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Abstract. A novel edit distance between two binary input strings and 
one binary output string of appropriate lengths which incorporates the 
stop/go clocking in the alternating step generator is introduced. An ef- 
ficient recursive algorithm for the edit distance computation is derived. 
The corresponding correlation attack on the two stop/go clocked shift 
registers is then proposed. By systematic computer simulations, it is 
shown that the minimum output segment length required for a success- 
ful attack is linear in the total length of the two stop/go clocked shift 
registers. This is verified by experimental attacks on relatively short shift 
registers. 
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1 I n t r o d u c t i o n  

Keystream generators for stream cipher apphcations consisting of a small num- 
ber of clock-controlled shift registers combined by a linear function seem to 
provide an efficient means for producing sequences with long period, high linear 
complexity, and good statistical properties, see [7]. The stop-and-go clocking is 
particularly popular for high speed applications. At any time, a stop/go shift reg- 
ister is clocked once if the clock-control input bit is equal to 1 and is not clocked 
at all otherwise. The clock-control sequence can be generated by another, reg- 
ularly clocked shift register, whereas the inherent autocorrelation weakness due 
to the repetition of bits in a stop/go shift register can be overcome by linearly 
combining its output with the output of an additional regularly clocked shift 
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register [1], which may be the same as the clock-control one, as is the case in 
the well-known stop/go cascades [7]. Typically, all the shift registers have linear 
feedback. However, the additional linear feedback shift register (LFSR) intro- 
duced to improve the statistics is then vulnerable to a fast correlation attack 
based on the repetition weakness [12]. If the clock-control LFSR is itself linearly 
combined with the stop/go one to produce the output, then it succumbs to a 
specific, conditional correlation attack [10] which exploits the same repetition 
weakness, but in a different, perhaps unexpected way. 

The alternating step generator (ASG) [81 is an interesting combination of 
three binary LFSRs, two of which, LFSR1 and LFSR2, are stop/go clocked in 
a special way by the third one, LFSR3, which is regularly clocked. Instead of 
LFSR3, one may also use any binary keystream generator. More precisely, if the 
clock-control bit is equal to 1, then LFSR1 is clocked and LFSR2 is not, and if 
the clock-control bit is equal to 0, then LFSR2 is clocked and LFSR1 is not. The 
output sequence is formed as the bitwise sum of the two stop/go clocked LFSR 
sequences. Although it was proposed before the appearance of [12] and [10], the 
ASG is not vulnerable to the attacks there introduced. It is shown in [8] that 
the initial state of the clock-control LFSR3 can be recovered via a divide-and- 
conquer attack which can be regarded as a special kind of the linear consistency 
attack [11], which appeared later. Namely, if and only if the guess about the 
initial state of LFSR3 is correct, then the first binary derivative of the output 
sequence gives rise to the first binary derivatives of both the regularly clocked 
LFSR1 and LFSR2 sequences which are then easily tested for linear complexity 
by the Berlekamp-Massey algorithm [9]. 

The objective of this paper is to investigate whether a divide-and-conquer 
attack on LFSR1 and LFSR2 is possible. A way of doing this is to take the 
edit distance [2] or edit probability [3] approaches developed for memoryless 
combiners (for combiners with memory, see [6]) and adapt them to deal with 
the stop/go clocking. The main idea is to define the edit distance between two 
binary input strings and one binary output string of appropriate lengths as the 
minimum possible number of effective substitutions (complementatious) needed 
in the combination string, produced from the two input strings by the stop/go 
clocking in the ASG manner, to obtain the output string, where the minimum 
is taken over all binary clock-control strings. Our first result is to prove that 
this unusual edit distance can be computed efficiently by a recursive algorithm 
whose computational complexity is quadratic in the output string length. Our 
second contribution is to show by systematic experiments obtained by computer 
simulations that the minimum output  sequence length required for the success 
of the corresponding edit distance correlation attack is linear in the total length 
of LFSR1 and LFSR2. The reconstruction of the LFSR3 initial state is also 
discussed. 

