
Efficient Algorithms for Elliptic Curve
Cryptosystems*

Jorge Guajardo
(guaj ardo�9 upi. edu)

Christof Paar
(christof@ece. wps edu)

ECE Department
Worcester Polytechnic Institute

Worcester, MA 01609, USA

A b s t r a c t . This contribution describes three algorithms for efficient im-
plementations of elliptic curve cryptosystems. The first algorithm is an
entirely new approach which accelerates the multiplications of points
which is the core operation in elliptic curve public-key systems. The algo-
rithm works in conjunction with the k-ary or sliding window method. The
algorithm explores computational advantages by computing repeated
point doublings directly through closed formulae rather than from indi-
vidual point doublings. This approach reduces the number of inversions
in the underlying finite field at the cost of extra multiplications. For
many practical implementations, where field inversion is at least four
times as costly as field multiplication, the new approach proofs to be
faster than traditional point multiplication methods. The second algo-
rithm deals with efficient inversion in composite Galois fields of the form
GF((2'~)'~). Based on an idea of Itoh and Tsujii, we optimize the algo-
rithm for software implementation of elliptic curves. The algorithm re-
duced inversion in the composite field to inversion in the subfield GF(2~).
The third algorithm describes the application of the Karatsuba-Ofman
Algorithm to multiplication in GF((2n)'~). We provide a detailed com-
plexity analysis of the algorithm for the case that subfield arithmetic is
performed through table look-up. We apply all three algorithms to an
implementation of an elliptic curve system over GF ((218) 11). We provide
absolute performance measures for the field operations and for an entire
point multiplication.

1 I n t r o d u c t i o n

Elliptic curve (EC) cryptosystems were first suggested by Miller [16] and Koblitz
[8]. A main feature tha t makes EC at t ract ive is the relatively short operand
length relative to RSA and systems based on the discrete logari thm (DL) in
finite fields. Cryptosystems which explore the DL problem over EC can be built
with an operand length of 150-200 bits [15]. IEEE [11] and other s tandard bod-
ies such as ANSI and ISO are in the process of standardizing EC cryptosystems.
EC can provide various security services such as key exchange, privacy through

* This work was sponsored in part by GTE Corporation.

343

encryption, and sender authentication and message integrity through digital sig-
natures. For these reasons it is expected that EC will become very popular for
many information security applications in the near future. It is thus very at-
tractive to provide algorithms which allow for efficient implementations of EC
cryptosystems. Our contribution will deal with such algorithms.

Efficient algorithms for EC can be classified into high-level algorithms, which
operate with the group operation, and into low-level algorithms, which deal
with arithmetic in the underlying finite field. For efficient implementations it is
obviously the best to optimize both types of algorithms. Our contribution will
introduce three algorithms, one high-level algorithm for point multiplication and
two low-level for finite field inversion and multiplication, respectively.

In Sect. 3 we introduce an entirely new approach for accelerating the multi-
plication of points on an EC. The approach works in conjunction with the k-ary
and the sliding window methods. The method is applicable to EC over any field,
but we provide worked-out formulae for EC over fields of characteristic two.

Although EC cryptosystems can be based on finite fields of any characteristic,
practical systems have only been implemented over prime fields or Galois fields
of characteristic two. Section 4 shows an algorithm for efficiently computing
the inverse of an element in the composite Galois field GF((2n) m) ~- GF(2k).
The algorithm is based on an idea by Itoh and Tsujii [6], but our approach is
optimized for a standard basis representation and for binary field polynomials.
The algorithm reduces inversion in the composite field to inversion in the subfield
GF(2~). Unlike the inversion algorithms in [21, 22], the inversion algorithm is
not based on Euclid's algorithm.

Section 5 provides a detailed treatment of the Karatsuba-Ofman algorithm
(KOA) applied to field multiplication in GF((2n)'~). We provide a complex-
ity analysis of the KOA for software implementations where arithmetic in the
subfield GF(2 n) is based on table look-up.

Section 6 shows the actual performance of all three algorithms in an imple-
mentation of an EC cryptosystem over GF(2176) ~ GF((21B)11). We provide
absolute timing measurements for an entire EC multiplication as well as timings
for individual operations.

2 Prev ious Work

As stated above, this contribution describes a new algorithm for point multipli-
cation and optimized inversion and multiplication algorithms for arithmetic in
composite Galois fields GF((2~)m). In the sequel we will summarize some of the
previous work in each of those areas.

