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A b s t r a c t .  In this paper we introduce a new method of attacks on block 
ciphers, the interpolation attack. This new method is useful for attacking 
ciphers using simple algebraic functions (in particular quadratic func- 
tions) as S-boxes. Also, ciphers of low non-linear order are vulnerable 
to attacks based on higher order differentials. Recently, Knudsen and 
Nyberg presented a 6-round prototype cipher which is provably secure 
against ordinary differential cryptanalysis. We show how to attack the 
cipher by using higher order differentials and a variant of the cipher by 
the interpolation attack. It is possible to successfully cryptanalyse up to 
32 rounds of the variant using about 232 chosen plaintexts with a running 
time less than 264 . Using higher order differentials, a new design concept 
for block ciphers by Kiefer is also shown to be insecure. Rijmen et al 
presented a design strategy for block ciphers and the cipher SHARK. We 
show that there exist ciphers constructed according to this design strategy 
which can be broken faster than claimed. In particular, we cryptanalyse 
5 rounds of a variant of SHARK, which deviates only slightly from the 
proposed SHARK. 

1 I n t r o d u c t i o n  

In an r - round iterated cipher the ciphertext is computed  by iteratively applying 
in r rounds a round function G to  the plaintext,  s.t. 

ci = a(Ki, 

where Co is the plaintext,  Ki is the ith round key, and Cr is the eiphertext. A 
special kind of  i terated ciphers are the F e i s t e l  ciphers. A Feistel cipher with 
block size 2n and r rounds is defined as follows. Let C L and Co R be the left and 
right hand halves of  the plaintext,  respectively, each of  n bits. The  round function 
G operates as follows 

cy=C R_I 
Ci R F(Ki,Cin_l) C L 

* The work in this paper was initiated while the authors were visiting the Isaac Newton 
Institute, Cambridge, U.K., February 1996. 
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and the ciphertext is the concatenation of C~ and C L. Note that F can be any 
function taking as arguments an n-bit text and a round key Ki and producing 
n bits. ' §  is a commutative group operation on the set of n bit blocks. For the 
remainder of this paper we will assume that '+ '  is the exclusive-or operation (d)). 

Based on the use of a quadratic function over a Galois field, Knudsen and 
Nyberg demonstrated in [10] how to construct a cipher which is provably se- 
cure against differential cryptanalysis [1]. The cipher is a Feistel cipher with the 
function F given by F : GF(232) --+ GF(23~) with 

F(k, x) = d(f(e(x) �9 k)), 
where f : GF(2 ha) --+ GF(233), f (x )  = x a, k e GF(2aa), e : GF(2 a2) --+ GF(233) 
is a function which extends its argument by concatenation with an affine com- 
bination of the input bits, and d : GF(2 ha) --~ GF(232) discards one bit from its 
argument. We call this cipher/C2(. 

Also, we will consider the cipher with round function given by Fk (z) = f ( z  | 
k) where f :  GF(2 a2) --+ GF(2a2), f(z)  = x a, i.e., the cubing function's input is 
not extended and the output not truncated as in the previous case. We call this 
cipher "PUTIs 

Both ciphers are secure against differential attacks [10]. Also, both ciphers 
are secure against the linear attack [7], which follows from [9]. 

In [10] the cipher/CA; is defined to be used with 6 rounds and since f (x )  is 
differentially 2-uniform, it is possible to prove that this yields a provably secure 
cipher (secure against conventional differential cryptanalysis). The same holds 
for 7~b/7~E. However, in both cases the non-linear order of the output is low with 
respect to the input and this can be exploited to mount an attack. 

In the following, z = (ZL, zR) denotes the plaintext where XL and zR denote 
the left and right hand side of x, respectively. Similarly, y = (YL, YR) denotes 
the ciphertext. By the reduced cipher, we denote the cipher that one gets by 
removing the final round of the original cipher. The output from this cipher is 
denoted ~ = (,~L, YR)" 

The attacks presented in this paper are classified according to the taxonomy 
of [4]. That  is, by a key-recovery attack we mean that an attacker finds the secret 
key. By a global deduction we mean that an attacker finds an algorithm, which 
encrypts any plaintext into a valid ciphertext without knowing the secret key. 
By an instance deduction we mean that an attacker finds an Mgorithm, which 
encrypts a subset of all plaintexts into vMid ciphertexts without knowing the 
secret key. In the key-recovery attacks we try to guess the last-round key. The 
guess is then used to decrypt the ciphertext by one round and in this way one 
(hopefully) obtains the output from the reduced cipher. If there exists a method 
to distinguish whether this is the actual output from the reduced cipher or not, 
then we can find the last-round key. Once this key has been found, attacks similar 
to the ones we present can be mounted on a cipher one round shorter than the 
original. As the measurement of the time needed by an attack, we use the total 
number of encryptions of the attacked block cipher. 