In Section 2, a more detailed description of the ASG along with its basic 
properties is provided. The edit distance and the recursive algorithm for its 
efficient computation are presented in Section 3, and the experimental results 
on the underlying embedding probabilities are shown in Section 4. The corre- 
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sponding correlation attack is explained and experimentally verified in Section 
5. Conclusions and some open problems are ~ven in Section 6. 

2 Alternating Step Generator  

In this section, we recall the structure and basic properties of the alternating 
step generator (ASG), as presented in [8]. As shown in Fig. 1, the output of the 
ASG is obtained by bitwise addition (modulo two) of the output sequences of 
two binary linear feedback shift registers, LFSRI and LFSR2, whose stop/go 
clocking is defined by a binary clock-control generator (CCG), which is typically 
another, but regularly clocked LFSR, denoted as LFSR3. It is assumed that 
LFSR1 and LFSR2 have different irreducible feedback polynomials of respective 
degrees rl and r2 and respective coprime periods P1 and P2. At every step, 
only one LFSR is stepped and the output bit is assumed to be produced in 
the step-then-add manner. Let c~ denote the output bit of the CCG at step 
t _> 1. Then, in order to obtain the ASG output bit zt at step t, we first step 
LFSR1 or LFSR2 depending on whether c~ = 1 or c~ = 0, respectively, and 
then we add modulo two the output bits of LFSR1 and LFSR2. Observe that 
LFSR1 is stop/go clocked, whereas LFSR2 is go/stop clocked. In [8], some good 
cryptographic properties of the ASG, such as a long period (P), a high linear 
complexity (L), and approximately uniform relative frequency of short output 
patterns on a period are established, under the assumption that the clock-control 
sequence is a de Bruijn sequence of period 2 k. More precisely, it is proven that 
P = P1 P2 2 k and (rl + r2) 2 k-1 < L _< (rl + r2) 2 k, whereas for approximately 
uniform distribution of the output patterns of length not bigger than min(rl, r2), 
it is in addition required that the feedback polynomials of LFSR1 and LFSR2 
be primitive as well. It is expected that  similar results also hold if the CCG is a 
LFSR with a primitive feedback polynomial whose period is coprime to P1 P2. 

As mentioned in the previous section, it is also shown in [8] that there exists 
a (linear consistency) divide-and-conquer attack on the clock-control generator. 

3 Edit Distance 

Let X '~+1 = x l , x 2 , . . . , x r L + l  and y , + l  = Y l , Y 2 , . . . , Y n + I  denote two binary 
input strings and let Z '~ = Zl, z2 , . . . ,  zn denote a binary output string. Given 
a binary clock-control string C n -- cl, c2 , . . . ,  an, let 2'* = ~1, z2,---, ~n denote 
the combination string produced from X 'z+l and y ,+1  by the step-then-add 
alternating stepping according to C"  ( X  n+l and y n + l  correspond to the reg- 
ularly clocked LFSR1 and LFSR2 sequences of length n + 1, respectively). Ac- 
cordingly, we initially have Zl = xl �9 Y2 if cl = 0 and ~1 -- x2 �9 Yl if cl = 1, 
whereas for any 1 < s < n - 1 and 0 < l < s, if l denotes the number of ones 
in C s, then ~s = x~+l SY3+l-Z and we have ~s+l = xl+l SYs+2-~ if cs+l = 0 
and ~s+l = xl+2 $ Ys+l-I if cs+l -- 1. 
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LFSRI 

I : 

LFSR2 I 

Fig. 1. The alternating step generator. 

Zt 

The edit distance between a given pair of strings (X n+l, yn+l)  and a given 
string Z ", denoted as D ( X  "+1, y , + x ;  Z , ) ,  is then defined by 

D(X"+I,Yn+a;Z n) = rain dH(Z",2 ~) 
C'~E{O,1}  n 

(1) 

where dH(Z n, 2 n) denotes the Hamming distance between Z n and 2 n. In 
other words, the edit distance is defined as the minimum number of effective 
substitutions needed to obtain Z n from 2n ,  where the minimum is over all 2 n 
binary clock-control strings C n. Apart from the substitutions in the combination 
string 2 n, the edit transformation of the input strings (X n+x, yn+l) into the 
output string Z n also contains one deletion of the first bit from one of the input 
strings and exactly n - 1 repetitions of bits in the input strings, regardless of 
the clock-control string C n. Consequently, the only informative part of the edit 
transformation are effective substitutions, as reflected in our definition of the 
edit distance. 

