
A General Framework for Inheritance Management
and Method Dispatch in Object-Oriented Languages

Wade Holst and Duane Szafron
{ wade?duane} @cs.ualberta.ca

Department of Computing Science
University of Alberta
Edmonton, Canada

Abstract. This paperpresents the DT Framework, a collection of object-oriented
classes representing a generalized framework for inheritance management and
table-based method dispatch. It demonstrates how most existing table-based dis-
patch techniques can be generalized and made incremental, so that relevant en-
tries in the dispatch table are modified each time a selector or class hierarchy
link is added or removed. The incremental nature makes the framework highly
efficient, with low millisecond average modification time, and supports table-
based dispatch even in schema-evolving languages. During table maintenance,
the framework detects and records inheritance conflicts, and maintains informa-
tion useful during compile-time optimizations.

1 Introduction

Object-oriented programming languages have become popular due to the abstraction
and information hiding provided by inheritance and polymorphism. However, these
same properties pose difficulties for efficient implementation, necessitating (among oth-
ers) algorithms for inheritance management and method dispatch. In this paper, we
present an object-oriented solution to an object-oriented problem.

Object-oriented languages provide code-reuse at two levels. At the first level are
generic libraries of basic data structures like sets and growable arrays. Rich libraries for
collections, graphics and other specialized a r m provide object-oriented languages with
much of their power. At a second level, upplicufiunframavorkr capture the collabora-
tions of a group of objects, leaving the specific details to be implemented ([GHJV95]).
These details are implemented by framework clients, who subclass on the classes pro-
vided by the framework. These subclasses provide implementations of the abstract func-
tionality to represent client-specific behavior. In other cases, the user merely chooses
between concrete leaf classes to obtain the desired functionality. Thus, in the same way
that templates generalize the implementation of a particular class,framaoorks general-
ize the implementation of an entire group of interacting classes. Templates are instan-
tiated by providing parameters to the template class. Frameworks are instantiated by
providing concrete implementations of abstract functions.

This paper presents the DT Framework; a general framework for both compile-time
and run-time inheritance management and method dispatch that applies to a broad class
of object-oriented languages: schema-evolving, dynamically typed, single-receiver lan-

M. Aksit and S. Matsuoka (Eds.): ECOOP '97, LNCS 1241, pp. 276-301, 1997.
0 Springer-Verlag Berlin Heidelberg 1997

277

guages with type/implementation-paired multiple inheritance. A schema-evolving lan-
guage is one with the ability to define new methods and classes at run-time. A dynam-
ically typed language is one in which some (or all) variables and method return values
are unconstrained, in that they can be bound to instances of any class in the entire
environment. A single-receiver language is one in which a single class, together with
a selector, uniquely establishes a method to invoke (as opposed to multi-method lan-
guages, discussed in Section 7). Typdimplementation-paired inheritance refers to the
traditional form of inheritance used in most object-oriented languages, in which both
the definition and implementation of inherited selectors are propagated together (as
opposed to inheritance in which these two concepts are separated, as discussed in Sec-
tion 7). Finally, multiple inheritance refers to the ability of a class to inherit selectors
from more than one direct superclass. Within this paper, we will refer to this collection
of languages as 9.

The primary benefit of the DT Framework is its ability to incrementally modify dis-
patch table information. Table-based dispatch techniques have traditionally been static,
and efficient implementations usually rely on a complete knowledge of the environ-
ment before the dispatch table is created. However, dispatch techniques that rely on
complete knowledge of the environment have two disavantages: 1) they cannot be used
by schema-evolving languages that can modify the environment at run-time, and 2) they
preclude the ability of the language to perform separate compilation of source code. One
of the fundamental contributions of the DT Framework is a collection of algorithms that
provide incremental dispatch table updating in all table-based dispatch techniques. An
implementation of the DT Framework exists, and detailed run-time measurements of
the algorithms are presented in Section 6.

Any compiler or run-time system for a language in 9 can obtain a substantial
amount of code-reuse by being a client of the DT Framework, since the framework
provides functionality that such compilers and run-time systems must implement. In
this paper, we will refer to compilers and run-time systems as DT Framework clients.
For our purposes, a language that can be compiled is inherently non-schema-evolving,
and compilers can be used on such languages (i.e. C++). By run-time sysfem we mean
support existing at run-time to allow schema-evolution in the language (i.e. Smalltalk).

The DT Framework makes a variety of research contributions besides the identifi-
cation of the framework itself. It extends research in each of these areas:

1. Data Structures: The framework identifies the method-set data structure, a critical
structure that allows inheritance management to be made incremental, allows de-
tection and recording of inheritance conflicts, and maintains information useful in
compile-time optimizations.

2. Algorithms: The framework demonstrates how inheritance management and main-
tenance of dispatch infoxmation can be made incremental. A critical recursive algo-
rithm is designed that handles both of these issues and recomputes only the infor-
mation necessary for a particular environment modification. As well, the similari-
ties and differences between adding information to the environment and removing
information from the environment are identified, and the algorithms are optimized
for each.

278

3 . Table-Bused Dispatch: The framework identifies the similarities and differences
between the various table-based dispatch techniques. It shows how the method-set
data-structure and inheritance management algorithms can be used to allow incre-
mental modification of the underlying table in any table-based dispatch technique.
It also introduces a new hybrid dispatch technique that combines the best aspects
of two existing techniques.

The method-set data structure, the incremental algorithms, and their ability to be
used in conjunction with any table-based dispatch technique results in a complete frame-
work for inheritance management and maintenance of dispatch information that is us-
able by both compilers and run-time systems. The algorithms provided by the frame-
work are incremental at the level of individual environment mud@cations, consisting of
any of the following:

1. Adding a selector to a class.

2. Adding one or more class inheritance links, including the adding of a class between
two or more existing classes.

3. Removing a selector from a class

4. Removing one or more class inheritance links.

The following capabilities are provided by the framework:

1. Inheritance Confict Detection: In multiple inheritance, it is possible for inheritance
conflicts to occur when a selector is visible in a class from two or more superclasses.
The Framework detects and records such conflicts as they occur.

2. Dispatch Technique Independence: Clients of the framework provide to end-users
the capability to choose at compile-time or run-time the dispatch technique to use.
Thus, an end-user could compile a C++ program using virtual function tables, or
selector coloring, or any other table-based dispatch technique.

3. Schema-Evolving Languages: Dispatch tables have traditionally been created by
compilers and are usually not extendable at run-time. This implies that schema-
evolving languages can not use such table-based dispatch techniques. By mak-
ing dispatch table modification incremental, the DT Framework allows schema-
evolving languages to use any table-based dispatch technique, maintaining the dis-
patch table at run-time as the environment is dynamically altered.

4. Dynamic Schema Evolution: The DT Framework provides efficient algorithms for
arbitrary environment modification, including adding a class between classes al-
ready in an inheritance hierarchy. Even more important, the algorithms handle both
additions to the environment and deletions from the environment.

5 . Separate Compilation: Of the five table-based dispatch techniques discussed in Sec-
tion 2, three of them require knowledge of the complete environment. In situations
where library developers provide object files, but not source code, these techniques
are unusable. Incremental dispatch table modification allows the DT Framework to
provide separate compilation in all five dispatch techniques.

279

6. Compile-time Method Determination : It is often possible (especially in statically
typed languages) for a compiler to uniquely determine a method address for a spe-
cific message send. The more refined the static typing of a particular variable, the
more limited is the set of applicable selectors when a message is sent to that vari-
able. If only one method applies, the compiler can generate a function call or inline
the method, avoiding runtime dispatch. The method-set data structure maintains
information to allow efficient determination of such uniqueness.

