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A b s t r a c t .  This contribution describes three algorithms for efficient im- 
plementations of elliptic curve cryptosystems. The first algorithm is an 
entirely new approach which accelerates the multiplications of points 
which is the core operation in elliptic curve public-key systems. The algo- 
rithm works in conjunction with the k-ary or sliding window method. The 
algorithm explores computational advantages by computing repeated 
point doublings directly through closed formulae rather than from indi- 
vidual point doublings. This approach reduces the number of inversions 
in the underlying finite field at the cost of extra multiplications. For 
many practical implementations, where field inversion is at least four 
times as costly as field multiplication, the new approach proofs to be 
faster than traditional point multiplication methods. The second algo- 
rithm deals with efficient inversion in composite Galois fields of the form 
GF((2'~)'~). Based on an idea of Itoh and Tsujii, we optimize the algo- 
rithm for software implementation of elliptic curves. The algorithm re- 
duced inversion in the composite field to inversion in the subfield GF(2~). 
The third algorithm describes the application of the Karatsuba-Ofman 
Algorithm to multiplication in GF((2n)'~). We provide a detailed com- 
plexity analysis of the algorithm for the case that subfield arithmetic is 
performed through table look-up. We apply all three algorithms to an 
implementation of an elliptic curve system over GF (( 218) 11 ). We provide 
absolute performance measures for the field operations and for an entire 
point multiplication. 

1 I n t r o d u c t i o n  

Elliptic curve (EC) cryptosystems were first suggested by Miller [16] and Koblitz 
[8]. A main feature tha t  makes EC at t ract ive is the relatively short operand 
length relative to RSA and systems based on the discrete logari thm (DL) in 
finite fields. Cryptosystems which explore the DL problem over EC can be built 
with an operand length of 150-200 bits [15]. IEEE [11] and other s tandard  bod- 
ies such as ANSI and ISO are in the process of standardizing EC cryptosystems.  
EC can provide various security services such as key exchange, privacy through 
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encryption, and sender authentication and message integrity through digital sig- 
natures. For these reasons it is expected that EC will become very popular for 
many information security applications in the near future. It is thus very at- 
tractive to provide algorithms which allow for efficient implementations of EC 
cryptosystems. Our contribution will deal with such algorithms. 

Efficient algorithms for EC can be classified into high-level algorithms, which 
operate with the group operation, and into low-level algorithms, which deal 
with arithmetic in the underlying finite field. For efficient implementations it is 
obviously the best to optimize both types of algorithms. Our contribution will 
introduce three algorithms, one high-level algorithm for point multiplication and 
two low-level for finite field inversion and multiplication, respectively. 

In Sect. 3 we introduce an entirely new approach for accelerating the multi- 
plication of points on an EC. The approach works in conjunction with the k-ary 
and the sliding window methods. The method is applicable to EC over any field, 
but we provide worked-out formulae for EC over fields of characteristic two. 

Although EC cryptosystems can be based on finite fields of any characteristic, 
practical systems have only been implemented over prime fields or Galois fields 
of characteristic two. Section 4 shows an algorithm for efficiently computing 
the inverse of an element in the composite Galois field GF((2n) m) ~- GF(2k). 
The algorithm is based on an idea by Itoh and Tsujii [6], but our approach is 
optimized for a standard basis representation and for binary field polynomials. 
The algorithm reduces inversion in the composite field to inversion in the subfield 
GF(2~). Unlike the inversion algorithms in [21, 22], the inversion algorithm is 
not based on Euclid's algorithm. 

Section 5 provides a detailed treatment of the Karatsuba-Ofman algorithm 
(KOA) applied to field multiplication in GF((2n)'~). We provide a complex- 
ity analysis of the KOA for software implementations where arithmetic in the 
subfield GF(2 n) is based on table look-up. 

Section 6 shows the actual performance of all three algorithms in an imple- 
mentation of an EC cryptosystem over GF(2176) ~ GF((21B)11). We provide 
absolute timing measurements for an entire EC multiplication as well as timings 
for individual operations. 

2 Prev ious  Work 

As stated above, this contribution describes a new algorithm for point multipli- 
cation and optimized inversion and multiplication algorithms for arithmetic in 
composite Galois fields GF((2~)m). In the sequel we will summarize some of the 
previous work in each of those areas. 