Our basic objective is to examine whether the defined edit distance can be 
computed efficiently by an algorithm whose computational complexity is signif- 
icantly smaller than 2 n, which corresponds to the computation of (1) by the 
exhaustive search over all C n. To this end, for any 1 < s < n and 0 < I < s, 
we define the partial edit distance W(l, s) as D(XS+I,ys+I; Z s) under an ad- 
ditional constraint that  the binary clock-control string contain.~ exactly I ones, 
that is, 

W(l, s) = min di-1(Z s, 2 s) (2) 
C':wH(C')=I 

where wH(C s) is the Hamming weight of C s. Accordingly, the last bit zs is 
in (2) always produced from the input bits xl+l and Ys+l-~, so that the edit 
transformation involves the prefixes X t+l and ys+l-I only. The partial edit 
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distance can then be represented as 
$ 

W(l,  s) -- rain Z ( z k  �9 zk) (3) 
C~:wH(C')=l k = l  

where the Hamming distance is expressed as the integer sum of binary variables. 
We are now ready to formulate a theorem which enables the efficient com- 

putation of the edit distance based on a recursive property of the partial edit 
distance. 

T h e o r e m  1. For any X "+1, yn+l ,  and Z n , we have 

D ( X n + l , y , + l ; Z , ~ )  = rain W ( l , n )  (4) 
o<l~- 

where the partial edit distance W(l ,  n) is computed recursively by 

w ( l ,  s) = (Z~+l �9 ys+l -~  �9 zs)  + rain ( W ( t  - 1, s - 1), w ( t ,  s - 1)) (5) 

for 1 < s < n and 0 < l < s, with the initial values W ( - 1 ,  s) = W(s+ l ,  s) = co 
and W(O, O) = O. 

Proof. First observe that (4) is an immediate consequence of the definition of 
the partial edit distance. Second, for s = 1, (3) directly implies that W(0, 1) = 
xl $Y2 $ z l  and W(1, 1) = x2 tYx $ Z l  which can also be obtained by (5) from 
the given initial values. 

Now, assume that s > 1. Since by definition, z8 = Xt+l �9 ys+l-t, (3) can 
then be put into the form 

W(I,  s) = (xl+l �9 y~+1-1 �9 zs) 
8--I 8-1 ) 

+min  min ~ ( z k  �9 ~k), min Z ( z k  $ ~ k ) ( 6 )  
~k C~-I:wH(Cs-I)=I-1 k = l  C~-1:wll(C'-1)-=l k----I 

where the first and the second minima correspond to clock-control strings whose 
last bit cs is equal to one and zero, respectively (the given initial values take 
care of the case when I = 0 or l = s). Equation (5) then follows directly in view 
of (3). 

The time and space complexities of the recursive algorithm corresponding 
to Theorem I are clearly O(n 2) and O(n), since only the values of the partial 
edit distance for the current and the preceding value of s have to be stored at 
a time. The algorithm is thus feasible even if n is very large. One can also store 
the whole matrix of the partial edit distances, indexed by s and l, in O(n 2) 
space along with the value(s) of the clock-control bit c8 for which the minimum 
in (5) is achieved. By backtracking through the matrix, one can then recover 
all possible clock-control strings giving rise to the minimum number of effective 
substitutions representing the edit distance. 

Some basic symmetry properties of the defined edit distance are captured 
by the following two propositions. For an arbitrary binary sequence or string 

A = a l ,  a2, a3, a 4 , . . . ,  l e t / ]  = al ,  a2, a3, a 4 , . . . ,  .4 = a l ,  a2, as ,  a 4 , . . . ,  and .~ = 
al, a2, a3, a4,. . . ,  where ~ denotes the complement of a bit a. 
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Proposit ion 2. 