The rest of this paper is organized as follows. Section 2 summarizes the various
method dispatch techniques. Section 3 presents the DT Framework. Section 4 discusses
how the table-based method dispatch techniques can be implemented using the DT
Framework. Section 5 discusses details specific to compilers and details specific to run-
time systems. Section 6 reports execution performance results when the DT Framework
is applied to various real-world class hierarchies. Section 7 discusses related and future
work, and Section 8 summarizes the results. Acknowledgements and references com-
plete the paper.

2 Method Dispatch Techniques

In object-oriented languages, it is often necessary to compute the method address to be
executed for a clasdselector pair, < C, u > , at run-time. Since message sends are so
prevalent in object-oriented languages, the dispatch mechanism has a profound effect
on implementation efficiency. Two general dispatch classifications exist: dynamic tech-
niques, which compute (and cache) dispatched messages at runtime, and static tech-
niques, which precompute all addresses before execution so that dispatch becomes a
simple table access. In the discussion that follows, C is the receiver class and u is the se-
lector at a particular call-site. The notation < C, u > is shorthand for the clasdselector
pair. It is assumed that each class in the environment maintains a dictionary mapping
native selectors to their method addresses, as well as a set of immediate superclasses.
We give a very brief summary of the dispatch techniques. For detailed descriptions, see
[Dri93], and for a comparison of relative dispatch performance, see [DHV95].

2.1 Dynamic Dispatch Techniques

1. ML: Method Lookup' (Smalltalk-80 [GR831). Method dictionaries are searched for
selector u starting at class C, going up the inheritance chain, until a method for CT
is found or no more parents exist (in which case a messugeNot Understood method
is invoked to warn the user). This technique is space efficient but time inefficient.

2. LC: GlobaZLookup Cache ([GR83, Kra831) uses < C, u > as a hash into a global
cache, whose entries store a class C, selector u, and address A. During a dispatch,
if the entry hashed to by < C, u > contains a method for the clasdselector pair,
it can be executed immediately, avoiding ML. Otherwise, ML is called to obtain an
address and the resulting class, selector and address are stored in the global cache.

In [DHV95, Dri931, and others, this is referred to as Dispatch Table Search (DTS). However,
to avoid confusion with our dispatch tables, we refer to it as Method Lookup

280

3 . IC: Inline Cache ([DS94]) stores addresses at each call-site. The initial address at
each call-site invokes ML, which modifies the call-site once an address is obtained.
Subsequent executions of the call-site invoke the previously computed method.
Within each method, a method prologue exists to ensure that the receiver class
matches the expected class (if not, ML is called to recompute and modify the call-
site address).

4. PIC: Polymorphic Inline Caches ([HCU9 11) store multiple addresses, modifying a
special call-site specific stub-routine. On the first invocation of a stub-routine, ML
is called. However, each time ML is called, the stub is extended by adding code
to compare subsequent receiver classes against the current class, providing a direct
function call (or even code inlining) if the test succeeds.

2.2 Static Dispatch Techniques

The static dispatch techniques are all table-based, in that a mapping from every legal
class/selector pair to the appropriate executable address is precomputed before dispatch
occurs. These techniques have traditionally been used at compile-time, but the DT
Framework shows how they can be supported at run-time. In all of these techniques,
classes and selectors are assigned numbers which serve as indices into the dispatch
table. Whether these indices are unique or not depends on the dispatch technique.

1. STZ: Selector Table Indexing C COX^^]) uses a a two-dimensional table in which
both class and selector indices are unique. This technique is not practical from a
space perspective and is never used in implementations.

2. SC: Selector Coloring ([DMSV89, AR921) compresses the two-dimensional STI
table by allowing selector indices to be non-unique. Two selectors can share the
same index as long as no class recognizes both selectors. The amount of com-
pression is limited by the largest complete behavior (the largest set of selectors
recognized by a single class).

3. RD: Row Displacement ([DH95]) compresses the two-dimensional STI table into
a one-dimensional master array. Selectors are assigned unique indices in such a
way that when all selector rows are shifted to the right by the index amount, the
two-dimensional table has only one method in each column.

4. VTBL: Mrtual Function Tables ([ES90]) have a different dispatch table for each
class, so selector indices are class-specific. However, indices are constrained to be
equal across inheritance subgraphs. Such uniqueness is not possible in multiple
inheritance, in which case multiple tables are stored in each multi-derived class.

5 . CR Compact Selector-Indexed Dispatch Tables ([VH96]) separate selectors into
one of two groups: standard selectors have one main definition and are only over-
ridden in subclasses, and any selector that is not standard is a conflict selector.
Two different tables are maintained, one for standard selectors, the other for con-
flict selectors. The standard table can be compressed by selector aliasing and class
sharing, and the conflict table by class sharing alone. Class partitioning is used to
allow class sharing to work effectively.

281

1

EmptyMethodSet StandardMethodSet ClassTable ZDTable OuterTable

SeparatedTable
1 DTable I-, kndable2DTable

PreeMethodSet ConnimethodSet FixedRoarZDTable PartitionedTable

3 The DT Framework

The DT Framework provides a collection of abstract classes that define the data and
functionality necessary to modify dispatch information incrementally during environ-
ment modification. Recall that, from the perspective of the DT Framework, environment
mod$cation occurs when selectors or class hierarchy links are added or removed.

The DT Framework consists of a variety of special purposes classes '. Figure 1
shows the class hierarchies. We describe the data and functionality that each class hier-
archy needs from the perspective of inheritance management and dispatch table modi-
fication. Clients of the framework can specify additional data and functionality by sub-
classing some or all of the classes provided by the framework.

I

NonSharedCIS SharedClS
2DS'S ShiftedSlS OuterSIS ClassSpedficSIS

/\
PlainSIS 1 b d S l S PartitionedSlS SeparatedSlS

PartitionedClS SeparatedCIS

ColoredSIS J U

Fig. 1. The DT Framework Class Hierarchy

The Methodset hierarchy represents the different kinds of address that can be as-
sociated with a class/selector pair (i.e. messageNotUnderStood, inheritanceconflict, or
user-specified method). The Table hierarchy describes the data-structure used to rep-
resent the dispatch table, and provides the functionality needed to access, modify and
add entries. The SIS and CIS hierarchies implement methods for determining selector
and class indices. Although these concepts are components of Tables, they have been
separated out into classes in their own right so as to allow the same table to use different
indexing strategies.

3.1 The DT Classes

The Environment, Class and Selector classes are not subclassed within the DT Frame-
work itself, but the Methodset, Table, SIS and CIS classes are subclassed (clients of
the Framework are free to subclass any DT class they choose). A detailed figure of

In this discussion, we present the conceptual names of the classes, rather than the exact class
names used in the C++ implementation

282

the internal state of the fundamental DT classes is provided in Section 6.2: Effects on
Dispatch Performance.

Environment, Class and Selector: The DT Environment class acts as an interface be-
tween the DT Framework client and the framework itself. However, since the client can
subclass the DT Framework, the interface is a white box, not a black one. Each client
creates a unique instance of the DT Environment and as class and method declarations
are parsed (or evaluated at run-time)? the client informs the Environment instance of
these environment modifications by invoking its interface operations. These interface
operations are: Add Selector, Remove Selector, Add Class Links, and Remove Class
Links. The environment also provides functionality to register selectors and classes with
the environment, save extended dispatch tables, convert extended dispatch tables to dis-
patch tables, merge extended dispatch tables together and perform actual dispatch for a
particular class/selector pair.