This paper is organised as follows. In w 2 we give new attacks based on higher 
order differentials. We apply the attacks to the cipher /CA/" by Knudsen and 
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Nyberg [10] and to a cipher by Kiefer [3]. In w 3 we present our new attack on 
block ciphers, the interpolation attack. We apply the attack to a cipher, provably 
secure against differential and linear attacks. Also, we apply our methods to a 
slightly modified version of the cipher SHARK [11]. We conclude in w 4. 

2 A t t a c k s  U s i n g  H i g h e r  O r d e r  D i f f e r e n t i a l s  

In [6] Lai gave a definition of higher order derivatives of discrete functions. Later 
Knudsen used higher order differentials to cryptanalyse ciphers presumably se- 
cure against conventional differential attacks, i.e. attacks based on first order 
differentials [5]. In this section we give an extension of Knudsen's attacks and 
apply it in an attack on the cipher/CA/'. We refer to [6, 5] for the definitions of 
higher order differentials. 

Consider a Feistel cipher with block size 2n. Suppose that xR is kept constant 
and consider the right hand side .~R of the output from the reduced cipher. Since 
zR is a constant, the bits in .Ya are all expressible as polynomials GF(2)[zl, z2, �9 z , ]  
in the bits of XL = (z: ,  x 2 , . . . ,  Xn). Assume that these polynomials have degree 
not higher than d. Then according to [6, Proposition 2] (see also [5]), we have 

Z ;(XL) = C, (1) 
XLEZd 

where /:d denotes a d-dimensional subspace of GF(2) ~, c is the same for any 
space parallel to s and p is a function which computes the output from the 
reduced cipher. It follows that 

O'(W) = Z p(XL + W) : 0 for all w G GF(2) n (2) 
xLEs 

if and only if p(x) is a polynomial of degree d or lower. In the following algorithm, 
the variables x = (XL, xR) and y = (YL, YR) hold the plaintext and the ciphertext, 
respectively. L is a full rank (d + 1) x n matr ix  over GF(2) and F the round 
function. 

1. Let zR and w be n-bit constants. 
2. For all a e GF(2)4+1: 

(a) Let XL : aL + w. 
(b) Obtain the ciphertext y(a) of plaintext (XL, xR). 

3. For all values, k, of the last-round key: 
(a) Let c~ = 0. 
(b) For all a E GF(2)d+I: 

i. Let y = y(a). 
ii. Let OR = YL @ F(k, YR). 

iii. Let ~ = ~ @ YR. 
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The key for which c~ ends up being zero is the correct last-round key with a 
high probability. Consequently, for every possible value k of the last-round key, 
we check whether the corresponding value of cr is zero, and if it is, then we have 
found the correct key with high probability. If one wants a higher level of certainty, 
the algorithm is simply repeated with another choice of w. This method is easily 
generalised to an iterated cipher, and we get the following result, extending that 
of [5, Th. 11]. 

T h e o r e m  1. Given an iterated block cipher, let d denote the polynomial degree 
of the ciphertext bits of the round next to the last as a function of the plaintext 
bits. Furthermore, let b denote the number of last-round key bits. Assume that 
the polynomial degree of the ciphertext bits increases with the number of rounds. 
Then there exists a d-th order differential attack of average time complexity 2 b+d 
requiring 2 d+l chosen plaintexts which will successfully recover the last-round 
key. 

Proof. We give the proof in the case of a Feistel cipher, from which the general 
case follows. Consider the iteration (3b). Let k denote the correct value of the 
last-round key, and let k I denote any wrong value. Then 

= yL �9 F(k ,  

= yL �9 F(k ' ,  

= �9 F(k, �9 F(k I, yR). 