The problem of multiplying a point P of an EC by a (large) integer n is 
analogous to exponentiation of an element in a multiplicative group to the nth 
power. The standard algorithm for this problem is the binary exponentiation 
method (or square-and-multiply algorithm) which is studied in detail in [7]. A 
generalization of the binary method is the k-ary method [2] which processes 
k exponent bits in one iteration. Further improvements of the k-ary method 
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include the sliding window method [10]. In [21] a version of the k-ary method 
is applied to point multiplication for an EC. The method that we propose in 
Sect. 3 explores arithmetic advantages that occur if several point doublings are 
computed from closed expressions rather than from computing several individual 
doublings. This approach is unique to EC systems and, to our knowledge, has 
not been reported anywhere else. In [9] and [14] direct formulae to compute 
Q = n P  are introduced, where n is an integer. However, these formulae are 
based on the computation of division polynomials and they do not appear to be 
computationally efficient if used for the fast calculation of n P .  

Software implementations of EC over composite Galois field G F( ( 2n )  m) were 
first described in [5] for the field GF((28)13). More recently, EC systems for the 
field GF((216) 11) were described independently in [22] and [1]. In all cases, field 
multiplication is accomplished through table look-up in the subfield GF(2n). Nei- 
ther reference explores advanced convolution algorithms, such as the Karatsuba- 
Ofman algorithm (KOA), as it is proposed here. The KOA has been studied for 
general polynomial multiplication in [3] and [7]. An application of the KOA to 
polynomials over finite fields in the context of computer hardware is described in 
[19]. None of the previous contributions provide a detailed complexity analysis 
of the algorithm as it is done in Sect. 5 of this work. Composite Galois fields are 
applied to a hardware architecture for public-key algorithms in [20]. 

Previously, there were two principle approaches to inversion in finite fields. 
One is based on the extended Euclidean algorithm, the other one is based on 
Fermat's Little Theorem. [21] optimizes a version of the Euclidean algorithm, 
named "almost inverse algorithm," for an EC implementation over GF(2155). 
[22] applies the same algorithm for EC over the composite field GF((216)11). 
In [6] an efficient method for inversion in GF(2 k) is discussed. In Sect. 6 of the 
reference the method is extended to composite Galois fields GF((2n )m) .  The 
reference only considers a normal basis representation, whereas we will optimize 
the inversion algorithm for composite fields in standard basis representation and 
for binary field polynomials. 

3 Point  Mult ip l icat ion  wi th  a Reduced  N u m b e r  of 
Inversions 

3.1 Elliptic Curves over GF(2 k) 

In this paper, we will only be concerned with non-supersingular elliptic curves. 
Thus, an elliptic curve E will be defined to be the set of points (x, y) with 
coordinates x and y lying in the Galois field GF(2 k) and satisfying the cubic 
equation y2 + xy  = x s + ax  2 + c, where a, c E GF(2k), c r 0, together with the 
point at infinity O. The points (x, y) form an abelian group under "addition" 
where the group operation is defined as in [15]. In what follows, we will only be 
concerned with the doubling of a point P,  2P = (Xl, Yl). This is achieved by 

X 1 = (X -/r + + ; (1) 
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yl =~2 q- (X-t- Y) Xl-{-Xl (2) 

From (1) and (2) it can be seen that the doubling of two points in E will 
require one inverse, two multiplications, five additions, and two squarings in 
the underlying field GF(2k). Notice also that in most practical applications, 
inversion is by far the most expensive operation to perform. In the following we 
will develop a scheme which reduces the number of field inversions. 

3.2 A New Approach to Point Doubling 

Public-key schemes which use EC are based on the DL problem in the point group 
of the EC. Such schemes include analogies to the Diffie-Hellman key establish- 
ment protocol, the E1Gamal encryption, and various digital signature schemes. 
The basic operation for the DL problem for EC is "multiplication" of a point 
P E E with an integer n, which is of the order of # E .  One way of performing 
this operation is analogous to the square and multiply algorithm for exponenti- 
ation [7] and it is known as "repeated double and add" [11]. A generalization of 
this method is the k-ary method [2, 10] which reduces the number of additions 
needed in the regular double and add. Theorem 1 was adapted from [13] and it 
describes the algorithm as it applies to EC. 