Within the DT Framework, instances of Selector need to maintain a name. They do
not maintain indices, since such indices are table-specific. Instances of Class maintain
a name, a set of native selectors, a set of immediate superclasses (parent classes), a set
of immediate subclasses (child classes), and a pointer to the dispatch table (usually, a
pointer to a certain starting point within the table, specific to the class in question). Fi-
nally, they need to implement an efficient mechanism for determining whether another
class is a subclass.

Method-sets: The MethodSet hierarchy is in some ways private to the DT Frame-
work, and language implementors that use the DT Framework will usually not need to
know anything about these classes. However, method-sets are of critical importance in
providing the DT Framework with its incremental efficiency and compile-time method
determination. For a given selector, a method-set implicitly represents the set of all
classes that share the same method for that selector. Only one class in each of these
sets natively defines the selector, and this class is referred to as the dejining class of the
method-set.

The Table class and its subclasses represent extended dispatch tables, which store
Methodset pointers instead of addresses. By storing method-sets in the tables, rather
than simple addresses? the following capabilities become possible:

1. Localized modification of the dispatch table during environment modification so

2. Efficient inheritance propagation and inheritance conflict detection.

3. Detection of simple recompilations (replacing a method for a selector by a different

4. Compile-time method determination.

that only those entries that need to be will be recomputed.

method) and avoidance of unnecessary computation in such situations.

Every entry of an extended dispatch table represents a unique class/selector pair,
and contains a Methodset instance, even if no user-specified method exists for the

283

classhelector pair in question. Such empty entries usually contain a unique instance
of EmptyMethodSet, but one indexing strategy uses FreeMethodSet instances, which
represent contiguous blocks of unused table entries. Instances of both of these classes
have a special methoflototunderstood address associated with them. Non-empty table
entries are StandardMethodSets, and contain a defining class, selector, address and a
set of child method-sets. The NomlMethodSet subclass represents a user-specified
method address, and the ConjZictMethodSet subclass represents an inheritance conflict
that occurred due to multiple inheritance.

Associated with each standard Methodset is the concept of its dependent classes.
For a method-set M representing class/selector pair < C, u > , the dependent classes
of M consist of all classes which inherit selector u from class C. Furthermore, each se-
lector u defined in the environment generates a method-set inheritance graph, which is
an induced subgraph of the class inheritance hierarchy, formed by removing all classes
which do not natively define o. Method-set hierarchy graphs are what allow the DT
Framework to perform compile-time method determination. These graphs can be main-
tained by having each method-set store a set of child method-sets. For a method-set M
with defining class C and selector u, the childmethod-sets of M are the method-sets for
selector u and classes C; immediately below C in the method-set inheritance graph for
u. Figure 2 shows a small inheritance hierarchy and the method-set hierarchies obtained
from it for selectors (Y and B.

I FFrn
D:a

W

class hierarchy method-set hierarchies for a and f3

Fig. 2. An inheritance hierarchy and its associated method-set hierarchies

The concept of dependent classes is what decided us to name our fundamental datas-
tructure a method-set, since the inheritance hierarchy can be divided into a set of mu-
tually exclusive classes (where these sets are selector-dependent). However, note that a
method-set does not explicitly store its dependent classes; instead, the defining class and
selector stored in the method-set provide enough information to compute the dependent
classes by looking at appropriate entries in the dispatch table.

Tables: Each Table class provides a fundamental structure for storing method-sets, and
maps the indices associated with a class/selector pair to a particular entry in the table
structure. Each of the concrete table classes in the DT Framework provides a different

underlying table structure. The only functionality that subclasses need to provide is that
which is dependent on the structure. This includes table access, table modification, and
dynamic extension of the selector and class dimensions of the table.

The 2DTable class is an abstract superclass for tables with orthogonal class and
selector dimensions. Rows represent the selector dimension, and columns represent
the class dimension. The Extendable2DTable class can dynamically grow in both se-
lector and class dimensions as additional elements are added to the dimensions. The
FixedRow2DTable dynamically grows in the class dimension, but the size of the selec-
tor dimension is established at time of table creation, and cannot grow larger.

The concrete lDTable class represents tables in which selectors and classes share
the same dimension. Selector and class indices are added together to establish an entry
within this one dimensional table.

The OuterTable class is an abstract superclass for tables which contain subtables.
Most of the functionality of these classes involves requesting the same functionality
from a particular subtable. For example, requesting the entry for a classhelector pair
involves determining (based on selector index) which subtable is needed, and request-
ing table access from that subtable. Individual selectors exist in at most one subtable,
but the Same class can exist in multiple subtables. For this reason, class indices for
these tables are dependent on selector indices (because the subtable is determined by
selector index). For efficiency, selector indices are encoded so as to maintain both the
subtable to which they belong, as well as the actual index within that subtable. The Par-
titionedTable class has a dynamic number of FixedRow2DTable instances as subtables.
A new FixedRow2DTable instance is added when a selector cannot fit in any existing
subtable. The SeparatedTable class has two subtables, one for standard selectors and
one for conflict selectors. A standard selector is one with only one root method-set (a
new selector is also standard), and a conflict selector is one with more than one root
method-set. A root method-set for < C, u > is one in which class C has no su-
perclasses that define selector u. Each of these subtables can be an instance of either
Extendable2DTable or PartitionedTable. Since PartitionedTables are also outer tables,
such implementations express tables as subtables containing subsubtables.

Selector Index Strategy (SIS): Each table has associated with it a selector index strat-
egy, which is represented as an instance of some subclass of SIS. The OuterTable and
lDTable classes have one particular selector index strategy that they must use, but the
2DTable classes can choose from any of the 2D-SIS subclasses.

Each subclass of SIS implements Algorithm Determine Selector I&, which pro-
vides a mechanism for determining the index to associate with a selector. Each SIS class
maintains the current index for each selector, and is responsible for detecting selector
index conflicts. When such conflicts are detected, a new index must be determined that
does not conflict with existing indices. Algorithm Determine Selector Index is respon-
sible for detecting conflicts, determining a new index, storing the index, ensuring that
space exists in the table for the new index, moving method-sets from the old table loca-
tions to new table locations, and returning the selector index to tbe caller.

The abstract 2D-SIS class represents selector index strategies for use with 2D-
Tables. These strategies are interchangeable, so any 2D-Table subclass can use any con-

285

Crete subclass of 2D-SIS in order to provide selector index determination. The PlainSIS
class is a naive strategy that assigns a unique index to each selector. The ColoredSIS
and AliasedSIS classes allow two selectors to share the same index as long as no class
in the environment recognizes both selectors. They differ in how they determine which
selectors can share indices. AliasedSIS is only applicable to languages with single in-
heritance.

The ShiftedSIS class provides selector index determination for tables in which se-
lectors and classes share the same dimension. This strategy implements a variety of
auxiliary functions which maintain doubly-linked freelists of unused entries in the one-
dimensional table. These freelists are used to efficiently determine a new selector index.
The selector index is interpreted as a shift offset within the table, to which class indices
are added in order to obtain a table entry for a class/selector pair.

The ClassSpecificSIS assigns selector indices that depend on the class. Unlike in the
other strategies, selector indices do not need to be the same across all classes, although
two classes that are related in the inheritance hierarchy are required to share the index
for selectors understood by both classes.

The PartitionedSIS class implements selector index determination for Partitioned-
Table instances. When selector index conflicts are detected, a new index is obtained
by asking a subtable to determine an index. Since FixedRow2D subtables of Parti-
tionedTable instances are not guaranteed to be able to assign an index, all subtables
are asked for an index until a subtable is found that can assign an index. If no subtable
can assign an index, a new subtable is dynamically created.

The SeparatedSIS class implements selector index determination for SeparatedTable
instances. A new index needs to be assigned when a selector index conflict is detected
or when a selector changes status from standard to conflicting, or vice-versa. Such index
determination involves asking either the standard or conflict subtable to find a selector
index.

