, i.e. you apply the function exclusive OR
between modular redundancy and the mask. In this case we use the first method.

6 How to defeat this forgery

If you want to use fixed or modular redundancy, it is recommended to have the same
amount of redundancy as the number of bits of message m, and to have a big
dispersion of redundancy bits. It is not sure that you cannot apply our attack but the
probability of success will be small,

Another way to avoid this attack is to split the message and define bits of redundancy
as parity bits (such as those determined by Hamming codes) of its different parts.
ISO 9796 [ISO1] is another possible solution, but it doubles the length of the bit
pattern you sign. Our attack cannot apply to the latter schemes because the
redundancy depends on different bits of message m and we cannot adjust our attack to
this case.

7 Conclusion

This paper describes two attacks to forge a signature of a message m when the bits of
redundancy are dispersed and/or when a modular redundancy is used. The first one is
valid when the length of redundancy is less than half the length of public modulus,
minus the length of modular redundancy. The second attack is valid when the length
of redundancy is less than half the length of public modulus, but the probability to find
a forgery is smaller (because the lattice dimension grows); however, we have noticed
that the Nearest Plane and Rounding Off algorithms [B] generally give better results
than expected.

Afterwards, we have briefly described possible adaptations of our method to attack
schemes using mask or different modular redundancies. Hence, we have shown the
weakness of many attractive redundancy functions for the purpose of RSA digital
signatures.

Finally, we advise to use, for RSA signature scheme with fixed or modular
redundancy, the same length of redundancy that the length of the message and to
disperse message bits in the valid message. But the best solution remains to use ISO
9796 [ISO1] or the parity bits scheme briefly described above, because they
apparently cannot be attacked by our techniques.
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