Theorem 1 Let P E E and n = (e te t -a . . .eaeo)b be the radix representation 
of the multiplier n in base b where b = 2 k for k > 1. Then, Q = n P  can be 
computed using the following algorithm. 

Algorithm (Input: P = (x, y); Output: Q = nP) 
1. Precomputation 

1.1 Po ~-- O (Point at infinity) 
1.2 F o r i = l t o 2  k - 1  

Pi = P~-I + P  (i.e., P~ = i . e )  
2. Q + - O  
3. For i = t to O 

3.1 Q +- 2kQ 
3.2 Q +-- Q + P,, 

4. Return(Q) 

Notice that Step 1.2 requires 2 k - 3  additions and one doubling, Step 3.1 involves 
the doubling of point Q, k times, and Step 3.2 requires one point addition. The 
complexity of the k-ary method with t iterations is thus kt  + 1 point doublings, 
2 k - 3 q- t point additions. Since point doublings are the most costly operations, 
it is extremely attractive to find ways of accelerating the doubling operation. In 
the following, we will introduce an entirely new approach to compute repeated 
point doublings over an EC. 

Our new approach is based on the following principle. First, observe that 
the k-ary method relies on k repeated doublings. The new approach allows com- 
putation of 2kP = (xk ,yk)  directly from P = (x ,y )  without computing the 
intermediate points 2P, 22p, .- . ,2k-lP. Such direct formulae are obtained by 
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inserting (1) and (2) into one another. For instance, for 4 P  = 22P = (x2,y2), 
we obtain 

r + (~7)r 
+ a (3) x2 = (~7) 2 

+ x2, (4) y2 = ((~,,/) 2 

where 7 = x2,~ : 7 + Y, ~ : 772 + ~x + aT, ~ : ~x + 7, and ~ = ~(~ + ~) + 727. 
Notice that  (3) and (4) imply that  22P = (x2,Y2) can be computed with one 
inverse, nine multiplications, ten additions, and six squarings. The advantage 
of (3) and (4) is tha t  they only require one inversion as opposed to the two 
inversions that  two separate double operations would require for computing 4P.  
The  "price" tha t  must be paid is 9 - 4 = 5 extra multiplications if squarings and 
additions are ignored. For k = 2, the direct formulae (3) and (4) t rade thus one 
inversion at the cost of 5 multiplications. It is easy to see that  the formulae are 
an advantage in situations where multiplication is at least five times as costly as 
inversion. However, this "break-even point" decreases if the method is extended 
to the computation of 2kp for k > 2 as described below. 

We continued in a similax manner and found expressions for 23P = (x3, Y3) 
and 24p -- (x4, Y4). Again, these expressions, shown in the appendix, only require 
one inversion as opposed to the three or four inversions that  the regular double 
and add algorithm would require in each one of these cases. It is important  to 
point out tha t  the point P has to be an element with an order larger than 2 k. 
This last requirement ensures that  4P,  8P,  or 16P will never equal O. Notice 
that  this is compliant with [11]. 

3.3 Comparison 

For application in practice it is highly relevant to compare the complexity of our 
newly derived formulae with that  of the double and add algorithm. If we note that  
our method reduces inversions at  the cost of multiplications, the performance 
of the new method depends on the cost factor of one inversion relatively to the 
cost of one multiplication. For this purpose we introduce the notion of a "break- 
even point." Since it is possible to express the time that  it takes to perform one 
inversion in terms of the equivalent number of multiplication times, we define the 
break even point as the number of multiplication times needed per inversion so 
that  our formulae outperform the regular double and add algorithm. The results 
are summarized in Table 1. 

3.4 Applications 

Our new method for point doubling can directly be applied to all EC defined 
over fields of characteristic two, regardless of the specific field representation. 
For instance, the formulae in the appendix are applicable to a composite field 
representation GF((2n) m) as well as to binary field representations GF(2~). In 
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Table I. Complexity comparison: Individual doublings vs. direct computation of sev- 
eral doublings 

Calculation 

4P 

8P 

16P 

Method Complexity Break-Even Point 
Sq. Add. Mult. Inv. 