Class Index Strategy (CIS): Each table has associated with it a class index strat-
egy, which is represented as an instance of some subclass of CIS. The OuterTable and
lDTable classes have one particular class index strategy that they must use, but the
2DTable classes can choose from either of the 2D-CIS subclasses.

Each subclass of CIS implements Algorithm Determine Class Index, which pro-
vides a mechanism for determining the index to associate with a class. Each CIS class
maintains the current index for each class, and is responsible for detecting class index
conflicts. When such conflicts are detected, a new index must be determined that does
not conflict with existing indices. Algorithm Determine Class Index is responsible for
detecting conflicts, determining a new index, storing the index, ensuring that space ex-
ists in the table for the new index, moving method-sets from old table locations to new
table locations, and returning the class index to the caller.

The NonSharedCIS class implements the standard class index strategy, in which
each class is assigned a unique index as it is added to the table. The SharedCIS class
allows two or more classes to share the same index if all classes sharing the index have
exactly the same method-set for every selector in the table.

The PartitionedCIS and SeparatedCIS classes implement class index determination

for PartitionedTable and SeparatedTable respectively. In both cases, this involves estab-
lishing a subtable based on the selector index and asking that subtable to find a class
index.

3.2 The DT Algorithms

Although the class hierarchies are what provide the DT Framework with its flexibility
and the ability to switch between different dispatch techniques at will, it is the high-level
algorithms implemented by the framework which are of greatest importance. Each of
these algorithms is a template method describing the overall mechanism for using in-
heritance management to incrementally maintain a dispatch table, detect and record
inheritance conflicts, and maintain class hierarchy information useful for compile-time
optimizations. They call low-level, technique-specific functions in order to perform fun-
damental operations like table access, table modification and table dimension extension.
In this paper, we provide a high-level description of the algorithms. A detailed discus-
sion of the algorithms and how they interact can be found in [HS96].

The Interface Algorithms: Framework clients do not need to know anything about
the implementation details of the framework. Instead, they create an instance of the
DT Environment class and send messages to this instance each time an environment
modification occurs. Four fundamental interface algorithms for maintaining inheritance
changes exist in the Environment class: Algorithms Add Selector, Remove Selector, Add
Class Links, and Remove Class Links. In all four cases, calling the algorithm results in
a modification of all (and only) those table entries that need to be updated. Inheritance
conflict recording, index conflict resolution and method-set hierarchy modification are
performed as the table is updated. Most of this functionality is not provided directly
by the interface algorithms; instead these algorithms establish how two fundamental
inheritance management algorithms (Algorithms Manage Inheritance and Manage In-
heritance Removal) should be invoked.

Algorithm Add Selector is invoked each time a selector u is defined in a particular
class C , and Algorithm Remove Selector is invoked each time a selector is removed
from a class3. Algorithm Add Class Links could be implemented as a simple algorithm
that adds a single inheritance link between two classes, but a more efficient implemen-
tation is possible when it is extended to allow the adding of an arbitrary number of
parent and child class links at the same time. Algorithm Remove Class Links is equally
general with respect to removing class hierarchy links.

In addition to the four interface routines for modifying the inheritance hierarchy,
there are also registration routines for creating or finding instances of classes and selec-
tors. Each time the language parser encounters a syntactic specification for a class or
selector, it sends a Register Class or Register Selector message to the DT environment,
passing the name of the class or selector. The environment maintains a mapping from
name to instance, returning the desired instance if already created, and creating a new

We assume that inheritance exceptions are handled as special method declarations. Removing
a selector from a class without a native definition for that class can be interpreted as a request
for an inheritance exception.

287

instance if no such instance exists. Note that the existence of a selector or class does not
in itself affect the inheritance hierarchy; in order for the dispatch tables to be affected,
a selector must be associated with a class (Algorithm Add Selector) or a class must be
added to the inheritance hierarchy (Algorithm Add Class Links).

Algorithms for Inheritance Management: Algorithm Manage Inheritance, and its in-
teraction with Algorithms Add Selector and Add Class Links, form the most important
part of the DT Framework. AlgorithmManage Inheritance is responsible for propogat-
ing a MethodSet instance provided to it from Algorithms Add Selector or Add Class
Links to all dependent classes of the method-set. During this propagation, the algorithm
is also responsible for maintaining inheritance conflict information and managing se-
lector index conflicts. Algorithm Manage Inheritance Removal plays a similar role with
respect to Algorithms Remove Selector and Remove Class Links.

Algorithms Manage Inheritance and Manage Inheritance Removal are recursive
algorithms that are applied to a class, then invoked on each child class of that class.
Recursion terminates when a class with a native definition is encountered, or no child
classes exist. During each invocation, tests are performed to determine which of three
possible scenarios is to be executed: method-set insertion, method-set child updating,
or conjict creation (conjict removal, in Manage Inheritance Removal). Each scenario
either identifies a method-set to propagate to children of the current class, or establishes
that recursion should terminate. Due to inheritance conflicts, a recursive call may not
necessarily propagate the incoming method-set.

These algorithms have gone through many refinements, and the current implemen-
tations provide extremely efficient inheritance management, inheritance conflict detec-
tion, index conflict resolution and method-set hierarchy maintenance. An indepth dis-
cussion of how these algorithms are implemented, the optimal tests used to establish
scenarios, and how the method-set data structure provides these tests, is available in
[HS96].

These algorithms are implemented in the abstract Table class, and do not need to
be reimplemented in subclasses. However, these algorithms do invoke a variety of op-
erations which do need to be overridden in subclasses. Thus, Algorithms Manage In-
heritance and Manage Inheritance Removal act as template methods ([GHJV95]), pro-
viding the overall structure of the algorithms, but deferring some steps to subclasses.
Subclasses are responsible for implementing functionality for determining selector and
class indices, accessing and modifying the table structure, and modifying method-set
hierarchies.

Algorithms for Selector and Class Index Determination: Each selector and class
instance is assigned an index by the DT Framework. The indices associated with a
class/selector pair are used to establish an entry within the table for that class/selector
pair. An index strategy is a technique for incrementally assigning indices so that the new
index does not cause index conflicts. An index conflict occurs when two clqdselector
pairs with differing method-sets access the Same entry in the table. Since it !is undesir-
able for an entry to contain more than one method-set (see [VH94, VH96]), we want
to resolve the conflict by assigning new indices to one of the clasdselector pairs. Note

288

that since indices are table specific, and each table has a single selector index strategy
and class index strategy, it is the index strategy instances that maintain the currently
assigned indices for each selector and class, rather than having each selector and class
instance maintain multiple indices (one for each table they participate in).

Given a class/selector pair, Algorithm Determine Selector Index returns the index
associated with the selector. However, before returning the index, the algorithm ensures
that no selector index conflict exists for the selector in question. If such a conflict does
exist, a new selector index is computed that does not conflict with any other existing
selector index, the new index is recorded, the selector dimension of the associated table
is extended (if necessary), and all method-sets representing selector u are moved from
the old index to the new index, within the table. Algorithm Determine Class Index per-
forms a similar task for class indices. Algorithm Determine Selector Index is provided
by classes in the SIS inheritance hierarchy, and Algorithm Determine Class Index by
classes in the CIS inheritance hierarchy.

4 Incremental Table-based Method Dispatch

All of the table-based techniques can be implemented using the DT Framework. How-
ever, due to the non-incremental nature of the virtual function table technique (VTBL),
an incremental implementation of VTBL would be quite inefficient, so the current im-
plementation of the framework does not support VTBL dispatch. All other techniques
are provided, and the exact dispatch mechanism is controlled by parameters passed to
the DT Environment constructor. The parameters indicate which table(s) to use, and
specify the selector and class index strategies to be associated with each of these tables.