D(Xn+I,Yn+t;z  ") = D(f~n+t,Yn+t;Z n) = D(f(n+l,Yn+1;Zn). (7) 

Proof. Given a clock-control string C ~ if 2 n is the combination string pro- 
duced from (X n+l, yn+x), then 2 n is also the combination string produced from 
(~:n+l, ~n+l) and ~n is the combination string produced from (~n+l,y,+l) .  
The proposition then directly follows from (1). 

Proposit ion 3. 

D(Xn+I,  y~+t ;  Z n) = D ( 2 , + t ,  ~n+,;  2").  (8) 

Proof. Given a clock-control string C ~, if 2 n is the combination string pro- 

duced from (xn+t,Yn+X), then 2n is the combination string produced from 

( ~ , + t ,  ~n+t) .  The proposition then directly follows from (1). {3 

4 Embedding Probabilities 

Let Pn(DIZ n) denote the probability that  the edit distance D(X n+l, ya+l ;  Z ~) 
is equal to D when Z n is fixed and the pair (X n+t, yn+t)  is randomly chosen 
according to the uniform probability distribution. Also, let Pn(D) denote the 
expected value of Pn(DIZ n) over a uniformly distributed Z n, that is, the prob- 
ability that the edit distance is equal to D when the triple (Xn+t,Y n+l, Z n) 
is randomly chosen according to the uniform probability distribution. The un- 
derlying uniform probability distributions over the string pairs and triples mean 
that the defined probabilities are in fact the fractions of the string pairs and 
triples such that the edit distance is equal to D, respectively. 

In particular, let Pn(Z n) denote the probability, Pn(O[Zn), that the edit 
distance is equal to zero. Since the zero edit distance means that there exists 
a clock-control sequence such that  Z n is produced from (X ~+1, yn+l) by step- 
then-add alternating stepping, Pn(Z n) is also called the embedding probability, 
given an output string Z n of length n, see [4] and [5]. Further, let/Sn, pmax, and 
pmin denote the average, the maximum, and the minimum values of Pn(Z n) over 
a uniformly distributed Z ~, respectively. All of these embedding probabilities are 
related to the success of the edit distance correlation attack to be described in 
the next section. To this end, it is critical that /3n decreases with n and it is 
desirable that this decrease is exponentially fast. Apart from that, it will be nice 
if pmax has a similar behavior itself too. 

The evaluation of the embedding probabilities defined above seems to be a 
difficult combinatorial problem, related to the problems investigated in [13], [4], 
and [5]. The desired exponential decrease with the output string length n is not 
apparent at all. The approach taken in this section is essentially to compute the 
embedding probabilities for smaller values of n by exhaustive counting and to 
estimate their values for larger n by counting on a random sample of suitable 
input and output strings. 
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Our first objective is to estimate the edit distance probability distribution 
Pn(D), 0 <_ D <_ n. Tables 1 and 2 show the observed minimum, maximum, 
mean, and median values along with the standard deviation of D in a ran- 
dom sample of 1000 triples (X'~+I,Y n+l, Z") for n = 10, (10),100 and n = 
200, (100), 1000, respectively. It appears that  the expected value of D increases 
approximately linearly with n, around n/lO + 1, whereas the standard deviation 
is small and increases very slowly with n. 

Table 1: Statistics of D on 1000 random triples (X n+' , yn+l ,  Zn). 
7~ 

Min 

Max 

Mean 

Median 

5 6 9 10 11 12 

1.611 2.783 3.973 5.125 6.147 7.243 

2 3 4 5 6 7 

Std Dev .996 1.194 1.373 1.508 1.570 1.715 

]80 I ] 00 
0 0 0 0 1 2 2 3 4 5 

14 15 16 18 

8.293 !9.336 10.393 11.5421 

8 9 10 12 

1.822 1.859 2.002 1.917 

Table 2: Statistics of D on 1000 random triples (Xn+I,Y '*+1, Zn). 
n I 200 I 300 [ 400 [ 500 I 600 ] 700 I 800 I 900 I1000 

