
This is the author’s final, peer-reviewed manuscript as accepted for publication (AAM). The version

presented here may differ from the published version, or version of record, available through the publisher’s

website. This version does not track changes, errata, or withdrawals on the publisher’s site.

Published version information

Citation: BM Matthews, B Ritchie and JC Bicarregui. ‘Synthesising structure from
flat specifications.’ Lecture Notes in Computer Science, vol. 1393 (1998): 148-161. Is
in proceedings of: 2nd International B Conference (B’98: Recent Advances in the
Development and Use of the B Method), Montpellier, France, 22-24 Apr 1998.

DOI: 10.1007/BFb0053359

This is a post peer-review, pre-copyedit version of an article published in Lecture
Notes in Computer Science. The final authenticated version is available online at the
DOI above.

This version is made available in accordance with publisher policies. Please cite only
the published version using the reference above. This is the citation assigned by the
publisher at the time of issuing the AAM. Please check the publisher’s website for
any updates.

This item was retrieved from ePubs, the Open Access archive of the Science and Technology

Facilities Council, UK. Please contact epublications@stfc.ac.uk or go to http://epubs.stfc.ac.uk/ for

further information and policies.

Synthesising structure from flat specifications

BM Matthews, B Ritchie and JC Bicarregui

https://doi.org/10.1007/BFb0053359
mailto:epublications@stfc.ac.uk
http://epubs.stfc.ac.uk/

Synthesising structure from
at speci�cationsBrian Matthews, Brian Ritchie, and Juan BicarreguiRutherford Appleton Laboratory, Chilton, Didcot, OXON, OX11 0QX, U.K.fbmm,br,jcbg@inf.rl.ac.ukAbstract. Within the design process, a high-level speci�cation is subject to two con
ictingtensions. It is used as a vehicle for validating the requirements, and also as a �rst step ofthe re�nement process. Whilst the structuring mechanisms available in the B method arewell-suited for the latter purpose, the rich type constructions of VDM are useful for theformer.In this paper we propose a method which synthesises a structured B design from a
at VDMspeci�cation by analysing how type de�nitions are used within the VDM state in order togenerate a corresponding B machine hierarchy.1 IntroductionWithin the design process, a high-level speci�cation is subject to two con
icting tensions. It is usedas a vehicle for validating the requirements, and also as a �rst step of the re�nement process.Whilstthe structuring mechanisms available in the B method [1] are well-suited for the latter purpose, therich type constructions of VDM [7] are useful for the former. Indeed, previous work [2] has shownthat although VDM and B are equivalent in theory, in practice, VDM is used for requirementsanalysis, high level design and validation whereas B places more emphasis on re�nement, low leveldesign, and code generation.Thus the kind of structuring used in the B Method, which is intended to allow compositionaldevelopment from the speci�cation, can be seen as implementation detail which can obscure theabstract behaviour.The SPECTRUM project has investigated the bene�ts of combining VDM and B in the devel-opment using VDM for abstract speci�cation and validation (as well as generation of abstracttest suites) and B for development of that speci�cation (re�nement, veri�cation and code gen-eration). This combination requires a translation between the VDM and B notations during thedevelopment.Typically at the early stages in the development the VDM speci�cation has a datamodel employinga single module including a single state which is a monolithic value of a complex type (a compositerecord value whose elements themselves may consist of records, sets, maps or sequences). VDM'slanguage of types and expressions supports the forms of data abstraction which are useful incomprehension and validation.The required B speci�cation will comprise a hierarchy of abstract machines, each of which containsstate values of relatively simple types. This decomposition of the state may support subsequentre�nement, developing an understanding of how the design can be achieved.In other words, when translating a VDM speci�cation to B, complexity in VDM's expressionlanguage should be replaced by complexity in AMN's state language, in order to obtain the bestfrom both notations.In this paper we propose a method which synthesises a structured B design from a
at VDMspeci�cation by analysing how type de�nitions are used within the VDM state in order to generatea corresponding B machine hierarchy.