1. STI: uses Extendable2DTable, PlainSIS, and NonSharedCIS.

2. SC: uses Extendable2DTable, ColoredSIS, and NonSharedCIS.

3. RD: uses lDTable, ShiftedSIS and NonSharedCIS.

4. VTBL uses ClassTable, ClassSpecificSIS and NonSharedCIS.

5. CT: uses a SeparatedTable with two PartitionedTable subtables, each with Fixed-
Row2DTable subsubtables. The selector index strategy for all subsubtables of the
standard subtable is AliasedSIS, and the strategy for all subsubtables of the conflict
subtable is PlainSIS. All subsubtables use SharedCIS.

6. ICT identical to CT, except that the standard subtable uses ColoredSIS instead of
AliasedSIS.

7. SCCT identical to CT, except that both standard and conflict subtables used Col-
oredSIS (instead of AliasedSIS and PlainSIS respectively).

The last two techniques are examples of what the DT Framework can do to combine
existing techniques into new hybrid techniques. For example, ICT dispatch uses selector
coloring instead of selector aliasing to determine selector indices in the standard table,

289

and is thus applicable to languages with multiple inheritance. Even better, SCCT uses
selector coloring in both standard and conflict tables (remember that the CT dispatch
effectively uses STI-style selector indexing in the conflict table).

In addition to providing each of the above dispatch techniques, the framework can
be used to analyze the various compression strategies introduced by CT dispatch in iso-
lation from the others. For example, a dispatch table consisting of a PartitionedTable,
whose FixedRow2DTable subtables each use PlainSIS and SharedCIS indexing strate-
gies, allows us to determine how much table compression is obtained by class sharing
alone. Many variations based on SeparatedTable and PartitionedTable, their subtables,
and the associated index strategies, are possible.

5 Efficiency issues within Compilers and Run-time Systems

Both compilers and run-time systems benefit equally from the dispatch technique inde-
pendence provided by the DT Framework. In addition, the framework provides each of
them with additional useful functionality.

5.1 Compilers

The DT Framework provides compilers with the following advantages: 1) maintenance
of inheritance conflicts, 2) compile-time method determination, and 3) the ability to
perform separate compilation.

In languages with multiple inheritance, it is possible for inheritance conflicts to
occur, when a class with no native definition for a selector inherits two distinct methods
for the selector from two or more superclasses. For the purposes of both efficiency and
software verification, compile-time detection of such conflicts is highly desirable.

The most substantial benefit that the DT Framework provides to compilers is the
recording of information needed to efficiently determine whether a particular clasdsel-
ector pair is uniquely determined at compile-time. In such cases, the compiler can avoid
run-time method dispatch entirely, and generate an immediate function call or even
inline the code.

Another powerful capability provided to compilers by the DT Framework is sepa-
rate compilation. Each library or collection of related classes can be compiled, and an
extended dispatch table stored with the associated object code. At link-time, a separate
DT Environment for each library or module can be created from the stored dispatch
tables. The linker can then pick one such environment (usually the largest) and ask that
environment to merge each of the other environments into itself. This facility is critical
in situations where a library is being used for which source code is not provided. Since
certain dispatch table techniques require the full environment in order to maintain accu-
rate tables (i.e. SC, RD and CT) library providers who do not want to share their source
code need only provide the inheritance hierarchy and selector definition information
needed by the DT Framework.

Finally, note that although it is necessary to use the extended dispatch tab1 to in-
crementally modify the inheritance information, it is not necessary to maintain the ex-
tended dispatch table at run-time in non-schema-evolving compiled languages. Once

290

linking is finished, the linker can ask the DT Environment to create a simple dispatch
table from the extended dispatch table, and this dispatch table can be stored in the exe-
cutable for static use at run-time.

5.2 Run-time Systems

The DT Framework provides run-time systems with: 1) tablebased dispatch in schema-
evolving languages, 2) dynamic schema evolution, and 3) inheritance conflict detection.

The utility of the DT Framework is fully revealed when it is used by run-time
systems. Because of the efficiency of incremental inheritance propagation and dis-
patch table modification, it can be used even in heavily schema-evolving languages
like Smalltalk ([GR83]) and Tigukat ([OPS+95]). However, this functionality is pro-
vided at the cost of additional space, because an extended dispatch table must be main-
tained at run-time, rather than a traditional dispatch table containing only addresses.
Note also that without additional space utilization, dispatch using an extended dispatch
table is more expensive than normal table dispatch because of the indirection through
the method-set stored at a dispatch table entry in order to obtain an address. By dou-
bling the table size, this can be avoided by having the extended dispatch table store
both a Methodset pointer and an address. In dispatch techniques like RD and CT that
are space-efficient, this doubling of size may be worth the improvements in dispatch
performance.

Some mechanism to support dynamic schema evolution is necessary to provide lan-
guages with full-fledged schema-evolution. The DT Framework allows arbitrary class
hierarchy links to be added and removed no matter what the current state of the classes.

Finally, the framework allows inheritanceconflicts to be detected at the time they are
produced, rather than during dispatch. This allows schema-evolving languages to return
error indicators immediately after a run-time environment modification. A common
complaint with schema-evolving languages is a lack of software verification; the DT
Framework provides a partial solution to this.

6 Performance Results

In the previous sections, we have described a framework for the incremental mainte-
nance of an extended dispatch table, using any table-based dispatch technique. In this
section, we summarize the results of using the DT Framework to implement STI, SC,
RD, ICT and SCCT dispatch and generate extended dispatch tables for a variety of
object-oriented class libraries.

In order to test the algorithms, we can model a compiler or run-time interpreter with
a simple parsing program that reads input from a file. Each line of the file is either a
selector definition (consisting of a selector name and class name), or a class definition
(consisiting) of a class name and a list of zero or more parent class names. The order in
which the class and selector definitions appear in this file represent the order in which
a compiler or run-time system would encounter the same declarations.

[DH95] demonstrated the effectiveness of the non-incremental RD technique on
twelve real-world class libraries. We have executed the DT algorithms on this same

291

set of libraries in order to determine what effects dispatch technique, input order and
library size have on per-invocation algorithm execution times and on the time and mem-
ory needed to create a complete extended dispatch table for the library in question. The
cross-product of technique, library and possible input ordering generates far too much
data to present here, so we have choosen two representative libraries from [DH95], Par-
cplacel and Geode, as well as the change log from a commercial Smalltalk programmer
in a local company called Biotools. Table 1 summarizes some useful statistics for these
classes.

[Library I C(SI MI ml PI B (
IBiotools I 493140521 118021 593111.01132(
Parcplacel 774 5086 178230 8540 1.0 401
(Geode 1131 d6549(302709 I1419412.11795 I

Table 1. Statistics for various object-oriented environments

In the table, C is the total number of classes, S is the total number of selectors, M
is the total number of legitimate class-selector combinations, rn is the total number of
defined methods, P is the average number of parents per class, and B is the size of the
largest complete behavior, (c.f. [DH95]).

Of the 15 different input orderings we analyzed, we present three, a non-random
ordering that is usually best for all techniques and libraries, a non-random ordering
that is the worst of all non-random orderings, and our best approximation of a natural
ordering. By natural ordering, we mean the ordering of class and selector definitions
that would occur during the development of the hierarchy in question. In the case of the
Biotools hierarchy, the natural ordering is easily obtained, since Smalltalk maintains a
change log of every class and selector defined, in the order they are defined. For the
ParcPlace and Geode libraries, we assume that a completely random ordering of the
classes and selectors is representative of the natural ordering.