The problem of multiplying a point P of an EC by a (large) integer n is
analogous to exponentiation of an element in a multiplicative group to the nth
power. The standard algorithm for this problem is the binary exponentiation
method (or square-and-multiply algorithm) which is studied in detail in [7]. A
generalization of the binary method is the k-ary method [2] which processes
k exponent bits in one iteration. Further improvements of the k-ary method

344

include the sliding window method [10]. In [21] a version of the k-ary method
is applied to point multiplication for an EC. The method that we propose in
Sect. 3 explores arithmetic advantages that occur if several point doublings are
computed from closed expressions rather than from computing several individual
doublings. This approach is unique to EC systems and, to our knowledge, has
not been reported anywhere else. In [9] and [14] direct formulae to compute
Q = n P are introduced, where n is an integer. However, these formulae are
based on the computation of division polynomials and they do not appear to be
computationally efficient if used for the fast calculation of n P .

Software implementations of EC over composite Galois field G F((2n) m) were
first described in [5] for the field GF((28)13). More recently, EC systems for the
field GF((216) 11) were described independently in [22] and [1]. In all cases, field
multiplication is accomplished through table look-up in the subfield GF(2n). Nei-
ther reference explores advanced convolution algorithms, such as the Karatsuba-
Ofman algorithm (KOA), as it is proposed here. The KOA has been studied for
general polynomial multiplication in [3] and [7]. An application of the KOA to
polynomials over finite fields in the context of computer hardware is described in
[19]. None of the previous contributions provide a detailed complexity analysis
of the algorithm as it is done in Sect. 5 of this work. Composite Galois fields are
applied to a hardware architecture for public-key algorithms in [20].

Previously, there were two principle approaches to inversion in finite fields.
One is based on the extended Euclidean algorithm, the other one is based on
Fermat's Little Theorem. [21] optimizes a version of the Euclidean algorithm,
named "almost inverse algorithm," for an EC implementation over GF(2155).
[22] applies the same algorithm for EC over the composite field GF((216)11).
In [6] an efficient method for inversion in GF(2 k) is discussed. In Sect. 6 of the
reference the method is extended to composite Galois fields GF((2n)m) . The
reference only considers a normal basis representation, whereas we will optimize
the inversion algorithm for composite fields in standard basis representation and
for binary field polynomials.

3 Point Mult ip l icat ion wi th a Reduced N u m b e r of
Inversions

3.1 Elliptic Curves over GF(2 k)

In this paper, we will only be concerned with non-supersingular elliptic curves.
Thus, an elliptic curve E will be defined to be the set of points (x, y) with
coordinates x and y lying in the Galois field GF(2 k) and satisfying the cubic
equation y2 + xy = x s + ax 2 + c, where a, c E GF(2k), c r 0, together with the
point at infinity O. The points (x, y) form an abelian group under "addition"
where the group operation is defined as in [15]. In what follows, we will only be
concerned with the doubling of a point P, 2P = (Xl, Yl). This is achieved by

X 1 = (X -/r + + ; (1)

345

yl =~2 q- (X-t- Y) Xl-{-Xl (2)

From (1) and (2) it can be seen that the doubling of two points in E will
require one inverse, two multiplications, five additions, and two squarings in
the underlying field GF(2k). Notice also that in most practical applications,
inversion is by far the most expensive operation to perform. In the following we
will develop a scheme which reduces the number of field inversions.

3.2 A New Approach to Point Doubling

Public-key schemes which use EC are based on the DL problem in the point group
of the EC. Such schemes include analogies to the Diffie-Hellman key establish-
ment protocol, the E1Gamal encryption, and various digital signature schemes.
The basic operation for the DL problem for EC is "multiplication" of a point
P E E with an integer n, which is of the order of # E . One way of performing
this operation is analogous to the square and multiply algorithm for exponenti-
ation [7] and it is known as "repeated double and add" [11]. A generalization of
this method is the k-ary method [2, 10] which reduces the number of additions
needed in the regular double and add. Theorem 1 was adapted from [13] and it
describes the algorithm as it applies to EC.

Theorem 1 Let P E E and n = (e te t -a . . .eaeo)b be the radix representation
of the multiplier n in base b where b = 2 k for k > 1. Then, Q = n P can be
computed using the following algorithm.