Min 13 24 32 41 51 59 70 77 81 

Max 29 40 56 63 72 86 96 104 117 

Mean 21.593! 31.918 42.016 52.071 61.932 72.518 81.925 92.035 102.15 

Median 22 32 42 52 62 72 82 92 102 

Std Dev 2.626 2.823 3.137 3.550 3.707 3.767 3.942 4.304 4.562 

Our main objective is to compute or estimate the embedding probabilities 
Pn, pmax, and pmin. Table 3 displays the computed values of these probabilities 
obtained by exhaustive counting for n = 5, (1), 10. For each such n, pmin is 
achieved if Z n is the constant zero string and Pn max is achieved if Z n is the 
prefix of the sequence Z = 0, 0, 1, 1, 0, 0,1, 1, 0, 0 , . . . .  It is conjectured that this 
is also the case for every n (a related result is proven in [5]). In fact, the values 
of P ~  and pmin given in Tables 4 and 5 to follow correspond to such strings, 
since the exhaustive counting is not feasible for larger n. As well, according to 
Propositions 2 and 3, if the minimum or the maximum is obtained for a string 
Z n, then it is also obtained for 2 n, 2 n, and ~n. 

Table 3: P~, p m~,, and p min determined 

by exhaustive computation. 

n ] 5 1 6  I 7 ] 8  1 9  110  
po .3165 2598 2138 1763 1455 .1203 

pm~ .4546] .4136 .3766 .3440 .3137 .2869 

pmin .1479.08581.04880.02734.01513.008300 
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Table 4 gives the estimated values of/Sn, Pn m~', and pmin for n = 11, (1), 20 
on a random sample of 10000 pairs (X n+l, yn+x) for Pn max and pmin and 10000 
triples (X n+l, yr,+x, Z n) for/sn, except for n = 11, 12, 13 where Pn max and pmia 
are obtained by exhaustive counting. 

Table 4: /3n, pmax, and Pn rain determined either by a 10000 points 

estimation or by exhaustive computation*. 

n ] 11 1 1 2  

P. . 1 0 2 6  .0820 
pmax .2621" .2398* 

Pn rain .004516* .002441* 

13 114 115 117 118 119 120 
.0641 .0587.0479.0395.0349.0274.0223.0188 

.2194" .2045.1825.1613.1532.1383.1314.1176 

.001312* .0007.0007.0004 0 0 0 0 

Table 5 gives the estimated values of P~ and p~a~ for n = 25, (5), 100 on a 
random sample of 30000 triples (X n+ 1, yn+  1, Z n) and 30000 pairs (X n+ 1, yn+ 1), 
respectively. All the obtained estimates of Pn rain are equal to zero, since this prob- 
ability is then very small. 

Table 5a: P~ and P ~  determined by a 30000 points estimation. 

P~ .0071.003033.0009333 .0004 .0001667.0000667.0000667 0 

P ~  .0776 .05127 .0335 .02137 .01293 .007867 .005133 .003233 

Table 5b: P,z and p~ax determined by a 30000 points estimation. 

- I  65 [ 70 I 75 ] S0 [ 85 I 90 I ~ I ~00 

P~ o o o o o o o o 

pm= .002467.001833.001067.0006.0006333.0003667.0000667.0000667 

Tables 3-5 are consistent with the exponential decrease with n of all the 
probabilities/3n, Pn max, and pmin. Namely, each of them seems to have the form 
ab n, b < 1, for large n. The corresponding estimates of the parameters a and b 
are presented in Table 6. Since not all of them are equally reliable, especially if 
a is concerned, the derived estimates are shown for each of the tables separately. 

Table 6: Estimation of a and b based 

on Tables 3",4"*, and 5***. 

I~ I I~ b-Ib"lb--- 
P,, .8303.7926 - .8241.8292.7357 

pmax .7186.6930 - .9121.9151.9064 

pmi, 2.695 - .5622.5305 - 

To be on the conservative side, the probabilities Pn, Pn max, and pmin are approx- 
imated for large n by using the maximum values for a and b as 
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15n ~ 0.83"0.83 n, Pn max ~ 0.72-0.915 n, pmin ~ 2.7.0.562 n. (9) 

5 C o r r e l a t i o n  A t t a c k  

Assume that the feedback polynomials of LFSR1 and LFSR2 are known. The 
objective of the edit distance correlation attack proposed in this section is to 
reconstruct the secret key dependent initial states of LFSR1 and LFSR2 from a 
known, sufficiently long segment of the output  sequence, in the known plaintext 
scenario. The main point is to measure the statistical dependence or the correla- 
tion between the output sequence and the regularly clocked LFSR1 and LFSR2 
sequences by the edit distance defined in Section 3. 