Table 2 presents the total time and memory requirements for each of these data sam-
ples, applied to each of the techniques on the best, worst and natural (real) input order-
ings. The DT code is implemented in C++, was compiled with g++ -02, and executed on
a Sparc-Station 20/50. This code is publicly available from ftp://ftp.cs.ualbertaca/pub/Dtf.

Overall execution time, memory usage and table fill-rates for the published non-
incremental versions are provided for comparision. We defineBZZ-rate as the percentage
of total table entries having user-defined method addresses (including addresses that
indicate inheritance conflicts). Note that in the case of CT, this definition of fill-rate is
misleading, since class-sharing allows many classes to share the same column in the

In [AR92], the incremental algorithm for SC took 12 minutes on a Sun 3/80 when
applied to the Smalltalk-80 Version 2.5 hierarchy (which is slightly smaller than the
Parcplacel library presented in Table 2), where this time excludes the processing of

tabie4.

A more accurate measure of fill-rate is possible, but is not relevant to this paper. So as not to
misrepresent data, we do not describe CT fill-rates here.

292

Table 2. General Time and Space Results for the DT Framework

certain special classes. The DT Framework, applied to all classes in this library, on
a Sun 3/80, took 113 seconds to complete. No overall memory results were reported
in (AR921 @T uses 2.5 Mb), but their algorithm had a fill-rate within 3% of optimal
(the maximum total number of selectors understood by one class is a minimum on the
number of rows to which SC can compress the STI table). Using the best input ordering,
the DT algorithms have a fill-rate within 1% of optimal.

In (DH951, non-incremental RD is presented, and the effects of different imple-
mentation strategies on execution time and memory usage are analyzed. Our current
DT implementation of RD is roughly equivalent to the implementation strategies DIO
and SI as described in that paper. Implementing strategies DRO and MI, which give
better fill-rates and performance for static RD, requires complete knowledge of the en-
vironment. Their results were ran on a SPARCstation-20/60, and were 4.3 seconds for
F’arcplacel, and 9.6 seconds for Geode. Total memory was not presented, but detailed
fill-rates were. They achieved a 99.6% fill-rate for Parcplacel and 57.9% for Geode
(using SI). Using the input ordering that matches their ordering as closely as possible,
our algorithms gave fill-rates of 99.6% and 58.3%. However, fill-rates for the random
ordering were 32.0% and 20.6% respectively.

In [VH96], non-incremental CT is presented, with timing results given for a SPARC-
station-5. A timing of about 2 seconds for Parcplacel can be interpolated from their
data, and a memory consumption of 1.5 Mb. Results for Geode were not possible be-
cause Geode uses multiple inheritance. In the DT Framework, we use selector coloring
instead of selector aliasing, which removes the restriction to languages with single in-
heritance. On a SPARCstation-5, the DT algorithms run in 21.1 seconds using 1.9 Mb
when applied to Parcplacel, and run in 70.5 seconds using 4.8 Mb when applied to
Geode.

We have also estimated the memory overhead incurred by the incremental nature
of the DT Framework. The data maintained by the Environment, Class and Selector
classes is needed in both static and incremental versions, and only a small amount of
the memory taken by Tables is overhead, so the primary contributor to incremental
overhead is the collection of Methodset instances. The total memory overhead varies
with the memory efficiency of the dispatch technique, from a low of 15% for STI, to a
high of 50% for RD and SCCT.

293

6.1

Since we are stressing the incremental nature of the DT Framework, the per-invocation
cost of our fundamental algorithms, Add Selector, Add Class Links and Inheritance
Manager, are of interest. Rather than reporting the timings for every recursive call of
MA, we report the sum over all recursive calls from a single invocation from Algo-
rithm Add Selector or Algorithm Add Class Links. The per-invocation results for the
Parcpfacel library are representative, so we will summarize them. Furthermore, SC,
ICT and SCCT techniques have similar distributions, so we will present only the results
for SC and RD dispatch. In Parcplacel, Algorithm Add Selector is always called 8540
times, and Algorithm Add Class Links is called 774 times, but the number of times
Algorithm Manage Inheritance is invoked from these routines depends on the input
ordering. Per-invocation timings were obtained using the getrusage() system call and
taking the sum of system and user time. Note that since Sun 4 machines have a clock
interval of 1/100 seconds, the granularity of the results is 1Oms.

Table 3 shows six histograms for SC dispatch. Each histogram indicates how many
invocations of each algorithm fell within a particular millisecond interval. The lint row
represents per-invocation timings for the optimal ordering, and the second row for the
random ordering. In all libraries, for all orderings, all algorithms execute in less than
10 milliseconds for more than 95% of their invocations. Thus, without limiting the
y-axis of the histograms, the initial partition would dominate all others so much that
no data would be visible. For this reason, we have limited the y-axis and labelled the
first partition with its number of occurences. For Algorithm Add Selector, maximum
(average) per-invocation times were 30 ms (0.7 ms) for optimal order, and 120 ms (0.6
ms) for random order. For Algorithm Add Class Links, they were 10 ms (0.1 ms) and
4100 ms (27.3 ms), and for AlgorithmManage Inheritance, 30 ms (0.2 ms) and 120 ms
(0.25 ms).

Table 4 shows similar timings for RD dispatch. The variation in timing results be-
tween different random orderings can be as much as 100% (the maximum time is twice
the minimum time). For Algorithm Add Selector, maximum (average) per-invocation
times were 80 ms (0.9 ms) for optimal order, and 1970 ms (6.7 ms) for random order.
For Algorithm Add Class Links, they were 10 ms (0.1 ms) and 52740 ms (12763 ms),
and for Algorithm Manage Inheritance, 70 ms (0.2 ms) and 3010 ms (24.5 ms).

Per-invocation costs of the DT algorithms

6.2 Effects on Dispatch Performance

In [DHV951, the dispatch costs of most of the published dispatch techniques are pre-
sented. The costs are expressed as formulae involving processor-specific constants like
load latency (L) and branch miss penalty (B), which vary with the type of processor be-
ing modeled. In this section, we observe how the incremental nature of our algorithms
affects this dispatch speed.

294

10

8 -

6 -

4 -

2 -

0 -

Add Selector a 20 time 40 (ms) 60 80 100

- Add Class Links Inheritance Manager [;F
8

20 40 60 80 100 0 20 40 60 80
time (ms) time (ms)

10

8 -

6 -

4 -

2 -

0 -

10

x 4 :j 2 0 0

r

Add Selector

45 8512

20
15
10 ii-! 5 0 0 50 time 100 (ms) 150 200

Add Class Links Inheritance Manager
240

140

120 '1_1 100 80 0 20 40 60 80 100

time (ms)

ul

8
$
0

m

$
0

0 50 100 150 200
time (ms)

Table 3. Per-invocation timing results for SC dispatch

Add Class Links

7J 20 time 40 (ms) 60 80 100

Inheritance Manager

? l 2 KJ 0 1 0 20 40 60 80 100

time (ms)

Add Selector

15
10 %J 0 5 0 20 time 40 (ms) 60 80 100

Add Selector
50
45
40
35
30
25
20
15
10
5
0
0 200 400 600 8001000

time (ms)

Add Class Links
200

150
m
V

E 100

50

0
0 20 40 60 80 100

time (ms)

Inheritance Manager
50
45
40
35
30
25
20
15
10
5
0
0 2000 4000

time (ms)

v)

0

$
0

ul
0

5
0

Table 4. Per-invocation timing results for RD dispatch

295

At a particular call-site, the selector in the method send and the class of the receiver
object together uniquely determine which method to invoke. Conceptually, in object-
oriented languages, each object knows its (dynamic) class, so we can obtain a class
index for a given object. This index, along with the index of the selector (which is
usually bown at compile-time), uniquely establishes an entry within a global dispatch
table. In this scheme, we do a fair amount of work to obtain an address: get the class of
the receiver object, access the class index, get the global table, get the class-specific part
of the table (based on class index), and get the appropriate entry within this subtable
(based on selector index).