Direct Doublings 6 10 9 1 1 inv. > 5 mult. 
Individual Doublings 4 10 4 2 

o  ec oo. l,o   
Individual Doublings 6 15 3 

Direct Doublings I 20 I 1 l inv .>3 .7mul t .  
Individual Doubi,ngs 185 20 189 4 

addition, the choice of of the basis does not matter. Standard, dual, and normal 
basis representations are all possible. The latter observation is of special interest 
since efficient inversion methods for a normal basis representation appear not 
to be known, and inversion based on Fermat's Theorem using addition chains 
requires at least 7 multiplications if I > 128. We expect our method yields a 
considerable acceleration in such situations. 

In situations where the ratio between an inversion time and a multiplication 
is three or smaller [22], our method may not give an advantage. However, we 
would like to point out that as shown in Sect. 6, the repeated point multiplication 
behaves better than predicted in our implementation, so that the break-even 
points might in practice be even lower than shown in Table 1. 

4 E f f i c i e n t  I n v e r s i o n  i n  C o m p o s i t e  F i e l d s  G F ( ( 2 n )  m) 

Composite Galois fields for EC systems were explored earlier in [5, 1, 22]. The 
following notation will he used here. We consider arithmetic in an extension 
field of GF(2n). The extension degree is denoted by m, so that the field can 
be denoted by GF((2n)m). This field is isomorphic to GF(2n)/(P(x)), where 

m - - 1  P(x) = x m + ~---0 pix~,P ~ E GF(2n), is a monic irreducible polynomial of 
degree m over GF(2n). In the following, a residue class will be identified with the 
polynomial of least degree in this class. We consider a standard (or polynomial 
or canonical) basis representation of a field element A: 

A ( x )  = a m _ i x  m - 1  + . - .  + + (5) 

where ai E GF(2n). Note that it is possible to choose P(x) with binary co- 
efficients if gcd(n,m) = 1 [12], a fact that will be explored for the inversion 
algorithm below. 

As stated above, inversion is the most costly arithmetic operation in EC 
systems. In the following an inversion method based on Fermat's Little Theorem 
will be developed which is entirely different from the approach in [22, 21]. The 
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basic property of the algorithm developed in this section is tha t  inversion in 
GF((2n) m) is reduced to inversion in the subfield GF(2n) .  It is important  to 
point out that  subfield inversion can be done extremely fast through table look- 
up provided n is moderate,  say n < 16 [22]. We extend and optimize the idea 
in [6] for the case of a standard basis representation as suggested in [18] and we 
show a major computational advantage for the case that  the field polynomial 
has only coefficients from GF(2) .  

We want to determine the inverse of A E GF((2n)m), A ~ O, and A is 
given as in (5). By applying Fermat 's  Theorem, we can readily obtain that  
A 2"'~-1 = AA 2""-2 = 1 mod P(x), from which it follows that  

A -1 -- A 2 " " - : .  (6) 

Equation (6) shows that  the inverse of an element A E GF((2n) m) can be com- 
puted by raising it to the power of 2 nm - 2 = 2 + 22 q- 23 q- . . .  + 2 rim-1 using 
addition chains [7]. However, by noticing that  the inversion in the composite 
field GF((2n) m) can be reduced to inversion in the ground field GF(2" ) ,  one 
obtains a bet ter  method to calculate the inverse of an element A. 

T h e o r e m  2 [17] The multiplicative inverse of an element A of the composite 
field GF((2n)  m) , A ~t O, can be computed by 

A -1 = (Ar ) - IA  *-1 mod P(x), 

where A r e GF(2" )  and r = (2 nm - 1)/(2 n - 1). 

A central observation is that  A ~ is an element of the subfield. Computing the 
inverse through Theorem 2 requires four steps: exponentiation in GF((2n) m) 
(A t - l ) ,  multiplication in G F ( ( 2n ) m) with AA "-1 E G F ( 2n ) , inversion in G F ( 2n ) , 
and multiplication of (Ar ) - IA  r-1.  Each of the steps will be analyze below. 