Algorithm (Input: P = (x, y); Output: Q = nP)
1. Precomputation

1.1 Po ~-- O (Point at infinity)
1.2 F o r i = l t o 2 k - 1

Pi = P~-I + P (i.e., P~ = i . e)
2. Q + - O
3. For i = t to O

3.1 Q +- 2kQ
3.2 Q +-- Q + P,,

4. Return(Q)

Notice that Step 1.2 requires 2 k - 3 additions and one doubling, Step 3.1 involves
the doubling of point Q, k times, and Step 3.2 requires one point addition. The
complexity of the k-ary method with t iterations is thus kt + 1 point doublings,
2 k - 3 q- t point additions. Since point doublings are the most costly operations,
it is extremely attractive to find ways of accelerating the doubling operation. In
the following, we will introduce an entirely new approach to compute repeated
point doublings over an EC.

Our new approach is based on the following principle. First, observe that
the k-ary method relies on k repeated doublings. The new approach allows com-
putation of 2kP = (xk ,yk) directly from P = (x ,y) without computing the
intermediate points 2P, 22p, .- . ,2k-lP. Such direct formulae are obtained by

346

inserting (1) and (2) into one another. For instance, for 4 P = 22P = (x2,y2),
we obtain

r + (~7)r
+ a (3) x2 = (~7) 2

+ x2, (4) y2 = ((~,,/) 2

where 7 = x2,~ : 7 + Y, ~ : 772 + ~x + aT, ~ : ~x + 7, and ~ = ~(~ + ~) + 727.
Notice that (3) and (4) imply that 22P = (x2,Y2) can be computed with one
inverse, nine multiplications, ten additions, and six squarings. The advantage
of (3) and (4) is tha t they only require one inversion as opposed to the two
inversions that two separate double operations would require for computing 4P.
The "price" tha t must be paid is 9 - 4 = 5 extra multiplications if squarings and
additions are ignored. For k = 2, the direct formulae (3) and (4) t rade thus one
inversion at the cost of 5 multiplications. It is easy to see that the formulae are
an advantage in situations where multiplication is at least five times as costly as
inversion. However, this "break-even point" decreases if the method is extended
to the computation of 2kp for k > 2 as described below.

We continued in a similax manner and found expressions for 23P = (x3, Y3)
and 24p -- (x4, Y4). Again, these expressions, shown in the appendix, only require
one inversion as opposed to the three or four inversions that the regular double
and add algorithm would require in each one of these cases. It is important to
point out tha t the point P has to be an element with an order larger than 2 k.
This last requirement ensures that 4P, 8P, or 16P will never equal O. Notice
that this is compliant with [11].

3.3 Comparison

For application in practice it is highly relevant to compare the complexity of our
newly derived formulae with that of the double and add algorithm. If we note that
our method reduces inversions at the cost of multiplications, the performance
of the new method depends on the cost factor of one inversion relatively to the
cost of one multiplication. For this purpose we introduce the notion of a "break-
even point." Since it is possible to express the time that it takes to perform one
inversion in terms of the equivalent number of multiplication times, we define the
break even point as the number of multiplication times needed per inversion so
that our formulae outperform the regular double and add algorithm. The results
are summarized in Table 1.

3.4 Applications

Our new method for point doubling can directly be applied to all EC defined
over fields of characteristic two, regardless of the specific field representation.
For instance, the formulae in the appendix are applicable to a composite field
representation GF((2n) m) as well as to binary field representations GF(2~). In

347

Table I. Complexity comparison: Individual doublings vs. direct computation of sev-
eral doublings

Calculation

4P

8P

16P

Method Complexity Break-Even Point
Sq. Add. Mult. Inv.

Direct Doublings 6 10 9 1 1 inv. > 5 mult.
Individual Doublings 4 10 4 2

o ec oo. l,o
Individual Doublings 6 15 3

Direct Doublings I 20 I 1 l inv .>3 .7mul t .
Individual Doubi,ngs 185 20 189 4

addition, the choice of of the basis does not matter. Standard, dual, and normal
basis representations are all possible. The latter observation is of special interest
since efficient inversion methods for a normal basis representation appear not
to be known, and inversion based on Fermat's Theorem using addition chains
requires at least 7 multiplications if I > 128. We expect our method yields a
considerable acceleration in such situations.

In situations where the ratio between an inversion time and a multiplication
is three or smaller [22], our method may not give an advantage. However, we
would like to point out that as shown in Sect. 6, the repeated point multiplication
behaves better than predicted in our implementation, so that the break-even
points might in practice be even lower than shown in Table 1.