The difference between YR, obtained using the correct key, and Y~R, obtained 
with a wrong key, is two applications of the function F.  Since by assumption the 
polynomial degree increases with the number of rounds, one can expect that ~r will 
be zero only for the correct value of the last-round key with a high probability. 
Running an algorithm similar to the one above takes 2 d+l steps for each value of 
the last-round key. On the average, we have to test half of the keys before finding 
the correct one, from which the time complexity follows. 

The attack can be improved by a factor of two, if the constant of Equation (1) 
can be predicted. In that case the iterations (2) and (3b) of the above algorithm 
are performed only for all a E GF(2d). The key for which ~r = c will be the correct 
key with a high probability. For most ciphers, depending on the F-function, there 
are possible extensions to the above attack. It may be possible to perform the 
attack for only a subset of the last-round key, and also it may be possible to 
search for (a subset of) the first-round key. 

In the following we apply the attack to the cipher K:Af. We choose plaintexts 
where the right halves are fixed. Since the output bits from the round function 
are only quadratic in the input bits, the polynomials in the attack described 
above on the 6 round version have degree not higher than 8. Therefore the attack 
requires only 2 s+l = 512 chosen plaintexts and an average running time of order 
241. A variant of the attack guessing for the keys in the last two rounds requires 
about 32 chosen plaintexts and an average running time of order 27~ Similarly, 
there are attacks on the 7 and 8 rounds versions of/(:Af, the complexities are 
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I 
# Rounds # Chosen plaintexts Running time I 

6 2 ~ 241 
6 2 s 27~ 
7 217 249 
7 29 2 TM 
8 215' 2 s2 

Table 1. Higher order differential attacks on the Knudsen-Nyberg cipher. 

given in Table 1. The attack on /CAr using higher order differentials has been 
implemented, and it recovers the last round key as predicted. Note that these 
attacks are applicable to ciphers with any block size 2n, as long as the number 
of chosen plaintexts is less than 2 n. The bigger the block size the more rounds 
can be attacked. 

We now attack the scheme by Kiefer [3] by the use of higher order differentials 3. 
The cipher is probabilistic and uses the following encryption rule: 

mi ~-~ (F(k)  @ ri, fk(r i )  @ mi),  (3) 

where F :  GF(2 n) --+ GF(2 n) is a one-way function, fk : GF(2 n) --~ GF(2 n) is a 
function depending on the key k E GF(2") in some complex way, r~ E GF(2 n) 
is a random value, and mi E GF(2 '~) is a message block. The function fk has 
the form fk = 7rk o g where ~rk : GF(2 n) -4 GF(2 n) is a hitwise linear transform 
depending on k and g : GF(2 ") -+ GF(2 ~) is a public, almost perfectly non-linear 
function of the form g(x) = x ~'+1 for some s. 

Assume that we know enough plaintext to have four pairs on the form 

(ai, bi) = (F(k)  �9 ri, fk(r i)) ,  i = 1 , . . . ,  4 (4) 

such that a, @ a2 = a3 @ a4. Define fl = ~4=i  bi and 7 = (~i4=1 g(ri).  Then 

= = g ( r i  = ( 5 )  
i=1 

Since { a l , . . . , a 4 }  is a two-dimensional subspace of GF(2n), the elements in 
{ r l , . . . ,  r4} also constitute a two-dimensional subspace. Note also that the Ham- 
ming weight of the exponent in the definition of g expressed as a binary number 
is only two, implying that the output bits are only quadratic in the input bits. 
By Equation (1), this implies that we can compute the value of 3 .̀ 

If repeated n times, we will have n corresponding pairs of/3 and 3'. This 
makes it possible to solve Equation (5) with respect to the unknown function 
rrk (it is a linear transform). After having found rr~, we can invert fk and thus 
obtain a value of ri. Using this, we compute F(k)  and the system is broken. 

It remains to compute the minimum number t of known plaintexts needed 
to obtain n times four pairs (ai, bi) with the required property; recall that the 

3 This attack was presented at the rump session of Pragocrypt'96. 
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cipher is probabilistic and thus we have no control over the values of ri. By using 
a birthday paradox type argument it can be shown that t ~ (n �9 2 n+2) �88 For a 
typical block size of n = 64 this gives t .~ 218. 