4.1 E x p o n e n t i a t i o n  in G F ( ( 2 " )  '~) 

The first step in the algorithm above is the computation of A r-1 where A E 
GF((2n)ra). Notice that  r can be expressed as a sum of powers as follows: 

r - - l - - - -  
2 n?~' - -  1 

2 n - -  1 

1=2n+22n+23n+. . .+2(m--1 )n  

A r-1 can now be computed using addition chains. The method requires 

Llog2(rn - 1)J + Hw(m - 1) - 1 (7) 

general multiplications and at most m - 1 exponentiations to the power of 2 n 
[6], with both types of operations performed in GF((2n)m)(H~O denotes the 
Hamming weight of the binary representation of the operand). Notice that  the 
number of multiplications in GF((2") m) as given by (7) determines in essence 
the overall complexity of the inversion algorithms. Exponentiat ion is realized 
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as explained below. Let B and C be elements of GF((2'~)m). We want to find 
C(x) B(x) 2", where B(x)  m-x = = ~-~i=o bi xi" This is done as follows [12]: 

2 ~ 

C(x) = cixi = ( Z bixi = b'x i2" ,  , bi 6 GF(2n). (8) 
i=O \ i = 0  / i = 0  

Assuming 2 ~ > m - 1 ,  there are m - 1  powers of x which must be reduced modulo 
the field polynomial P(x) ,  namely the powers x i2" , i -- 1, 2 , . . . ,  m - 1 .  We use the 
following notation for the representation of these powers in the residue classes 
modulo P(x): 

x ~2" = So,i + Sl,iX + ' . .  + Sm-l,iX m-1 mod P(x), i = 1 , 2 , . . . , m -  1. 

Using the coefficients sj,i, the exponentiations in (8) can be expressed in matrix 
form as 

sol so2 soml//io) 
e l  ~ 81,1  81 ,2  81,rn-1 bl 

m--1 8m--l,1 8m--l,2 8m--l,m--1 ] m--1 

(9) 

A main computational advantage occurs if P(x)  is chosen to have only binary 
coefficients, as suggested in [22, 1]. In this case, all powers x a mod P(x)  belong to 
a subfield whose elements are represented by binary polynomials. In particular, 
all coefficients si,~ in (9) are binary, i.e., elements from GF(2). Since both n and 
P(x)  are known ahead of time, and thus the entire exponentiation matrix in (9), 
one exponentiation is reduced to only (m 2 - 3m + 2)/2 additions in GF(2 n) on 
average. Moreover, exponentiations of the form B(x)  2In, l > 1, which occur in 
the algorithm, can be computed with one single matrix multiplication which is 
analogous to (9). 

4.2 Mult ipl icat ion in GF((2"*)m), where  the Product  is an Element  
of  GF(2 n) 

The second step performs the operation 

A r = A r - I A  rood P(x) ,  

where A r E GF(2n), and the two operands are elements in GF((2n)m). We will 
show that this operation can be considerably less costly than general multipli- 
cation in GF((2n) m) if P(x)  is chosen carefully. We consider the multiplication 
H(x)  = F(x)G(x)  rood P(x)  where F, G E GF((2n) m) and H G GF(2n). First, 
we consider the pure polynomial multiplication of F and G: 

) 
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We know that  H'(x )  - H(x )  = ho mod P(x) ,  i.e., that  all but  the zero coefficient 
of Ht(x)  vanish after reduction modulo P(x) .  Hence we only have to compute 
those coefficients h~ ,i  = 0 , 1 , . . . , m -  2, which influence h0. For instance, for 
m : 11 and P(x )  = x 11 -I- ~r 2 -[- 1, it follows that  H(x)  : ho : h~o + h~ll --b h~2o 
which requires only 12 multiplications and 11 additions in GF(2  n) as opposed 
to 121 multiplications and 100 additions for a general multiplication. 

4.3 I n v e r s i o n  in  G F ( 2  '~) a n d  M u l t i p l i c a t i o n  o f  a n  E l e m e n t  f r o m  
GF(2")  with  an Element from GF((2")  "~) 

The third and fourth steps carry small complexities since both involve opera- 
tions with elements of the subfield. First, we calculate the inverse of A r with 
two table look-ups [22] since A ~ is an element of the ground field. Finally, we 
compute A -1 -- ( A r ) - I A  r-1 by multiplying (At) -1,  which is also an element of 
GF(2n) ,  with A r - l ,  an element of GF((2n)m).  This last operation requires m 
multiplications in GF(2n) .  Notice that  there is no reduction modulo P(x )  since 
all arithmetic is done in GF(2n) .  