4 E f f i c i e n t I n v e r s i o n i n C o m p o s i t e F i e l d s G F ((2 n) m)

Composite Galois fields for EC systems were explored earlier in [5, 1, 22]. The
following notation will he used here. We consider arithmetic in an extension
field of GF(2n). The extension degree is denoted by m, so that the field can
be denoted by GF((2n)m). This field is isomorphic to GF(2n)/(P(x)), where

m - - 1 P(x) = x m + ~---0 pix~,P ~ E GF(2n), is a monic irreducible polynomial of
degree m over GF(2n). In the following, a residue class will be identified with the
polynomial of least degree in this class. We consider a standard (or polynomial
or canonical) basis representation of a field element A:

A (x) = a m _ i x m - 1 + . - . + + (5)

where ai E GF(2n). Note that it is possible to choose P(x) with binary co-
efficients if gcd(n,m) = 1 [12], a fact that will be explored for the inversion
algorithm below.

As stated above, inversion is the most costly arithmetic operation in EC
systems. In the following an inversion method based on Fermat's Little Theorem
will be developed which is entirely different from the approach in [22, 21]. The

348

basic property of the algorithm developed in this section is tha t inversion in
GF((2n) m) is reduced to inversion in the subfield GF(2n) . It is important to
point out that subfield inversion can be done extremely fast through table look-
up provided n is moderate, say n < 16 [22]. We extend and optimize the idea
in [6] for the case of a standard basis representation as suggested in [18] and we
show a major computational advantage for the case that the field polynomial
has only coefficients from GF(2) .

We want to determine the inverse of A E GF((2n)m), A ~ O, and A is
given as in (5). By applying Fermat 's Theorem, we can readily obtain that
A 2"'~-1 = AA 2""-2 = 1 mod P(x), from which it follows that

A -1 -- A 2 " " - : . (6)

Equation (6) shows that the inverse of an element A E GF((2n) m) can be com-
puted by raising it to the power of 2 nm - 2 = 2 + 22 q- 23 q- . . . + 2 rim-1 using
addition chains [7]. However, by noticing that the inversion in the composite
field GF((2n) m) can be reduced to inversion in the ground field GF(2") , one
obtains a bet ter method to calculate the inverse of an element A.

T h e o r e m 2 [17] The multiplicative inverse of an element A of the composite
field GF((2n) m) , A ~t O, can be computed by

A -1 = (Ar) - IA *-1 mod P(x),

where A r e GF(2") and r = (2 nm - 1)/(2 n - 1).

A central observation is that A ~ is an element of the subfield. Computing the
inverse through Theorem 2 requires four steps: exponentiation in GF((2n) m)
(A t - l) , multiplication in G F ((2n) m) with AA "-1 E G F (2n) , inversion in G F (2n) ,
and multiplication of (Ar) - IA r-1. Each of the steps will be analyze below.

4.1 E x p o n e n t i a t i o n in G F ((2 ") '~)

The first step in the algorithm above is the computation of A r-1 where A E
GF((2n)ra). Notice that r can be expressed as a sum of powers as follows:

r - - l - - - -
2 n?~' - - 1

2 n - - 1

1=2n+22n+23n+. . .+2(m--1)n

A r-1 can now be computed using addition chains. The method requires

Llog2(rn - 1)J + Hw(m - 1) - 1 (7)

general multiplications and at most m - 1 exponentiations to the power of 2 n
[6], with both types of operations performed in GF((2n)m)(H~O denotes the
Hamming weight of the binary representation of the operand). Notice that the
number of multiplications in GF((2") m) as given by (7) determines in essence
the overall complexity of the inversion algorithms. Exponentiat ion is realized

349

as explained below. Let B and C be elements of GF((2'~)m). We want to find
C(x) B(x) 2", where B(x) m-x = = ~-~i=o bi xi" This is done as follows [12]:

2 ~

C(x) = cixi = (Z bixi = b'x i2" , , bi 6 GF(2n). (8)
i=O \ i = 0 / i = 0

Assuming 2 ~ > m - 1 , there are m - 1 powers of x which must be reduced modulo
the field polynomial P(x) , namely the powers x i2" , i -- 1, 2 , . . . , m - 1 . We use the
following notation for the representation of these powers in the residue classes
modulo P(x):

x ~2" = So,i + Sl,iX + ' . . + Sm-l,iX m-1 mod P(x), i = 1 , 2 , . . . , m - 1.