A segment Z n of the first n successive output  bits is produced from the out- 
put segments of the regularly clocked LFSRI and LFSR2, called here the input 
segments, whose lengths are variable depending on the clock-control sequence. 
If the unknown clock-control sequence is assumed to be purely random, that 
is, a sequence of independent uniformly distributed binary random variables, 
then the average length of the input LFSR segments is n/2 + 1, whereas their 
maximum possible length is n + 1. Accordingly, for any assumed initial states 
of LFSR1 and LFSR2, one can by their linear recursions generate the two in- 
put segments of the same length n + 1, X n+x and yn+x, respectively. The edit 
distance D ( X  n+l, y~+l;  Z n) is then efficiently computed by the recursive algo- 
rithm introduced in Section 3. This is repeated for every possible pair of the 
assumed LFSR1 and LFSR2 initial states, altogether 2 rx +r2 of them. Since for 
the correct LFSR initial states the edit distance is clearly equal to zero, all the 
obtained initial state pairs with the zero edit distance represent the candidates 
for the correct initial state pairs. The zero edit distance indicates that there 
exists a clock-control sequence such that Z n is produced from (X n+x, y, ,+l)  by 
step-then-add alternating stepping. In this sense, this edit distance correlation 
attack can be viewed as a specific embedding attack, just like the Levenshtein- 
like edit distance attack [2] reduces to the embedding attack [13] in case of a 
single clock-controlled shift register. Recall that  the irregular clocking consid- 
ered in [2] and [13] is constrained in that  the number of clocks per each output 
bit is an upper-bounded positive integer, whereas the unconstrained clocking is 
analyzed in [4]. 

5.1 Theore t ica l  ana lys is  

Ideally, if n is large enough, then there will remain only one candidate for the 
initial states of LFSRt and LFSR2. This can happen only if the embedding 
probability P,~(Z n) defined in Section 4 is sufficiently small. Recall that Pn(Z n) 
is the fraction of string pairs (X n+l, yn+l)  for which D(X n+l, yn+l; Zn) = O. 
Namely, the expected number of candidates is clearly 2 rt +~2 p,~ (Zn), so that the 
edit distance correlation attack is deemed successful if and only if, approximately, 

2 ra+r2 Pn(Zn) _< I, (10) 



508 

see [4]. According to Section 4, let Pn, p max, and pmin denote the average, 
the maximum, and the minimum values of Pn(Z")  over a uniformly distributed 
Z",  respectively. Then, by subst i tut ing these probabilities for Pn(Z") in the 
condition (10), we obtain the minimum output  segment length n required for 
success for the average, for the worst, and for the best Z ", respectively. More 
precisely, if any of these probabilities has the exponential form a b", where b < 1, 
then (10) reduces to 

n > r l  + r 2  + loga (11) 
- - l o g  b 

which means tha t  the required ou tput  segment length is essentially linear in the 
total length of LFSR1 and LFSR2. In view of (9), the required output  segment 
length is then approximately given as 

n _> 3.72 (rl  + r2) - 1 (12) 

n >_ 7.8 (rl  + r2) - 3.7 (13) 

n > 1.2 (rl + r2) + 1.72 (14) 

in the average, the worst, and the best case, respectively. 
The number of the surviving candidate initial state pairs for a chosen n can 

further be reduced to jus t  one or a very small number by increasing the length 
n. More precisely, we show tha t  the number of candidate initial state pairs is 
at least two regardless of how large n is. Moreover, with a certain probability 
it can also be bigger than  two, depending on some linear equations among the 
candidate pair bits being satisfied or not. 

P r o p o s i t i o n  4. The number of candidate initial state pairs for LFSR1 and 
LFSR2 selected by the zero edit distance criterion is at least equal to two, provided 
that n + 1 > max(r1, r2). 