4.4 I n v e r s i o n  in  GF((216) II) 

As a way of summarizing the previous sections, we consider the special case 
for which n -- 16 and m -- 11. In this case, we chose as field polynomial the 
trinomial P(x )  = x 11 + x 2 + 1. Using this polynomial, one finds A r-1 with 4 
multiplications in GF((216) 11) and 5 exponentiations to the 2 n, 22~, and 24n 
powers. A r -- A r - I A  can be computed using 12 multiplications and 10 addi- 
tions in GF(216), (At) -1 requires one inversion in the subfield GF(216), and 
( A r ) - I A  ~-1 involves 11 subfield multiplications in GF(218). We would like to 
mention that  the extended Euclidean algorithm in [22] allows an inversion in 
almost 3 multiplication times (assuming an optimized multiplication routine) 
for the same composite field. Although the algorithm is faster, we believe that  
our method can be of advantage in situations where predictable timings for the 
inversion are desired. 

5 Fast Multiplication in Composite Galois Fie lds  
GF((2") m) 

With respect to complexity, field multiplication is the next costly operation in 
EC systems. Since the new point multiplication algorithm from Sect. 3 trades 
field inversions for field multiplications, it is especially attractive to provide 
efficient multiplication algorithms. In this section we apply the Karatsuba-Ofman 
Algorithm (KOA) to polynomials over Galois fields GF(2  n) of degree m - 1  which 
represent a field element in GF((2n)m).  First, we consider the general KOA as it 
is applied to two polynomials A(x)  and B(x )  with maximum degree m - 1  over the 
field ~'. We derive new formulae for the multiplicative and additive complexity 
for the cases m = 2tl and m = 2tl - 1 based on the analysis by [19]. Finally, we 
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define two new operations, table look-up (TLU) and exponent addition (EXPA), 
and derive their complexities for the two cases. These two operations are of 
central importance for an exact complexity analysis of a software implementat ion 
of the KOA in composite fields. 

5.1 Complex i ty  of  the KOA for Polynomials  of  Degree  2tl -- 1 

In this section we generalize Theorem 1 from [19]. We consider the product  of 
two polynomials A(x)  and B(x)  with maximum degree of 2tl - 1 over a field ~ .  
In particular,  we want to find C(x) -- A (x )B(x )  such tha t  deg(C(x))  _< 2m - 2 
with m = 2tl, t an integer. Since the algorithm can only run for t i terations (as 
many  powers of 2 as there are in m),  we obtain in the final step polynomials 
with max imum degree of I - 1 which are then multiplied using the school book 
method.  

Theor e m 3 Consider two arbitrary polynomials in one variable of degree less 
than or equal to m - 1 where m = 2tl, with coefficients in a field .7: of charac- 
teristic 2. Then, by using the Karatsuba-O~nan algorithm the polynomials can 
be multiplied with: 

= 

#ADD: ( l -  1) 2 ( ~ ) 1 o g 2 3 +  ( 8 l -  2 ) ( / ) l o g : 3 - 8 m + 2  

Notice tha t  for l = 1 the expressions in Theorem 3 reduce to those given in 
Theorem 1 of [19]. 

5.2 Complex i ty  of  the KOA for Polynomials  of  Degree  2 t / - -  2 

In the previous section, we covered the case m = 2tl. As s ta ted earlier we often 
choose gcd(n, m) = 1. Since it is often desired to have n even there is a need to 
consider the case for m = 2 t l -  1. In particular,  we want to find C(x) = A ( x ) B ( x )  
such tha t  deg(C(x))  < 2m - 2 with m = 2tl - 1, t an integer. Then, we can 
represent A(x)  and B(x)  by adding an extra  t e rm with coefficient am = 0. For 
convenience, we will introduce the parameter  r -- m + 1 and express A(x)  and 
B(x)  as follows: 

A(x)  = x~(0x ~-x + a r - 2 x  ~-~ + . . . + a ~ )  + (a~_lX ~-1 + . . . + a o )  

B ( x ) = x i ( O x ~ - i  +br_2Xl-2 + . . . + b ~ ) + ( b ~ _ l x ~ - l  + . . . + b o )  (10) 