Using the coefficients sj,i, the exponentiations in (8) can be expressed in matrix
form as

sol so2 soml//io)
e l ~ 81,1 81 ,2 81,rn-1 bl

m--1 8m--l,1 8m--l,2 8m--l,m--1] m--1

(9)

A main computational advantage occurs if P(x) is chosen to have only binary
coefficients, as suggested in [22, 1]. In this case, all powers x a mod P(x) belong to
a subfield whose elements are represented by binary polynomials. In particular,
all coefficients si,~ in (9) are binary, i.e., elements from GF(2). Since both n and
P(x) are known ahead of time, and thus the entire exponentiation matrix in (9),
one exponentiation is reduced to only (m 2 - 3m + 2)/2 additions in GF(2 n) on
average. Moreover, exponentiations of the form B(x) 2In, l > 1, which occur in
the algorithm, can be computed with one single matrix multiplication which is
analogous to (9).

4.2 Mult ipl icat ion in GF((2"*)m), where the Product is an Element
of GF(2 n)

The second step performs the operation

A r = A r - I A rood P(x) ,

where A r E GF(2n), and the two operands are elements in GF((2n)m). We will
show that this operation can be considerably less costly than general multipli-
cation in GF((2n) m) if P(x) is chosen carefully. We consider the multiplication
H(x) = F(x)G(x) rood P(x) where F, G E GF((2n) m) and H G GF(2n). First,
we consider the pure polynomial multiplication of F and G:

)

350

We know that H'(x) - H(x) = ho mod P(x) , i.e., that all but the zero coefficient
of Ht(x) vanish after reduction modulo P(x) . Hence we only have to compute
those coefficients h~ ,i = 0 , 1 , . . . , m - 2, which influence h0. For instance, for
m : 11 and P(x) = x 11 -I- ~r 2 -[- 1, it follows that H(x) : ho : h~o + h~ll --b h~2o
which requires only 12 multiplications and 11 additions in GF(2 n) as opposed
to 121 multiplications and 100 additions for a general multiplication.

4.3 I n v e r s i o n in G F (2 '~) a n d M u l t i p l i c a t i o n o f a n E l e m e n t f r o m
GF(2") with an Element from GF((2") "~)

The third and fourth steps carry small complexities since both involve opera-
tions with elements of the subfield. First, we calculate the inverse of A r with
two table look-ups [22] since A ~ is an element of the ground field. Finally, we
compute A -1 -- (A r) - I A r-1 by multiplying (At) -1, which is also an element of
GF(2n) , with A r - l , an element of GF((2n)m). This last operation requires m
multiplications in GF(2n) . Notice that there is no reduction modulo P(x) since
all arithmetic is done in GF(2n) .

4.4 I n v e r s i o n in GF((216) II)

As a way of summarizing the previous sections, we consider the special case
for which n -- 16 and m -- 11. In this case, we chose as field polynomial the
trinomial P(x) = x 11 + x 2 + 1. Using this polynomial, one finds A r-1 with 4
multiplications in GF((216) 11) and 5 exponentiations to the 2 n, 22~, and 24n
powers. A r -- A r - I A can be computed using 12 multiplications and 10 addi-
tions in GF(216), (At) -1 requires one inversion in the subfield GF(216), and
(A r) - I A ~-1 involves 11 subfield multiplications in GF(218). We would like to
mention that the extended Euclidean algorithm in [22] allows an inversion in
almost 3 multiplication times (assuming an optimized multiplication routine)
for the same composite field. Although the algorithm is faster, we believe that
our method can be of advantage in situations where predictable timings for the
inversion are desired.

5 Fast Multiplication in Composite Galois Fie lds
GF((2") m)

With respect to complexity, field multiplication is the next costly operation in
EC systems. Since the new point multiplication algorithm from Sect. 3 trades
field inversions for field multiplications, it is especially attractive to provide
efficient multiplication algorithms. In this section we apply the Karatsuba-Ofman
Algorithm (KOA) to polynomials over Galois fields GF(2 n) of degree m - 1 which
represent a field element in GF((2n)m). First, we consider the general KOA as it
is applied to two polynomials A(x) and B(x) with maximum degree m - 1 over the
field ~'. We derive new formulae for the multiplicative and additive complexity
for the cases m = 2tl and m = 2tl - 1 based on the analysis by [19]. Finally, we

351

define two new operations, table look-up (TLU) and exponent addition (EXPA),
and derive their complexities for the two cases. These two operations are of
central importance for an exact complexity analysis of a software implementat ion
of the KOA in composite fields.