3 T h e  I n t e r p o l a t i o n  A t t a c k  

In this section, we introduce a new attack on block ciphers. The attack is based 
on the following well-known formula. 

Let R be a field. Given 2n elements xl ,  �9 �9 xn, Yl,. �9 yn E R, where the xis 
are distinct. Define 

n 

H x-x  i=1 l<j<n,j#i Xi -- xj" (6) 

Then f ( x )  is the only polynomial  over R of degree at most  n - 1 such that 
f ( x i )  = yi for i = 1 , . . . ,  n. Equation (6) is known as the Lagrange interpolation 
formula (see e.g. [2, page 185]). 

In the interpolation attacks presented in this paper  we construct polynomials 
using pairs of plaintexts and ciphertexts. We will assume that the time needed 
to construct these polynomials is small compared to the time needed to do the 
encryptions of the plaintexts needed in the attack. 

3.1 G l o b a l  a n d  i n s t a n c e  d e d u c t i o n  

Consider the cipher 7)UT~s with r rounds. We exploit the fact that the exclusive- 
or operation used in the cipher corresponds to addition over a finite field with 
characteristic 2. Consequently, the cipher consists of simple algebraic operations 
only, and hence each of the two halves of the ciphertext y, e.g., the left hand part ,  
can be described as a polynomial  p(xL, xR) E GF(232)[XL, XR] of the plaintext 
with at most  32r- 1 +3  r +3~-1 + 1 coefficients. Note, that degrees of xR and XL are 
at most 3 ~ and 3 *-1, respectively. Thus, we can reconstruct this polynomial  by 
considering at most  32~-1 + 3 r + 3 r-1 + 1 plaintext/ciphertext  pairs (p/c-pairs) 
using, e.g., Lagrange interpolation. With r = 6 the attack needs at most  2 is 
known p/c-pairs ,  which yields an algorithm for a global deduction. Note that the 
number of coefficients will be lower than specified, since not all elements i j XL~ R 
for 0 < i < 3 ~ and 0 _< j _< 3 ~- 1 will appear in the polynomial.  

We have the following more general theorem. 

T h e o r e m  2. Consider an iterated block cipher with block size m. Express the 
eiphertext as a polynomial of the plaintext and let n denote the number of coeffi- 
cients in the polynomial. I f  n <_ 2 m, then there exists an interpolation attack of 
time complexity n requiring n known plaintexts encrypted with a secret key K ,  
which finds an algorithm equivalent to encryption (or decryption) with K.  

In a chosen plaintext variant of this attack it is possible for an attacker to es- 
tablish polynomials  with a reduced number of coefficients by fixing some of the 
bits in the chosen plaintexts. In that case, the result is an instance deduction, 
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since the obtained algorithm can only encrypt plaintexts for which a number 
of bits are fixed to a certain value. As as example, :PUT4g can be attacked in 
such a way using only 730 chosen p/c-pairs. Subsequently, the attacker has an 
algorithm, which encrypts 232 plaintexts without knowing the secret key. 

3.2 Key-recovery 

In this section we extend the method of the previous section to a key-recovery 
attack. 

Consider first a known plaintext attack. Instead of specifying the ciphertext 
as a function of the plaintext, we express the output from the reduced cipher 
as a polynomial p(x) E GF(2"~)[x] of the plaintext. Assume that this polynomial 
has degree d and that (d+ 1) known p/c-pairs are available. Then for all values of 
the last-round key one decrypts the ciphertexts one round and tries to construct 
the polynomial. With one extra p/c-pair one checks whether the polynomial is 
correct. If this is the case, then the correct value of the last-round key has been 
found with a high probability, by reasoning similarly as in the proof of Theorem 1. 

The chosen plaintext variant of this attack is quite similar. Let us illustrate 
the method with an example. Once again, consider the cipher •/dT4g with 6 
rounds. Assume that the right hand half xR of the plaintext is fixed (that is, 
we consider a chosen plaintext attack), and consider the right hand side of the 
output YR = p(xL) from the reduced cipher expressed as a polynomial p(xL) E 
GF(2a~)[XL]. This polynomial has degree at most 33 = 27 since the degree does 
not increase in the first round and since tyR equals the left half of the output of 
the fourth round. Consequently, 28 pairs of corresponding values of XL and ~ are 
enough to determine it uniquely (using Lagrange interpolation). 