Notice tha t  now the polynomials A(x)  and B(x)  have an even number  of coef- 
ficients (r -- m + 1 = 2tl), allowing us to split them in half and to apply the 
general KOA to (10) t times. This reduces this problem to the case for m = 2tl, 
permit t ing us to apply the same equations. However, since we have one less coef- 
ficient the final multiplicative and additive complexities are reduced. Theorem 4 
summarizes the results. 
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Theorem 4 Consider two arbitrary polynomials in one variable of degree less 
than or equal to m - 1 where m = 2tl - 1, with coefficients in a field :F of 
characteristic 2. Then, by using the Karatsuba-Ofman algorithm the polynomials 
can be multiplied with: 

~ M U L = I 2 ( m ~ I )  1~ - -  - 2 l + 1  

#ADD<(l - 1)2 (m ~ 1) l ~  -k- (8l - 2) ( - ~ )  
log 2 3 

- 8(m + 1) + 2 

5.3 Complex i ty  Analysis  for Software Implementat ions  

It was shown in [22, 1] that  multiplication and inversion in GF(2  n) can be done 
through table look-up. Since all non-zero elements of GF(2  n) form a cyclic group 
we can express all elements ai E GF(2 n) as a multiple of a primitive element (~: 
ai = a i. Then, we store all the pairs (ai, i) in two tables, log and antilog, sorted 
by the first component (ai) and second component (i), respectively. Thus, the 
product of two elements aj,  ak E GF(2 n) can be obtained as follows: 

ajak = antilog(log(aj) + log(ak)) (mod 2 n - 1) (11) 

Notice that  (11) implies that  two elements of the ground field GF(2 n) can 
be multiplied using three table look-up operations and one addition modulo the 
order of the multiplicative group (exponent addition). It is important to point 
out that  depending on the hardware platform (e.g., microprocessor, RISC, etc.) 
the relative speed for the two types of operations can differ dramatically. For 
instance, in our implementation where n = 16 it was found that  access to the 
large look-up tables took 6 clock cycles on a DEC Alpha workstation, whereas 
element addition and exponent addition took about 2 clock cycles on average. 
Thus, in order to obtain valid performance predictions one needs exact counts 
of the number of operations. Based on these two new operations table look-up 
(TLU) and exponent addition (EXPA) we have derived new formulae and re- 
written Theorems 3 and 4 as follows. For more details on the derivation of the 
theorems and corollaries, refer to [4]. 

Corollary 1 Consider two arbitrary polynomials in one variable of degree less 
than or equal to m - 1 where m = 2tl, with coefficients in a field 2 r of charac- 
teristic 2. Then, by using the Karatsuba-Ol~nan algorithm the polynomials can 
be multiplied with: 

#ADD ( l -  1)2 ( / )  1~ ( /)10923 = + ( 8 l -  2) - 8m + 2 

~TLU --l(l-{-2) (-~) 10923 
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Corollary 2 Consider two arbitrary polynomials in one variable of degree less 
than or equal to m - 1 where m = 2tl - 1, with coefficients in a field yr of 
characteristic 2. Then, by using the Karatsuba-Ofman algorithm the polynomials 
can be multiplied with: 

[ m + l ~  1~ ( m ~ l )  1~ 
# A D D  < _ ( I - 1 )  2 ~ - - T - - )  + ( 8 l - 2 )  - -  - 8 ( m + 1 ) + 2  

# TLU < l ( l + 2 ) - 2 l - 1  

# EXPA = 12 - 21 + 1 

5.4 Multiplication in GF((21e) 11) 

We summarize this section by considering the complexity of a multiplication in 
GF((2n) m) for n = 16 and m = 11. We can apply Corollary 2 and let m = 11, 
l = 3, and t = 2. From there we obtain that one needs 140 additions and 
76 multiplications in GF(216) or equivalently, at most 140 additions, 124 table 
look-ups, and 76 exponent additions. On the other hand, when using the school 
book method for multiplication one would require 121 multiplications and 100 
coefficient additions or, in terms of table look-ups, 100 coefficient additions, 
121 + 22 = 143 table look-ups, and 121 exponent additions. If one compares both 
complexities and ignores exponent and coefficient additions, one can readily see 
that the theoretical improvement in the timing for the multiplication operation 
when using the Karatsuba-Ofman algorithm would be about 12.5 percent. 