5.1 Complex i ty of the KOA for Polynomials of Degree 2tl -- 1

In this section we generalize Theorem 1 from [19]. We consider the product of
two polynomials A(x) and B(x) with maximum degree of 2tl - 1 over a field ~ .
In particular, we want to find C(x) -- A (x)B(x) such tha t deg(C(x)) _< 2m - 2
with m = 2tl, t an integer. Since the algorithm can only run for t i terations (as
many powers of 2 as there are in m), we obtain in the final step polynomials
with max imum degree of I - 1 which are then multiplied using the school book
method.

Theor e m 3 Consider two arbitrary polynomials in one variable of degree less
than or equal to m - 1 where m = 2tl, with coefficients in a field .7: of charac-
teristic 2. Then, by using the Karatsuba-O~nan algorithm the polynomials can
be multiplied with:

=

#ADD: (l - 1) 2 (~) 1 o g 2 3 + (8 l - 2) (/) l o g : 3 - 8 m + 2

Notice tha t for l = 1 the expressions in Theorem 3 reduce to those given in
Theorem 1 of [19].

5.2 Complex i ty of the KOA for Polynomials of Degree 2 t / - - 2

In the previous section, we covered the case m = 2tl. As s ta ted earlier we often
choose gcd(n, m) = 1. Since it is often desired to have n even there is a need to
consider the case for m = 2 t l - 1. In particular, we want to find C(x) = A (x) B (x)
such tha t deg(C(x)) < 2m - 2 with m = 2tl - 1, t an integer. Then, we can
represent A(x) and B(x) by adding an extra t e rm with coefficient am = 0. For
convenience, we will introduce the parameter r -- m + 1 and express A(x) and
B(x) as follows:

A(x) = x~(0x ~-x + a r - 2 x ~-~ + . . . + a ~) + (a~_lX ~-1 + . . . + a o)

B (x) = x i (O x ~ - i +br_2Xl-2 + . . . + b ~) + (b ~ _ l x ~ - l + . . . + b o) (10)

Notice tha t now the polynomials A(x) and B(x) have an even number of coef-
ficients (r -- m + 1 = 2tl), allowing us to split them in half and to apply the
general KOA to (10) t times. This reduces this problem to the case for m = 2tl,
permit t ing us to apply the same equations. However, since we have one less coef-
ficient the final multiplicative and additive complexities are reduced. Theorem 4
summarizes the results.

352

Theorem 4 Consider two arbitrary polynomials in one variable of degree less
than or equal to m - 1 where m = 2tl - 1, with coefficients in a field :F of
characteristic 2. Then, by using the Karatsuba-Ofman algorithm the polynomials
can be multiplied with:

~ M U L = I 2 (m ~ I) 1~ - - - 2 l + 1

#ADD<(l - 1)2 (m ~ 1) l ~ -k- (8l - 2) (- ~)
log 2 3

- 8(m + 1) + 2

5.3 Complex i ty Analysis for Software Implementat ions

It was shown in [22, 1] that multiplication and inversion in GF(2 n) can be done
through table look-up. Since all non-zero elements of GF(2 n) form a cyclic group
we can express all elements ai E GF(2 n) as a multiple of a primitive element (~:
ai = a i. Then, we store all the pairs (ai, i) in two tables, log and antilog, sorted
by the first component (ai) and second component (i), respectively. Thus, the
product of two elements aj, ak E GF(2 n) can be obtained as follows:

ajak = antilog(log(aj) + log(ak)) (mod 2 n - 1) (11)

Notice that (11) implies that two elements of the ground field GF(2 n) can
be multiplied using three table look-up operations and one addition modulo the
order of the multiplicative group (exponent addition). It is important to point
out that depending on the hardware platform (e.g., microprocessor, RISC, etc.)
the relative speed for the two types of operations can differ dramatically. For
instance, in our implementation where n = 16 it was found that access to the
large look-up tables took 6 clock cycles on a DEC Alpha workstation, whereas
element addition and exponent addition took about 2 clock cycles on average.
Thus, in order to obtain valid performance predictions one needs exact counts
of the number of operations. Based on these two new operations table look-up
(TLU) and exponent addition (EXPA) we have derived new formulae and re-
written Theorems 3 and 4 as follows. For more details on the derivation of the
theorems and corollaries, refer to [4].