We then test whether ~ is actually output from the reduced cipher or not. 
This is done by verifying whether a 29-th p/c-pair  agrees with the obtained 
polynomial. If it does, then we assume that we have found the correct key. The 
average time complexity is 29 • 232-1 ~, 236. 

More generally, we have the following theorem. 

Theorem 3. Consider an iterated block cipher of size m. Express the output 
from the round next to the last as a polynomial of the plaintext and let n denote 
the number of coefficients in the polynomial. Furthermore, let b denote the num- 
ber of last-round key bits. Then there exists an interpolation attack of average 
time complexity 2b-l(n + 1) requiring n + 1 known (or chosen) plaintexts which 
will successfully recover the last-round key. 

Similar to the attack of Theorem 1 it may be possible to perform the attack for 
only a subset of the last-round key, and also it may be possible to search for (a 
subset of) the first-round key, depending on the structure of the round function. 

3.3 Meet-in-the-middle approach 

The attacks described in this section are extensions of the attacks in the previous 
sections using a meet-in-the-middle technique. We describe only the extension 
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of the key-recovery attack; the extension of the global and instance deductions 
follow easily. 

Once more, we try guessing the correct last-round key and use this to (hope- 
fully) obtain ~, the output from the reduced cipher. In the following, only the 
verification of ~ is described. Given an iterated cipher of r rounds, let z denote 
the output of round s, where s < (r - 1). The value of z is expressible via the 
plaintext x as a polynomial g(x) E GF(2m)[x] where m is the block size. Sim- 
ilarly, z can be expressed as a polynomial h(~) E GF(2m)[~] of the output ~ of 
the reduced cipher. Let the degree ofg(x) be dg, the degree of h(~) be dh and let 
dgh -- dg --}- dh. Thus, the following equation 

g(x) = h(~) (7) 

has at most  dgh "+- 2 unknowns. The equation is solvable up to a multiplication 
and an addition of both 9 and h with a constant. Therefore, to ensure that we 
obtain a non-trivial and unique solution, we set the coefficient corresponding to 
the highest exponent equal to 1 and the constant term equal to 0. After this, 
we solve the equation by using dgh known or chosen plaintexts. We then check 
whether yet another p/c-pair (x, ~) obeys g(x) = h(~). If it does, then we assume 
that we have guessed the correct value of the last-round key. 

Again, let us illustrate the attack on the cipher 7~U7~$ with 6 rounds. As- 
sume that the right hand half xR of the plaintext is fixed (that is we con- 
sider a chosen plaintext attack.) Let ZL denote the left half of the output from 
round four. The value of ZL is expressible via the plaintext as a polynomial 
g(xL) E GF(232)[XL]. This polynomial has degree at most 32, i.e. there are at 
most 10 non-zero coefficients in g(XL). Similarly, ZL can be expressed as a poly- 
nomial h(~tL,~R) E GF(232)[~L, YR] of the output from the reduced cipher. It 
follows that h(~L , ~tR) = y3L @ aY2L @ b~L (~ e �9 ~IR, where a, b, and c are some key- 
dependent constants. Thus, there are at most 10 + 3 = 13 unknown coefficients 
of the equation 

g(XL ) = h(~lL, ~IR) (8) 

Setting the constant term of g to equal 0 (the coefficient corresponding to the 
highest exponent in h has already been found to equal 1), we proceed to solve the 
resulting system of equations by using 12 p/c-pairs from the reduced cipher. This 
gives us the polynomials g and h. We then check whether yet another p/c-pair 
(x, ~) obeys g(xL) = h(~lL, ~IR). If it does, then we assume that we have guessed 
the correct key. 