6 I m p l e m e n t a t i o n  a n d  T i m i n g s  

This section describes the application of the various algorithms to an actual EC 
system over the field GF(216) m) ~ GF(2176). A DEC Alpha 3000, a 175 MHz 
RISC architecture, was used to perform all measurements. Table 2 shows the 
timings for several arithmetic operations in GF((216)11). It was found that by 
applying the KOA to field multiplication one obtains a 10% improvement over 
the school book method. Using the timings in Table 2, we computed estimates for 
the timings for repeated point doublings using individual doublings and direct 
doublings for the computation of 8P and 16P. We compared these predictions 
with the actual timings as shown in Table 3. Interestingly, the actual timings are 
considerably better than expected. We attribute this observation to the reduced 
overhead in the software implementation (e.g., fewer function calls and variable 
initializations). Table 4 compares timings for point multiplication for different 
parameters k in the k-ary method and the improved k-ary method including the 
formulae for direct point doubling. It was found that the optimum value for the 
window size in the k-ary method was k = 4. We achieved a speed-up of almost 
19% using the new formulae. Table 5 presents the timings for several algorithms 



3 5 4  

Table 2. Timings for various field operations in GF((216)11). 

Type of Operation Average Timing (psec) 
176 bit addition 1.19 
176 bit squaring 4.23 
176 x 176 bit multiplication 38.56 
176 bit inverse 158.73 

Table  3. Timing comparison: Individual doublings vs. direct computation of several 
doublings in GF((218)11). 

Calculation 

8P 

16P 

Method Predicted Measured 
Timing Timing 

Direct Doublings 748.41 psec 1904.812 psec 
Individual Doublings 750.78 #sec 1.035 msec 

Direct Doublings !978.62 psec 1.141 msec 
Individual Doublings 1.001 msec 1.389 msec 

% Improvement 
Predicted Measured 

0.30 12.5 

2.24 17.85 

used to compute n P .  Notice that  the last entry of Table 5 corresponds to the 
n P  calculation where the point P is known ahead of time, thus it is possible to 
pre-compute a table of multiples of P.  This implies tha t  the formulae derived in 
Sect. 3 were not used in this algorithm. 
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7 A p p e n d i x  - F o r m u l a e  for 8 P  and  1 6 P  

In this section we present the improved formulae to find 8P  = 23p = (x3, Y3) and 
16P = 24p = (x4,Y4) where P = ( x , y )  is an element of prime order belonging 
to the cyclic subgroup corresponding to the largest prime factor in the order of 
E .  

1. Formulae for 8P  = 23p = (x3,y3) 

w 2 + wp 
x 3 ~ - - T a  p2 

(V2) 2 + (.,dp.T3 
Y3 = p2 -F x3 
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Table  4. Comparison of average time required to perform the n P  calculation using 
the regular k-ary method and the improved k-ary with four direct doublings 

Method Window Size k Average Timing (in msec) 
3 87 k-ary 
4 84 
5 88 

k-ary with formulae 4 68 

Table  5. Timings for elliptic curve operations 

Operations Method/Type of Operation 
Multiply new elliptic Double and Add Algorithm 
curve point (n -~ 176bits) k-ary method (k = 4) 

k-ary method with formulae (k : 4) 

Multiply known elliptic Brickell's Algorithm (base = 24 = 16) 
curve point (n --~ 176b/ts) 

Average Timing 
95 msec 
84 msec 
68 msec 

20 msec 

2. Formulae for 16P = 24p = (x4,Y4) 

0 2 4- 9~p 2 
x4 - + a 

Y4 = (~p2)2 Jr X4 

where 7 = x2,y = 7 + Y, 6 = 7/2 + yx + a7, { = yx + 7, ~ = 6(6 + {) + 727, T = 67, 
V = ~2 _{_ T~ _b T2 a: p = UT2 03 ---- U(V-b ~T) -{- (T62) 2 -I-p, ~ ---- W 2 + w p + a p  2, and 
o = u 2 + u( p) + u p  2 + ( . 2 p ) 2 .  
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