Corollary 1 Consider two arbitrary polynomials in one variable of degree less
than or equal to m - 1 where m = 2tl, with coefficients in a field 2 r of charac-
teristic 2. Then, by using the Karatsuba-Ol~nan algorithm the polynomials can
be multiplied with:

#ADD (l - 1)2 (/) 1~ (/)10923 = + (8 l - 2) - 8m + 2

~TLU --l(l-{-2) (-~) 10923

353

Corollary 2 Consider two arbitrary polynomials in one variable of degree less
than or equal to m - 1 where m = 2tl - 1, with coefficients in a field yr of
characteristic 2. Then, by using the Karatsuba-Ofman algorithm the polynomials
can be multiplied with:

[m + l ~ 1~ (m ~ l) 1~
A D D < _ (I - 1) 2 ~ - - T - -) + (8 l - 2) - - - 8 (m + 1) + 2

TLU < l (l + 2) - 2 l - 1

EXPA = 12 - 21 + 1

5.4 Multiplication in GF((21e) 11)

We summarize this section by considering the complexity of a multiplication in
GF((2n) m) for n = 16 and m = 11. We can apply Corollary 2 and let m = 11,
l = 3, and t = 2. From there we obtain that one needs 140 additions and
76 multiplications in GF(216) or equivalently, at most 140 additions, 124 table
look-ups, and 76 exponent additions. On the other hand, when using the school
book method for multiplication one would require 121 multiplications and 100
coefficient additions or, in terms of table look-ups, 100 coefficient additions,
121 + 22 = 143 table look-ups, and 121 exponent additions. If one compares both
complexities and ignores exponent and coefficient additions, one can readily see
that the theoretical improvement in the timing for the multiplication operation
when using the Karatsuba-Ofman algorithm would be about 12.5 percent.

6 I m p l e m e n t a t i o n a n d T i m i n g s

This section describes the application of the various algorithms to an actual EC
system over the field GF(216) m) ~ GF(2176). A DEC Alpha 3000, a 175 MHz
RISC architecture, was used to perform all measurements. Table 2 shows the
timings for several arithmetic operations in GF((216)11). It was found that by
applying the KOA to field multiplication one obtains a 10% improvement over
the school book method. Using the timings in Table 2, we computed estimates for
the timings for repeated point doublings using individual doublings and direct
doublings for the computation of 8P and 16P. We compared these predictions
with the actual timings as shown in Table 3. Interestingly, the actual timings are
considerably better than expected. We attribute this observation to the reduced
overhead in the software implementation (e.g., fewer function calls and variable
initializations). Table 4 compares timings for point multiplication for different
parameters k in the k-ary method and the improved k-ary method including the
formulae for direct point doubling. It was found that the optimum value for the
window size in the k-ary method was k = 4. We achieved a speed-up of almost
19% using the new formulae. Table 5 presents the timings for several algorithms

3 5 4

Table 2. Timings for various field operations in GF((216)11).

Type of Operation Average Timing (psec)
176 bit addition 1.19
176 bit squaring 4.23
176 x 176 bit multiplication 38.56
176 bit inverse 158.73

Table 3. Timing comparison: Individual doublings vs. direct computation of several
doublings in GF((218)11).

Calculation

8P

16P

Method Predicted Measured
Timing Timing

Direct Doublings 748.41 psec 1904.812 psec
Individual Doublings 750.78 #sec 1.035 msec

Direct Doublings !978.62 psec 1.141 msec
Individual Doublings 1.001 msec 1.389 msec

% Improvement
Predicted Measured

0.30 12.5

2.24 17.85

used to compute n P . Notice that the last entry of Table 5 corresponds to the
n P calculation where the point P is known ahead of time, thus it is possible to
pre-compute a table of multiples of P. This implies tha t the formulae derived in
Sect. 3 were not used in this algorithm.

A c k n o w l e d g e m e n t s

We would like to thank Dan Beauregard for providing the EC implementation.

7 A p p e n d i x - F o r m u l a e for 8 P and 1 6 P

In this section we present the improved formulae to find 8P = 23p = (x3, Y3) and
16P = 24p = (x4,Y4) where P = (x , y) is an element of prime order belonging
to the cyclic subgroup corresponding to the largest prime factor in the order of
E .