Similar attacks can be applied to versions of 7~3/T~g with up to 32 rounds. 
Consider the version with 32 rounds. Let g(xL) E GF(232)[XL] be an expression 
of the left half ZL of the output from round 22. The degree of this polynomial is at 
most 32~ Let h(~L, ~R) E GF(232)[~)L, !)R] be an expression of ZL from the output 
of the reduced cipher. In the algebraic normal form of h(~L, YR), the number of 
exponents in YL and YR is at most (39 + 1) and (3 l~ + 1), respectively. Thus the 
number of coefficients in h(~L, Yn) is at most (39 + 1)(31~ + 1) ~ 319. This means 
that the number of coefficients in Equation (8) is at most 32~ + 319 ~ 232. I.e., 
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the average time complexity for this attack is about 263 and it requires about 232 
chosen plaintexts. 

We obtain the following general result. 

Th eo rem 4. Consider an iterated block cipher of block size m with r rounds. 
Express the output from round s, s < r - l ,  as a polynomial of the plaintext and let 
nl denote the number of coeJ~cients in the polynomial. Also, express the output 
from round s as a polynomial of the output from round ( r -  1), and let n2 denote 
the number of coefficients in the polynomial. Furthermore, set n = nl + n2 and 
let b denote the number of last-round key bits. Then there exists an interpolation 
attack of average time complexity 2b-l(n - 1) requiring (n - 1) known (chosen) 
plaintexts which will successfully recover the last-round key. 

In the following section we describe a variant of the interpolation attack. 

3.4 Attacks on modif ied  S H A R K  

The iterated cipher SHARK was described by Rijmen, Daemen, et al in [11]. 
The cipher has block size nm bits and each round has a non-linear layer and a 
diffusion layer. The non-linear layer consists of n parallel m-bit S-boxes. The 
diffusion layer consists of an am-bit linear mapping constructed from the Reed- 
Solomon code. There are two suggested ways to introduce the keys into the cipher. 
The first is by a simple exclusive-or with the inputs to the S-boxes, the other uses 
a key-dependent affine mapping. Also, an output transformation is applied after 
the last round of SHARK. The transformation consists of a key addition and an 
inverse diffusion layer. 

The design strategy of SHARK is to consider each component of the cipher 
separately. It is argued "The non-linear layer has uniform non-linear properties, 
such that when measuring the resistance of the cipher against cryptanalysis we 
don't have to take the details of the interaction between the non-linear and the 
diffusion layer into account." [11]. Furthermore, "If, for example, the S-boxes are 
replaced by other S-boxes, with equivalent non-linearity properties, the resistance 
of the cipher remains constant" [11]. 

We will denote by SHARK(n, m, r) the version with block size nm bits using 
n parallel m-bit S-boxes in r rounds. In [11] an implementation SHARK(S, 8, r) 
(64 bit blocks) is given. The 8 S-boxes are identical and constructed from the 
permutation f : GF(2 m) -~ GF(2 m) given by f ( x )  = x - 1  . The cipher is analysed 
with respect to linear and differential attacks, and it is argued that 8 rounds 
of SHARK(8, 8, r) give a security level comparable to that of triple-DES, and 
from [11, Table 1] it follows that 4 rounds of this version give a security level 
comparable to that of DES. 

In the following we will show that there are many instances of SHARK that 
can be broken significantly faster than expected. 

First of all, the number of rounds of SHARK must be determined with respect 
to the non-linear order of the S-boxes. Assume that the outputs of the S-box 
have non-linear order d in the input bits. Since the S-boxes represent the only 
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non-linear component  in SHARK, the non-linear order of the ciphertexts after r 
rounds of encryption will be at most  d r. To avoid attacks based on higher order 
differentials it must  be ensured that  d r is high, preferably that d r > nm.  Thus, 
for a 64 bit block cipher, if d = 2, e.g. using the cubing function in a Galois field, 
the number of rounds must be at least 6. 

We consider in the following versions of SHARK where the keys are mixed 
with the texts by the exclusive-or operation. Once again, we make use of the fact, 
that exclusive-or is equivalent to addition over a finite field of characteristic 2. We 
will show that there are instances of SHARK(n,  m, r), for which the interpolation 
attacks are applicable. We consider 64-bit versions using as S-box f ( x )  = x -1 in 
GF(2m).  This  is the S-box suggested in [11], but, as it is also said "To remove 
the fixed points 0 -~ 0 and 1 -~ 1 an invertible t ransformation is applied to the 
output bits of the S-box." In what we are about to show, these fixed points play 
no role, so according to the design strategy of SHARK, variants with f ( x )  as 
S-box without the invertible transformation should give equivalent security. We 
stress that the attacks we are about to present are not applicable to the specific 
instance of SHARK presented in [11]. 