1.1 BackgroundVDM and B were �rst used together in the MAFMETH project [3]. There, a high-level VDMspeci�cation was hand-translated into B. MAFMETH showed that using the two methods in thismanner gave bene�ts over \traditional" development approaches. However, translation by handwas error prone: most of the few design errors were introduced at this stage.The EC project SPECTRUM1 has been further investigating the interoperability of VDM and B.The project has developed a design lifecycle whereby VDM is used in the early stages of designfor high level design, and validation against requirements through prototype generation, and amove to B is performed for the later stages of development towards code, while referring back tothe VDM as a test case oracle. Thus an important requirement of the project is an automatedtranslation of VDM into B.Z to B translation has been carried out in [9] and elsewhere (e.g. [4]). [9] proposed a style similarto \algebraic" speci�cation for translating Z's free type de�nitions. Though feasible, the resultantB speci�cations were \unnatural" (in terms of B style), and were di�cult to work with in practice.Nevertheless, this style formed a starting point for SPECTRUM, giving a property-oriented styleof speci�cation, with extensive use of CONSTANTS and PROPERTIES clauses, and few statevariables.An object-based style of B speci�cation is developed in [8] wherein each object class is realised bya machine that \manages" a state that e�ectively comprises a set of currently-existing instances ofthat class. Individual objects in the set are \known" to the rest of the system via their \handles"(or object identi�ers) that are created and maintained by the object manager machine. Whilstthis object-manager approach is more natural within B and one which is more readily analysableby B tools, it can at times be overly complex, and it was not readily apparent how this could bederived from a VDM speci�cation.Here we propose a hybrid of these two approaches, based on a top-down analysis of the VDMspeci�cation. Where a type is used as part of the state, we follow the object based approach; amachine is created to manage the values of that type. Where a type is used only in a declarativeway, say as the parameter or result of an operation, then the \algebraic" approach is followed.This translation was tested within SPECTRUM through the case study of translating a simpletrain control speci�cation from Dassault Electronique (\the Metro speci�cation").In the remainder of this paper we discuss this translation in more detail. Section 2 gives an overviewof the approach. Sections 3 and 4 give some of the technical details of the automated translation,and Section 5 discusses some extensions for further language features. Section 6 gives an example,and the paper is summed up in Section 7.2 An Analytic ApproachThe VDM-SL and B-AMN notations have broadly similar semantics2 and address similar problemareas (speci�cation of sequential state-based systems). However, the two notations place di�erentemphases on state structure, and on type and value expressivity. VDM provides an expressivetype de�nition language, and a similarly rich language of expressions and functions, but (relativeto AMN) its state model is
at: in e�ect, the state model of a VDM-SL speci�cation typicallycontains at most a small number of variables, though each variable can have a complex value (of acomplex type), and operations are generally viewed as acting on the state as a whole. On the other1 EC ESPRIT project 23173, SPECTRUM, is a collaboration between: Rutherford Appleton Laboratory,GEC Marconi Avionics, Dassault Electronique, B-Core UK Ltd, Institute of Applied Computer Science(IFAD), Space Software Italia and Commissariat �a l'Energie Atomique. For information about thisproject contact Juan Bicarregui.

hand, whilst AMN provides powerful constructs for state modularisation, its type and expressionnotations are impoverished relative to VDM-SL. The state of an AMN speci�cation consists ofa relatively large number of state variables, usually of simple types, spread across a number ofmachines, each of which has \local" operations.Thus, in translating from VDM-SL to AMN, two problems must be addressed: �rstly, how torepresent complex types and expressions within a weaker expression syntax, and secondly, how to\infer" a structured state model from an unstructured model.We propose a new approach to translation from VDM to B which attempts to use the mostappropriate style of B speci�cation for the various parts of the VDM speci�cation, resulting ina speci�cation with a more distributed state. A top-down analysis is undertaken to work outwhich approach is best for each part of the speci�cation. We �rst consider the state in the VDMspeci�cation. Consider the state of a representative VDM speci�cation:state S ofn : Na : Aendwhere A is a user de�ned record type:A : : a1 : A1a2 : A2In the property oriented approach, since the record type A is translated as an algebraic speci�ca-tion, it is given as the following stateless machine (truncated for brevity):MACHINE A TypeSETS ACONSTANTSmk A, inv A, a1 , a2PROPERTIESa1 : A -! A1 ^a2 : A -! A2 ^mk A : A1 � A2 -! A ^inv A : A -! BOOL ^(8 xx,yy).(xx 2 A1 ^ yy 2 A1)(a1 (mk A(xx ,yy)) = xx)): : :ENDAnd a top level state machine of the form:MACHINE SSEES A TypeVARIABLES n, a2 Whilst we recognise that VDM has a denotational semantics over a logic for partial functions, and B hasa weakest precondition semantics over classical logic, and thus have some di�erences in interpretation,we believe that the semantics are su�ciently similar for interoperability to be meaningful and useful. Afurther part of our work intends to investigate any semantic di�erences.