The above dispatch sequence can be improved by making a simple observation:
if each class explicitly stored its portion of the global dispatch table, we could avoid
the need to obtain a class index. In fact, we would no longer need to maintain a class
index at all (the table replaces the index). In languages where the size of the dispatch
table is known at compile-time it is even more efficient to assume that each class is a
table, rather than assuming that each class contains a table. This avoids an indirection,
since we no longer need to ask for the class of an object, then obtain the table from the
class: we now ask for the class and immediately have access to its table (which starts at
some constant offset from the beginning of the class itself). Thus, all of the table-based
dispatch techniques must do at least the following (they may also need to do more):
1) get table from receiver object, 2) get method address from table (based on selector
index), 3) call method.

So, now we want to determine how much dispatch performance degrades when
using the DT Framework, with its incremental nature, dynamic growing of tables as
necessary, and the use of extended dispatch tables instead of simple dispatch tables.
Note that during dispatch, indirections may incur a penalty beyond just the operation
itself due to load latency (in pipelined processors, the result of a load started in cycle i
is not available until cycle i+L). In the analysis of [DHV95], it is assumed that the load
latency, L, is 2 (non-pipelined processors can assume L = 1). This implies that each
extra indirection incurred by the DTF algorithms will slow down dispatch by at least
one cycle (for the load itself) and by at most L cycles (if there are not other operations
that can be performed while waiting for the load).

Figure 3 shows a conceptual version of the internal state of the fundamental DT
classes. In the figure, rather than showing the layout of all of the Table subclasses, we
have chosen Extendable2DTable as a representative instance. The only difference be-
tween this table and any of the other tables is the nature of the Data field. This field
(like most fields in the figure) is of type Array, a simple C++ class that represents a
dynamically growable array. The Data field of the Array class is a pointer to a contigu-
ous block of words (usually containing indices or pointers to other DT class instances).
Usually, such Arrays have more space allocated than is actually used (hence the Alloc
and Size fields), but this overhead is a necessary part of dynamic growth.

From Figure 3, it can be seen that the Extendable2DTable class has a Data field
which is an Array class. This Array class handles dynamic growth as new elements
are added, and also has a Data field, which points to a dynamically allocated block
of contiguous words in memory. Each word in this block is a pointer to a DT Class
object. In the figure, each Class object also has a Data field (another growable array),

296

Environment Extendable2DTable

SelectorRoots

ClassMap
SIS
CIS

Environment d
W , J Table

SIS 1-

Size
lnit a Data

class +
Data
Na SveSelector
Parents
Children
Hierarchy
Name
Number

Fig. 3. C++ Class Layouts for DT Classes

which in turn points to a block of dynamically allocated memory. Each entry in this
block is a pointer to a Methodset instance, which contains a pointer to the method to
execute. Note that in Figure 3 Class instances are not considered to be dispatch tables,
and instead contain a growable array representing the class-specific portion of the global
dispatch table.

Given this layout, two extra indirections are incurred, one to get the table from
the class, and one to get the method-set from the table. Thus, dispatch speeds in all
table-based techniques will be increased by at most 2 x L cycles. Depending on the
branch miss penalty (B) of the processor in question (the dominating variable in dis-
patch costs in [DHV951), this results in a dispatch slow-down of between 50% (B=l)
and 30%(B=6) when L=2.

Given these performance penalties, the DT Framework would not be desirable for
use in production systems. However, it is relatively easy to remove both of the indirec-

297

tions mentioned, one by using a modest amount of additional memory, and the other by
relying on implementations of object-oriented languages that do not use object-tables.
By removing these indirections, the DT Framework has exactly the same dispatch per-
formance as non-incremental implementations.

We can remove the extra indirection needed to extract the address from the method-
set by using some extra space. As is shown in Figure 4, each table entry is no longer
just a pointer to a Methodset instance; it is instead a two-field record containing both
the address and the Methodset instance (the address field within the method-set itself
becomes redundant). This does slightly decrease the efficiency of incremental modifi-
cation (it is no longer possible to change a single Methodset address and have it be
reflected in multiple table entries), but optimizing dispatch is more important than op-
timizing table maintenance. Furthermore, the amount of inefficiency is minimal, given
how quickly Algorithm Add Selector executes. Finally, the extra space added by effec-
tively doubling the number of table entries is not necessarily that expensive, especially
in techniques like RD and CT. For example, in RD, the space for the table is about 25%
of the total memory used, so doubling this table space increases the overall space used
by 25%.

The other extra indirection exists because in Figure 3 classes contain tables instead
of being tables. In the non-incremental world, the size of each class-specific dispatch
table is known at compile-time, so at run-time it is possible to allocate exactly enough
space in each class instance to store its table directly. At first glance, this does not seem
possible in the DT Framework because the incremental addition of selectors requires
that tables (and thus classes) be able to grow dynamically. The reason this is difficult is
because dynamic growth necessitates the allocation of new memory (and the copying
of data). Either we provide an extra indirection, or provide some mechanism for up-
dating every variable pointing to the original class object, so that it points to the new
class object. Fortunately, this last issue is something that object-oriented language im-
plementations that do not use object tables already support, so we can take advantage
of the underlying capabilities of the language implementation to help provide efficient
dispatch for the language. For example, in Smalltalk, indexed instance variables exist
(Array is an example), which can be grown as needed. We therefore treat classes as
being tables, rather than containing tables, and avoid the second indirection. Figure 4
shows the object, class and table layouts that allow the DT Framework to operate with-
out incuring penalties during dispatch.

7 Related and Future Work

7.1 Related Work

[DHV95] presents an analysis of the various dispatch techniques and indicates that in
most cases, IC and PIC are more efficient than STI, SC and RD, especially on highly
pipelined processors, because IC and PIC do not cause pipeline stalls that the table
indirections of STI, SC and RD do. However, even if the primary dispatch technique
is IC or PIC, it may still be useful to maintain a dispatch table for cases were a miss
occurs, as a much faster alternative to using ML (method lookup) or LC (global cache)

298

Object

I Slotn I

Class

Table Entry

Address
\ Methodset Cmoeqehod-set

Fig. 4. Improved Table Layout to Optimize Dispatch

and ML, together. Especially in schema-evolving languages with substantial multiple
inheritance, ML is extremely inefficient, since each inheritance path must be searched
(in order to detect inheritance conflicts).

[DGC95] discusses static class hierarchy analysis and its utility in optimizing obj-
ect-oriented programs. They introduce an applies-to set representing the set of classes
that share the same method for a particular selector. These sets are represented by our
concept of dependent classes. Since each method-set implicitly maintains its set of de-
pendent classes, the DT algorithms have access to such sets, and to the compile-time
optimizations provided by them.

[AR92] presents an incremental approach to selector coloring. However, the algo-
rithm proposed often performs redundant work by checking the validity of selector col-
ors each time a new selector is added. The DT algorithms demonstrates how to perform
selector color determination only when absolutely necessary (i.e. only when a selec-
tor color conflict occurs), and has generalized the approach to a variety of table-based
approaches. [DH95] presents selector-based row displacement (RD) and discusses how
to obtain optimal compression results. [VH96] presents the compact selector indexed
table (CT), expanding on previous work in [VH94].