The interpolation attack described so far in this paper  work well for ciphers 
of low algebraic degree. The inverse permutat ion in a Galois field has a high 
algebraic degree, note that f ( x )  = x -1 = x 2" -2  in GF(2m).  However, as we 
will show, there are variants of the interpolation attack, which work for these 
functions. These attacks depend only on the number of S-boxes and of the number 
of rounds in the cipher. 

Consider first a version with n = 1. It  follows by easy calculations that 
the ciphertext y after any number  o f  rounds can be expressed as a fraction of 
polynomials of the plaintext x (or similarly, x can be expressed as a polynomial  
of y) as follows 

x ( ~ a  
Y = bx @ c (9) 

where a, b, c are key-dependent constants. These three constants can be found 
using the interpolation attack with only 4 known p/c-pairs  4 by considering and 
solving y .  (bx G c) -- (x (~ a). The result is a global deduction, i.e. an algorithm 
that encrypts (decrypts) any plaintext (ciphertext). 

Next consider a version with n -- 2. Let XL and xR denote the left and right 
halves of the plaintext, respectively, and let Yi,L and YI,R denote the left and right 
halves of the ciphertext after i rounds of encryption. In general we get 

pi,l(XL, XR) (10) 
Yi,L -- pi,2(XL, XR) 

and similarly for Yi,R, where pi,], pi,2 E GF(232)[x/,  xn]. It  remains to show how 
many coefficients there are in the two polynomials. First note that the number 
of coefficients in Pi,1 is at most  the number of coefficients in pi,2. Consider the 

4 In [8] a similar cipher was investigated. It was explained that this cipher could be 
solved with a number of known plaintexts linear in the number of rounds. Our results 
shows that this number is a constant. 



38 Thomas Jakobsen, Lars R. Knudsen 

algebraic normal form of Pi,2 and assume that the largest exponents of X L and 
XR are ei~L respectively e~ Ri . Then the number of coefficients in Pi,2 is at most 
(e~L + 1) �9 ( , R + e  i 1). From the description of SHARK [11] it follows that 

al a2 Yi,z = @ (11) 
Y(i-1),L @ ki,1 Y(i-1),R @ ki,2 

Pi,1 (12) 
(Y(i-I),L ~ ki,1) " (Y(i-1),R G ki,2) ' 

where ki,j are the round keys and al, a2 some constants. Now it is easy to see 
i < 2 i -  1 and that f o r i >  1 e,Li _< 2 . e~  L i - l a n d s i n c e e  lxL = el~R-- 1, onege ts  e~L _ 

e~ Ri _< 2 i-1. Therefore, the number of coefficients in Pi,2 is at most (2 i-1 + 1) 2, 
which also upper bounds the number of coefficients in Pi,1. In order to be able to 
solve Equation (10) one would need at most 2 -(2 I-1 + 1) 2 plaintexts and their 
corresponding ciphertexts. Note that the same pairs can be used to solve a similar 
equation for Yi,l~. Consider versions of the cipher with n S-boxes. One finds by 
calculations similar as above that the number of known plaintexts needed to solve 
Equation (10) is 2 �9 (n ~-1 -t- 1)". The number of coefficients in the polynomials 
used in our attacks increases with the number of diffusion layers in the cipher. 
Note that because of the inverse diffusion layer in the output transformation there 
are only r - 1 diffusion layers in an r-round version of SHARK. To sum up, the 
number of known plaintexts for the interpolation attack on an r-round version 
yielding a global deduction is 

2.  (n r-2 + 1)". 

It follows that the attack is independent of the sizes of the S-boxes, and it depends 
only the number of S-boxes and the number of rounds. 