INVARIANTn 2 N ^ a 2 AENDThis is a literal translation of the VDM. the algebraic VDM record type A is translated into astateless \property-oriented" machine, which declares the type as a set, a new mk A constantas the constructor function, the �elds as projection functions, and a new inv A constant as theinvariant function. The behaviour of these constants is de�ned using properties, in e�ect giving analgebraic speci�cation of the type. The properties clause soon becomes very large, with complex�rst-order logic and set theory expressions. Because of the relative weakness of this expressionlanguage, these become hard to read, and the support tools for B �nd such expressions hard todeal with.The property oriented approach has led to a di�erent \granularity" of the state than would benatural in a B speci�cation. A more \natural" B approach would be to split the record A into its�elds, and give a state variable for each, generating a simple state speci�cation as follows:MACHINE A ObjVARIABLESa1 , a2INVARIANTa1 2 A1 ^ a2 2 A2: : :ENDAnd a top level state machine which includes this to represent the \inheritance" of the datatype:MACHINE SINCLUDES A ObjVARIABLES nINVARIANTn 2 N: : :ENDIf the data types A1, A2 are themselves record types they can be broken down further intosimilar machines. Thus we build a hierarchy of machines which preserve the structure of the VDMspeci�cation, but have a �ner state granularity. This speci�cation is much clearer and easy towork with, exploiting as it does the strength of B and B tools in manipulating machine state andgeneralised substitutions.If the state has an aggregate type of records, such as set or map, then the appropriate B speci�-cation is di�erent. For example, if the state is of the form:state S ofn : Na : A-setendwith A as before, then an \object manager" approach is more appropriate:

MACHINE A MgrSETS A IdsVARIABLESaids , a1 , a2INVARIANTaids � A Ids ^a1 2 aids ! A1 ^a2 2 aids ! A2: : :ENDTypically, an object manager machine will also include some basic operations for inspecting andmanipulating the variables; for example equality should be de�ned on the value of the attributesrather than on the identi�er. In this paper, these are omitted for clarity.A top level state machine which includes this to represent the \inheritance" of the datatype withinthe VDM record:MACHINE SINCLUDES A MgrVARIABLES n, aINVARIANTn 2 N ^ a � aids: : :ENDWhere the attribute being modelled is a sequence or map of records, the variable a here wouldbe a sequence or map of aids. Again, if either of A1, A2 are themselves record types, then theyshould themselves be made into objects. However, since they are accessed from an object managermachine, they should be implemented as object managers themselves.In this fashion we can analyse the speci�cation and give appropriate de�nitions for each recordtype. This is formalised in the following sections.3 Preprocessing the VDM Speci�cationIn this top-down analysis, the VDM spec is preprocessed to decide how to best translate eachrecord type. Two sets are declared, Simple and Manager which represent those types which shouldbe represented as a simple object machine, or as an object manager machine respectively. Theanalysis is a simple recursive procedure. First �nd the state, for example:state Example ofa : T // where T contains no record typeb :R // where R is a record typec : S -set // where S is a record typeend

T is any type which does not contain a record type, and it can be basic, user de�ned or anaggregate type (set, map or sequence) which do not have record types as members.Any record types which are referenced directly, such as R, are added to the set Simple, and anyrecord which is part of an aggregate, such as S , are added to the set Manager .This process is repeated for each record type R 2 Simple, and S 2 Manager , with the additionalconditions:1. if S 2 Manager , then S 62 Simple;2. if record R occurs in a �eld of S 2 Manager , then R 2 Manager .Thus if a record type S is added to Manager , it must be removed from Simple, and any recordsreferenced from S must also be added to Manager .4 Inferring a Structured ModelWhen the preprocessing is complete, then machines can be generated. All record types in Simpleare translated as simple structured object machines, while types which are in Manager are trans-lated as object manager machines. Any record types not in either of these sets are translated asproperty oriented stateless machines.Thus there are three cases to consider of records to translate: a Simple record with a reference toa Simple record within it; a Simple record with a reference to a Manager record; and a Managerrecord with a reference to a Manager record. The �nal case of Simple within Manager will notoccur.In the �rst case, if for example, P 2 Simple such that:P : : r1 : T // non record typer2 : R // record type such that R 2 Simplethen we would generate the simple state machine:MACHINE P ObjINCLUDE r2.R ObjVARIABLESr1INVARIANTr1 2 TENDwhere R Obj is a simple state machine as in Section 2 above. Note that the machine R Obj isincluded into this machine with a renaming, using the convenient name r2. This machine may wellbe used elsewhere in the speci�cation, and each including machine needs a unique copy.For the second case, if P 2 Simple such that:P : : r1 : T // non record typer2 : S // record type such that S 2 Managerthen generate the simple state machine:

MACHINE P ObjINCLUDE S MgrVARIABLESr1 ,r2INVARIANTr1 2 T ^ r2 2 sids: : :ENDwhere S Mgr is an object manager machine for the type S , as given in section 2.Note that there is no renaming carried out here. There is only one object manager machine inthe system, and all references should be to that machine. However, there is an issue here: therules of composition in B allow a machine to be included in only one other machine. Thus if themanager record is referred to from more than one record type, this condition may be broken.The resolution of this problem would be to break down the S Mgr machine into two, with asimple machine declaring the abstract set S Ids, representing the object identi�ers, and a managermachine. The manager machine is then included with renaming, and the set is accessed via theSEES construct. This allows the same set of object identi�ers to be used across di�erent objectmanagers.For the third case, if P 2 Manager such that:P : : r1 : T // non record typer2 : S // record type such that S 2 Managerthen generate the object manager machine:MACHINE P MgrINCLUDE S MgrSETS P IdVARIABLESpids ,r1 ,r2INVARIANTpids � P Id ^r1 2 pids ! T ^r2 2 pids ! sids: : :ENDOther types and record types, which are not accessed via the state model are treated by a propertyoriented translation.It may also be necessary to give property oriented translations as well as state based ones for certainrecords; they are used as input/output to functions for example. The analysis of the speci�cationcan be extended to cover this eventuality.

5 Handling further language constructsThe translation presented so far concentrates on the di�erent data models of VDM and B. Topresent a full translation, other aspects of the languages need to be considered, especially the typeand expression language, and the operation and function language. These are not the main subjectof this paper, which is considering the data model, so we shall only consider them brie
y.The richness of the VDM-SL expressions and types makes direct translation to AMN di�cult.Many expression constructs are not easily expressed in AMN's properties notation; and resulttypes of operations and functions may be of compound types (e.g. tuples) which are awkward torepresent and work with in AMN. On the other hand, there are reasonably obvious translationsfrom the VDM expression syntax to AMN's generalised substitutions. Though the latter are statetransformers and not functional expressions, this suggests a translation approach that whereverpossible \re-interprets" VDM functions as AMN operations which do not change the state.A VDM speci�cation which makes heavy use of functions and expressions translates to a heavilyproperty-orientedAMN speci�cationwhich is ungainly to work with in practice, generating di�cultproof obligations both for self-consistency and in subsequent re�nement and implementation.Part of the principle of our approach is to translate VDM functions into B operations as muchas is practically possible. Some analysis of functions is thus required to determine which part ofthe state they are applied to, and which machine to enter them into. Some of these are fairlystraightforward. If a function has a signature of the form:record fun1 (rin : Record ; a1 : t1 : : : an : tn) rout :Recordpre : : :post rout = mk-Record (P1(rin; a1 : : : an); : : : ;Pm(rin; a1 : : : an)) ;where Record is a record type in the set Simple, then it is reasonable to translate this function asan operation in machine Record obj, with the declaration of the form:record fun1 (a 1, : : :, a n) b=PREa 1 2 t 1 ^ : : : a n 2 t n: : :THENr 1 : = P 1(a 1 : : : a n): : :r m : = P m(a 1 : : : a n)END ;where r 1, : : : r m are the variables of the record machine. The expressions P 1, : : :, P m whichgive the transformation of variables may also involve the variables of the machine, and also maythemselves be operations (with consequent changes in syntax), especially if the variables are them-selves record types, and thus provided by an included machine.6 A Worked Example.To illustrate the di�erent approaches, we consider the following small example of a VDM-SLspeci�cation. This has a state Metro, which has a train component. The train itself is a recordwith two components,motion, representing the status of the train's motion, and the current speedof the train. The invariant on the train states that when the train is stopped, its speed is zero. Wealso provide a function for braking.