Predicate classes, as implemented in Cecil ([Cha93]), allow a class to change its set
of superclasses, at run-time. The DT Framework provides an efficient mechanism for
implementing predicate classes using table-based dispatch.

7.2 Future Work

The DT Framework provides a general description of all work that needs to be per-
formed to handle inheritance management and method dispatch in schema-evolving,
dynamically typed, single-receiver languages with multiple inheritance. A variety of
extensions are possible.

First, the framework as presented handles methods, but not internal state. A mecha-
nism to incrementally modify object layout is a logical, and necessary, extension. Sec-
ond, multi-method languages such as Tigukat [OPS+95] and Cecil [Cha92] have the

299

ability to dispatch a method based not only on the dynamic type of a receiver, but also
on the dynamic types of all arguments to the selector. Multi-methods extend the expres-
sive power of a language, but efficient method dispatch and inheritance management is
an even more difficult issue in such languages. Extending the DT Framework to handle
multi-method dispatch is part of our continued research in this area. Third, the frame-
work currently assumes that inheriting the interface of parents classes implies that the
implementation associated with the interface is inherited also. A more general mech-
anism for inheritance management that separates these concepts is desirable. The DT
Framework is planned to be used to implement all three of these concepts in Tigukat, an
object-oriented database language with massive schema-evolution, multi-method dis-
patch, multiple implementation types, and many other extensions to the object-oriented
paradigm.

Fourth, although the DT Framework provides a general mechanism for handling
table-based method dispatch, it is really only one component of a much larger frame-
work that handles all method dispatch techniques. The DT Framework can be extended
so that framework clients call interface algorithms each time a call-site is encountered,
similar to the manner in which the environment is currently called, when class and se-
lector definitions are encountered. This would extend the DT Framework to encompass
all known method dispatch techniques.

Fifth, the DT Framework allows various compression techniques, like selector alias-
ing, selector coloring, and class sharing, to be analyzed both in isolation, and in inter-
action with one another. More research about how these techniques interact, and about
how SCCT dispatch can be optimized, is necessary.

8 Conclusion

We have presented a framework that is usable by both compilers and run-time systems
to provide table-based method dispatch, inheritance conflict detection, and compile-
time method determination. The framework relies on a collection of technique inde-
pendent algorithms for environment modification, which call technique-dependent al-
gorithms to perform fundamental operations like table access and index determina-
tion. The framework unifies all table-based method dispatch techniques into a cohesive
whole, allowing a language implementor to change between techniques by changing
the manner in which the DT Environment is instantiated. Incremental versions of all
table-based techniques except VTBL have been implemented, all of which have low
milli-second per-invocation execution times.

The framework provides a variety of new capabilities. The various table-based dis-
patch techniques have differing dispatch execution times and memory requirements.
Since the framework allows any table-based dispatch technique to be used, a particular
application can be optimized for either space or dispatch performance. Furthermore, the
DT Framework allows table-based dispatch techniques to be used in schema-evolving
languages. In the past, schema-evolving languages necessitated the use of a non-table-
based technique. One reason that C++ uses virtual function tables is that they allow for
separate compilation, unlike other table-based dispatch techniques. The DT Framework
now allows all table-based dispatch techniques to work with separate compilation. Fi-

300

nally, the framework introduces a new level of software verification in schema-evolving
languages by allowing inheritance conflicts to be detected immediately when they oc-
cur, rather than during dispatch.

The framework has been used to merge SC and CT method dispatch into a hybrid
dispatch technique with the advantages of both. The CT dispatch technique is limited by
its restriction to single-inheritance. By replacing selector aliasing by selector coloring,
we obtain a dispatch technique that works with multiple inheritance and that benefits
from the class sharing made possible by CT class partitioning. Furthermore, SCCT
dispatch provides slightly better compression because the conflict table can be colored,
unlike in CT dispatch, where it remains uncompressed.

The DT Framework currently consists of 36 classes, 208 selectors, 494 methods,
and 1081 meaningful class/selector pairs. When the DT Framework is applied to a com-
pletely random ordering of itself, a SCCT-based dispatch table is generated in 0.436
seconds. Since compiling the framework requires 390 seconds, even the slowest dis-
patch technique and input ordering produce a dispatch table in a negligible mount of
time, relative to overall compilation time.

9 Acknowledgements

The authors would like to thank both Karel Driesen and Jan Vitek for several discussions
during the compilation of this paper. As well, theECOOP Program Committee provided
several useful suggestions that improved the paper. This research was supported in part
by the NSERC research grant OGP8191.

References

[AR92] P. Andre and J.C. Royer. Optimizing method search with lookup caches and incre-
mental coloring. In OOPSLA'92 Conference Proceedings, 1992.

[Cha92] Craig Chambers. Object-oriented multi-methods in Cecil. In ECOOP'92 Conference
Proceedings, 1992.

[Cha93] Craig Chambers. Predicate classes. In ECOOP'93 Conference Proceedings, 1993.
[Cox871 Brad Cox. Object-Oriented Programming, An Evolutionary Approach. Addison-

Wesley, 1987.
[DGC95] Jeffrey Dean, David Grove, and Craig Chambers. Optimzation of object-orientedpro-

grams using static class hierarchy analysis. In ECOOP'95 Conference Proceedings,
1995.

[DH95] K. Driesen and U. Holzle. Minimizing row displacement dispatch tables. In OOP-
SL.4'95 Conference Proceedings, 1995.

[DHV95] K. Driesen, U. Holzle, and J. Vitek. Message dispatch on pipelined processors. In
ECOOP'9.5 Conference Proceedings, 1995.

[DMSV89] R. Dixon, T. McKee, P. Schweizer, and M. Vaughan. A fast method dispatcher for
compiled languages with multiple inheritance. In OOPSLA'89 Conference Proceed-
ings, 1989.
Karel Driesen. Method lookup strategies in dynamically typed object-oriented pro-
gramming languages. Master's thesis, Vrije Universiteit Brussel, 1993.

[Dri93]

301

[DS94] L. Peter Deutsch and Alan Schiffman. Efficient implementation of the smalltalk-80
system. In Principles of Programming Languages, Salt Lake City, UT, 1994.

[ES90] M.A. EUis and B. Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, 1990.

(GHJV951 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patrerns:
Elements of Reusable Object-Oriented Somare. Addison-Wesley, 1995.

[GUS31 A. Goldberge and David Uobson. Smalltalk-80: The Language and its Implementa-
tion. Addison-Wesley, 1983.

[HCU91] Urs Holzle, Craig Chambers, and David Ungar. Optimizing dynamically-typed ob-
ject oriented languages with polymorphic inline caches. In ECOOP'91 Conference
Proceedings, 1991.
Wade Holst and Duane Szafron. Inheritance management and method dispatch in re-
flexive object-oriented languages. Technical Report TR-96-27, University of Alberta,
Edmonton, Canada, 1996.

[Kra83] Glenn Krasner. Smdtalk-80: Bits of History, Words of Advice. Addison-Wesley,
Reading, MA, 1983.

[OPSt95] M.T. Ozsu, R.J. Peters, D. Szafmn, B. Irani, A. Lipka, , and A. Munoz. Tigukat:
A uniform behavioral objectbase management system. In The VLDB Journal, pages
100-147,1995.
Jan Vitek and R. Nigel Horspool. Taming message passing: Efficient method lookup
for dynamically typed languages. In ECOOP'94 Conference Pmceedings, 1994.
Jan Vitek and R. Nigel Horspool. Compact dispatch tables for dynamically typed
programming languages. In Proceedings of the Intl. Conference on Compiler Con-
struction, 1996.

[HS96]

pH941

pH961