Proof. Suppose tha t  the clocking string C"  = c l , c2 , . . .  ,c~, with cl = 1, is able 
to transform a pair ( X n + l , Y  n+l) into Z n. Suppose that  X n+l and yn+l are 
generated by LFSR1 and LFSR2 from initial states X ~1 = x l , x2 , . . .  ,xr~ and 
yr2 _ yl, y2, -. �9 Yr2, respectively, where n + 1 > max(r1, r2). Then, there always 

n+l n+l exists another pair ()~ , Y ) produced by LFSR1 and LFSR2 from appro- 
priate initial states )~r~ and ]~r2, respectively, such that  D(X "+1, lY"+l; Z")  = 
0. Namely, it suffices to use ~ = x~+l, i = 1 , 2 , . . . , r t ,  and !)~ = Yi-t, i = 
1, 2 . . . .  ,r2, (Y0 is obtained by backward clocking of LFSR2) along with the 
clocking string ~n  with cl = 0 and ~ = c~, i -- 2, 3 , . . . ,  n. An analogous proof 
is readily obtained for the case where Cl = 0. rn 

For each obtained candidate initial state pair, one can also store the whole 
matrix of the partial edit  distances and then by backtracking recover all possible 
clock-control strings C "  giving rise to the zero edit distance. The average number 
of such clock-control strings per candidate pair can be estimated as 

2" 1 20.269 n (15) . . . . .  ~ 1 . 2 .  m .  = 2 n p .  p .  
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Note that if n is chosen so that  2rl+~aP~ ~- 1, then ran ~ 2 ~+r2. If the clock- 
control sequence is generated by another known LFSR, LFSR3, of length r3 
and if n > r3, then the number of C"  can be reduced by checking the LFSR3 
recursion which can be performed sequentially, one bit at a time, by backtracking 
through the matrix of partial edit distances. In fact, starting from mr~ possible 
strings C~3 for n = r3, each new bit examined is expected to halve the number 
of the surviving clock-control strings which is therefore reduced to only one if 
n -  r3 _> logmn, that is, if, approximately, 

n > 1.37r3. (16) 

The complexity of this search is upper-bounded by rnn, which is close to 20"37r3 
if n ~ 1.37r3 and is close to 2 ~+r2 if n ~ 3.72 (rl + r2). In addition, it may 
happen that some clock-control bits are uniquely determined without exploiting 
the LFSR3 recursion which can be used to reduce the search effort. So, if apart 
from (12), the condition (16) is also satisfied, then the described search is likely 
to reduce the number of candidate initial state pairs for LFSRt and LFSR2 to 
only one, correct pair and also to uniquely determiue the initial state of LFSR3. 
The obtained candidate initial state triples for all the LFSRs are then tested 
for correctness on a longer output sequence. Note that in view of the structure 
of the ASG generator, one may expect that  different LFSR initial state triples 
necessarily give rise to different output  sequences, so that the solution for the 
LFSR initial states is very likely to be unique. 

Finally, one may observe that  if one of the initial states, for LFSR1 or LFSR2, 
is guessed correctly, then, instead of the embedding probability as such, one 
should in fact consider the fraction of the input and output string triples giving 
rise to the zero edit distance provided that  one of the input strings is guessed 
correctly. If this, conditional embedding probability was bigger than the embed- 
ding probability defined before, then the number of the obtained candidate pairs 
would very likely be bigger than just two, see Proposition 4. Note that this is 
not a problem, since the correct individual initial states can then easily be re- 
covered as the ones that appear in most the obtained candidate pairs. Note that 
the computational complexity of the proposed edit distance correlation attack 
remains O(2 rl+r2) anyway. However, for the sake of completeness, we have also 
experimentally obtained an estimate of this conditional embedding probability, 

0.85- 0.85 n, which is very close to the estimate of/Sn given in (9). 