1. Formulae for 8P = 23p = (x3,y3)

w 2 + wp
x 3 ~ - - T a p2

(V2) 2 + (.,dp.T3
Y3 = p2 -F x3

355

Table 4. Comparison of average time required to perform the n P calculation using
the regular k-ary method and the improved k-ary with four direct doublings

Method Window Size k Average Timing (in msec)
3 87 k-ary
4 84
5 88

k-ary with formulae 4 68

Table 5. Timings for elliptic curve operations

Operations Method/Type of Operation
Multiply new elliptic Double and Add Algorithm
curve point (n -~ 176bits) k-ary method (k = 4)

k-ary method with formulae (k : 4)

Multiply known elliptic Brickell's Algorithm (base = 24 = 16)
curve point (n --~ 176b/ts)

Average Timing
95 msec
84 msec
68 msec

20 msec

2. Formulae for 16P = 24p = (x4,Y4)

0 2 4- 9~p 2
x4 - + a

Y4 = (~p2)2 Jr X4

where 7 = x2,y = 7 + Y, 6 = 7/2 + yx + a7, { = yx + 7, ~ = 6(6 + {) + 727, T = 67,
V = ~2 _{_ T~ _b T2 a: p = UT2 03 ---- U(V-b ~T) -{- (T62) 2 -I-p, ~ ---- W 2 + w p + a p 2, and
o = u 2 + u(p) + u p 2 + (. 2 p) 2 .

References

1. D. Beauregard. Efficient algorithms for implementing elliptic curve public-key
schemes. Master's thesis, ECE Dept., Worcester Polytechnic Institute, Worces-
ter, MA, May 1996.

2. H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag,
Berlin, 1993.

3. R.J. Fateman. Polynomial multiplication, powers and asymptotic analysis: Some
comments. S I A M J. Comput., 7(3):196-21, September 1974.

4. J. Guajardo. Efficient algorithms for elliptic curve cryptosystems. Master's thesis,
ECE Dept., Worcester Polytechnic Institute, Worcester, MA, May 1997.

356

5. G. Harper, A. Menezes, and S. Vanstone. Public-key cryptosystems with very
small key lengths. In Advances in Cryptology - - EUROCRYPT '92, pages 163-173,
May 1992.

6. T. Itoh and S. Tsujii. A fast algorithm for computing multiplicative inverses in
GF(2 m) using normal bases. Information and Computation, 78:171-177, 1988.

7. D.E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Algo-
rithms. Addison-Wesley, Reading, Massachusetts, 2nd edition, 1981.

8. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203-
209, 1987.

9. N. Koblitz. Constructing elliptic curve cryptosystems in characteristic 2. In Ad-
vances in Cryptology - - CRYPTO '90, pages 156-167. Springer-Verlag, Berlin,
1991.

10. C. K. Koc. Analysis of sliding window techniques for exponentiation. Computers
and Mathematics with Applications, 30(10):17-24, November 1995.

11. J. Koeller, A. Menezes, M. Qu, and S. Vanstone. Elliptic Curve Systems. Draft 8,
IEEE P1363 Standard for RSA, Diffie-Hellman and Related Public-Key Cryptog-
raphy, May 1996. working document.

12. R. Lidl and H. Niederreiter. Finite Fields, volume 20 of Encyclopedia of Mathe-
matics and its Applications. Addison-Wesley, Reading, Massachusetts, 1983.

13. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, Boca Raton, Florida, 1997.

14. A. J. Menezes, S. A. Vanstone, and R. J. Zuccherato. Counting points on elliptic
curves over F~,~. Mathematics of Computation, 60(201):407-420, January 1993.

15. A.J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Pub-
lishers, 1993.

16. V. Miller. Uses of elliptic curves in cryptography. In Advances in Cryptology - -
CRYPTO '85, pages 417-426. Springer-Verlag, Berlin, 1986.

17. C. Paar. Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. Phi) thesis, (Engl. transl.), Institute for Experimental Mathematics, Uni-
versity of Essen, Essen, Germany, June 1994.

18. C. Paar. Some remarks on efficient inversion in finite fields. In 1995 IEEE In-
ternational Symposium on In]ormation Theory, page 58, Whistler, B.C. Canada,
September 17-22 1995.

19. C. Paar. A new architecture for a parallel finite field multiplier with low complexity
based on composite fields. IEEE Transactions on Computers, 45(7):856-861, July
1996.

20. C. Paar and P. Soria-Rodriguez. Fast arithmetic architectures for public-key algo-
rithms over galois fields GF((2n)m). In Advances in Cryptology - - EUROCRYPT
'97, pages 363-378, 1997.

21. R. Schroeppel, H. Orman, S. O'Malley, and O. Spatscheck. Fast key exchange with
elliptic curve systems. Advances in Cryptology, Crypto 95, pages 43-56, 1995.

22. E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem, and J. Vandewalle. A
fast software implementation for arithmetic operations in GF(2'*). In Asiacrypt
'96. Springer Lecture Notes in Computer Science, 1996.