state state Metro oftrain : Trainendtypes Train : :motion :MOTIONSTATUSspeed : Ninv mk-Train (mm; ss) 4(mm = stopped) ss = 0)brake (tin : Train) tout :Trainpre tin:motion 2 faccelerating; steadygpost tout = mk-Train (decelerating; tin:speed) ;Under the property oriented translation, this becomes two machines, one with the state model:MACHINE Metro TypeSEESTrain TypeVARIABLEStrainINVARIANTtrain 2 TrainENDThe other machine is a stateless property-oriented speci�cation, with the invariant representedas a complex �rst-order logic formula in the properties clause, and the brake represented as astateless operation:MACHINE Train TypeSETS Train0CONSTANTSTrain, mk Train, inv Train, motion, speed , init TrainPROPERTIESTrain � Train0 ^mk Train 2 MOTIONSTATUS � N ! Train0 ^inv Train 2 Train0 ! BOOL ^motion 2 Train0 ! MOTIONSTATUS ^speed 2 Train0 ! N ^(8 mm,ss).(mm 2 MOTIONSTATUS ^ ss 2 N)(inv Train(mk Train(mm,ss)) , ((mm = stopped)) (ss = 0)))) ^: : :

OPERATIONStout - brake(tin) b=PREtin 2 Train ^motion (tin) 2 f accelerating , steady gTHENtout : = mk Train (decelerating , speed (tin))ENDENDIn this latter machine, all functions are represented as stateless operations, which permits a moreexpressive syntax than translating them as properties. Nevertheless, this is an awkward machineto manipulate in the B-Method, and while perfectly valid in the language, is not a \natural"approach in B.However, in the top-down method, the train record type is translated into a machine with statevariables.MACHINE Train ObjVARIABLESmotion , speedINVARIANTmotion 2 MOTIONSTATUS ^speed 2 N ^(motion = stopped)) (speed = 0)OPERATIONSbrake b=PREmotion 2 f accelerating , steady gTHENmotion : = deceleratingENDENDThis machine then INCLUDEd into the top-level Metro speci�cation, together with a renaming.This is a much more \natural" B machine, using more state variables of simple types, which areclose to machine types. This machine can be easily included into a continuing B development, andresulting proof obligations more easily expressed and discharged.7 ConclusionsWe have demonstrated the feasibility of synthesizing structured B speci�cations from VDM. How-ever, the translation is not yet complete. Further analysis is still required to provide an account ofthe translation of VDM functions and operations, and of VDM's full type and expression language.This is the subject of ongoing research.

The translation presented here automates the extraction of design information from the VDM-SLspeci�cation, by deriving a �ner-grained state model. As the design process requires intelligentinsight, the resultant design may not be in the form the user desires, and therefore an elementof user judgement is still required to determine which elements of this design are appropriate.However, as the design elements have been automatically generated, the useful elements havebeen gained at no cost.AcknowledgementsWe would like to thank our partners on the SPECTRUM project and the Commission of theEuropean Union for their support.References1. J-R. Abrial, The B-Book: Assigning Programs to Meaning, Cambridge University Press, 1996.2. J.C. Bicarregui, and B. Ritchie, Invariants, frames and preconditions: a comparison of the VDMand B notations, in Proceedings of Formal Methods Europe'93, Lecture Notes in ComputerScience, Vol. 670, ed. J. Woodcock and P G Larsen, Springer-Verlag 1993.3. J.C. Bicarregui, A.J.J. Dick, B.M. Matthews, and E. Woods, Making the most of formal speci�ca-tion through Animation, Testing and Proof, Science of Computer Programming 29 (1-2) p.55-80Elsevier-Science, (June 1997)4. R.F. Docherty, Translation from Z to AMN, proceedings 7th International Conference on Puttinginto Practice Methods and Tools for Information System Design, ed. H. Habrias, ISBN 2-906082-19-8, 1995.5. J. Draper (ed), Industrial bene�ts of the SPECTRUM approach, SPECTRUM Project ExternalDeliverable 1.3, 1997.6. ISO, \ISO/IEC 13817-1 Information Technology - Programming Languages, their environmentsand system software interfaces - Vienna Development Method - Speci�cation Language. Part1:Base Language", 1996.7. C.B. Jones, Systematic Software Development Using VDM, 2nd Edition, Prentice-Hall, 1990.8. K. Lano, The B Language and Method: a guide to practical formal development, Springer-Verlag1996.9. B. Ritchie, J.C. Bicarregui, and H. Haughton, Experiences in Using the Abstract Machine Nota-tion in a GKS Case Study, Proceeding of Formal Methods Europe '94, Naftalin, Denvir, Bertran(Eds), LNCS 873, Springer-Verlag, 1994.

View publication statsView publication stats

https://www.researchgate.net/publication/2510576

	juan.pdf
	Synthesising_Structure_From_Flat_Specifications.pdf