The interpolation attack with the meet-in-the-middle technique can be applied 
also for these ciphers. We consider the interpolation attack with known plaintexts. 
One first establishes 

q j , l ( Y l , . . . , Y , )  p i , l ( X l , . . . , X n )  = (13) 
qj ,2(Yl , . . . ,  Y,)  p i ,2 (Xl , . . . ,  Xn)' 

i.e., expressions of the ciphertexts in one middle round, where i + j  = r -  1, using 
polynomials of both the plaintext and the ciphertext. Subsequently, one can solve 
the following systems of equations 

q j , l (Y l , . . . ,  Yn) " Pi ,2(Xl , . . .  (, Xn) : p i , l (X l , . . .  Xn) ' q j ,2 (Yl , . . . ,  Y,).  (14) 

The number of known plaintexts required to solve (14) is 

2.  (n r1-1 + 1)". (n "2-' + 1)", 

where rl  + r2 = r -  1 and r l , r=  _> 1. 
The round keys for SHARK are typically quite big, so the general key-recovery 

attack described earlier in this paper may be impractical. However, it is possible 
to perform the attack for only a subset of the first-round and/or  last-round keys. 
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Rounds # S-boxes Known plaintexts 
any 1 3 

6 2 29 
6 4 227 (+) 

3 8 217 (+) 
4 8 235 (+) 
5 8 ~52 (+) 
6 8 275 (q-) 
7 8 29s (+) 
8 8 2121 (+) 

Table 2. Complexities of the interpolation attack on variants of SHARK using as S-box 
f ( x )  = x -1 .  (+) Meet-in-the-middle approach. 

As an example,  one can repeat the attack for all values of the first s words of the 
first-round key and express the ciphertext (of a middle round) as a polynomial  
pi , l (S(xl  @ k l ) , . . . ,  S(x8 D ks), x ~ + l , . . . x ~ ) ,  where S(.) are the S-boxes and xi 
are the plaintext words. The values of the key words for which the interpolation 
succeeds are candidates for the secret key, and the attack is repeated sufficiently 
many times until one value of the secret key is found. 

In Table 2 we give the complexities of the interpolation attack on variants of 
SHARK using as S-box f ( z )  = z -1 ir~ GF(2m). It  follows that using 8 S-boxes, 
the 64-bit variant with up to 5 rounds and the 128-bit variant  with up to 8 rounds 
are (theoretically) vulnerable to our attacks. The number of required plaintexts 
of the key-recovery attack is a little less than indicated variants and the workload 
of the attack is a little higher. We will not go into further details here. 

In a chosen plaintext attack the number of coefficients in the polynomials used 
in the attack can be reduced by fixing some plaintext bits. As examples, there 
exist interpolation attacks on the variant with 8 S-boxes and 4 rounds using about 
221 chosen plaintexts and on the variant with 8 S-boxes and 7 rounds using about 
261 chosen plaintexts. In this attack we fix four of the eight plaintext words, so 
for a 64-bit block cipher the interpolation will work only if the needed number of 
plaintexts is less than 232 and for a 128-bit block cipher less than 264 plaintexts. 

We have demonstrated that certain instantiations of SHARK are insecure. 
Our results also demonstrate  a case where the use of bigger and fewer S-boxes 
does not result in more secure ciphers. Finally, we note that the designers of 
SHARK expressed their concern with the use of the inverse in a Galois field as 
S-boxes: "This may  create uneasy feelings, but we are not aware of any vulner- 
ability caused by this property. For the time being we challenge cryptanalysts to 
demonstrate any vulnerability caused by this property." [11]. Challenge taken! 

4 C o n c l u d i n g  R e m a r k s  

We introduced a new attack on block ciphers, the interpolation attack. We demon- 
strated the attack on slightly modified versions of a cipher proposed by Knudsen 
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and Nyberg and of a cipher proposed by Rijmen, Daemen et al. These modi- 
fications do not violate the design principles of the original ciphers and are as 
secure with respect to the security measures proposed by the authors. Also, we 
presented an improved variant of differential attacks based on higher order dif- 
ferentials, which was used to cryptanalyse the (unmodified) cipher by Knudsen 
and Nyberg and a cipher by Kiefer. 

One might try to find a probabilistic version of the interpolation attack that 
would also work when the output of the cipher is expressible as a polynomial 
of low degree in only a fraction of the cases. However, it looks like this attack 
would require an effective maximum likelihood decoding algorithm for higher 
order Reed-Muller codes and such an algorithm is not known to exist. 

Finally, it should be mentioned that with the use of Newton interpolation 
instead of Lagrange interpolation one can speed up the attacks slightly. 
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