5.2 Experimental  attacks 

A number of computer simulations were conducted to show that the above edit 
distance correlation attack can work in practice. The clock-control generator was 
assumed to be another linear feedback shift register, LFSR3, of length r3. Only 
primitive feedback polynomials were used for all the LFSRs. The correlation 
attack was performed in the way explained in Subsection 5.1. The feedback 
polynomials were assumed to be known and the objective was to reconstruct the 
initial states of LFSRx and LFSR2 along with the initial state of LFSR3 from a 
sufficiently long segment of the ASG output sequence. 



510 

Some examples of the experimental results obtained are shown in Table 7, 
where NI,2 denotes the number of candidate initial state pairs for LFSR1 and 
LFSR2 satisfying the zero edit distance criterion and N3 denotes the number 
of candidate initial states for LFSR3 obtained from the found N1,2 pairs by ex- 
amining the corresponding clock-control strings. As different LFSR initial state 
triples very likely yield different output  sequences, then N3 = 1 effectively re- 
duces the number of candidate initial state pairs for LFSR1 and LFSR2 to only 
one. Observe that the same ASG was considered in the experiments 1 and 1 ~, the 
only difference being the key-stream sequence length n, which was increased in 
the experiment 1 ~ to test the ability of the attack to reduce the number of candi- 
date initial states for LFSR3 when N1,2 is already at its minimum. Accordingly, 
in each of the experiments a unique solution for the LFSR initial states was 
obtained. Similar results were also obtained in a number of other experiments 
where the shift register lengths rl  and r2 were smaller than those from Table 7. 

Notice that multiple candidates for the initial states of LSFR1 and LFSK2 
can appear and that their number, N1,2, which is expected to be a small positive 
integer, can not be reduced to one by increasing n, see Proposition 4. In practice, 
as indicated by (12), it was observed that N1,2 is minimized by using n 
4 (rl + r2). Multiple candidates for the initial states of LSFR1 and LFSR2 can 
effectively be reduced to only one candidate by reconstructing the LFSR3 initial 
state from all possible clock-control strings, provided that n is sufficiently long, 
see (16). 

Table 7: Experimental results. 

Experiment 1 1' 2 3 4 5 

n 180 200 120 150 180 160 

rl,r2,rs 14, 14, 64 14, 14, 64 15, 15, 48 15, 15, 64 15, 15, 64 16, 16, 64 

NI,2, N3 2, 2 2, 1 6, 1 4, 2 2, 1 3, 1 

6 C o n c l u s i o n s  

A novel edit distance between two binary input strings and one binary out- 
put string of appropriate lengths which reflects the specific stop/go clocking in 
the ASG generator is introduced. An efficient recursive algorithm for the edit 
distance computation whose time complexity is quadratic in the output string 
length is derived. By systematic computer simulations, the underlying embed- 
ding probabilities are shown to exponentially decrease with the output string 
length. The corresponding edit distance correlation attack on the two stop/go 
clocked shift registers in the ASG generator is then proposed. The attack essen- 
tially consists in computing the edit distance for every possible pair of the initial 
states of the two shift registers and in finding all the pairs with the zero edit 
distance. By using the evaluated embedding probabilities, it is then established 
that the minimum output  se~oTnent length required for a successful attack is lin- 
ear in the total length of the two stop/go clocked shift registers. More precisely, 
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only about four total lengths on average and about eight total lengths in the 
worst case are sufficient for the success. The reconstruction of the initial state of 
the clock-control shift register is also discussed. The theory is illustrated by suc- 
cessful experimental attacks conducted on relatively short shift registers. From 
the practical cryptographic standpoint, the results show that the total length 
of the two stop/go clocked shift registers should be sufficiently large in order to 
prevent the exhaustive search over their initial states. On the other hand, note 
that the clock-control shift register itself should be long enough to prevent the 
divide-and-conquer attack from [8]. 

Finding analytical expressions for the embedding probabilities is an interest- 
ing, but difficult combinatorial problem, see [13], [5], and [4] for related prob- 
lems regarding a single clock-controlled shift register. Defining an appropriate 
edit probability instead of the edit distance is an approach which may possibly 
reduce the required output segment length, see [3] and [41 for related previous 
work in this direction. Finally, it remains to be investigated whether a correla- 
tion attack on individual stop/go clocked shift registers in the ASG generator 
based on another special edit distance or edit probability is also possible. 
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