
Distributed, Interoperable Workflow Support for
Electronic Commerce*

Mike P. Papazoglou 1, Manfred A. Jeusfeld 1
Hans Weigand 1, and Matthias Jarke 2

1 INFOLAB, Tilburg University, 5000 LE Tilburg, The Netherlands
{mikep, j eusfeld, weigand}@kub, nl,

WWW home page: http://infolabwww .kub. nl/infolab
2 RWTH Aachen, Informatik V, 52056 Aachen, Germany

j arke@informatik, rwth-aachen, de,
WWW home page: h t tp ://www-iS. inf ormat ik. rwth-aachen, de

Abs t r ac t . This paper describes a flexible distributed transactional work-
flow environment based on an extensible object-oriented framework built
around class libraries, application programming interfaces, and shared
services. The purpose of this environment is to support a range of EC-
like business activities including the support of financial transactions and
electronic contracts. This environment has as its aim to provide key in-
frastructure services for mediating and monitoring electronic commerce.

1 I n t r o d u c t i o n

Present business-to-business EC implementat ions au tomate only a small por-
tion of the electronic transaction process. For example, although ordering and
distribution of goods can be fast, the supporting accounting and inventory infor-
mation, payment and actual funds transfer - which require communicat ion with
database servers - tends to lag by a substantial amount of time. This t ime-lag
and the decoupling of accounting and payment information from the ordering
and delivery of goods and service processes, increases the transactions credit risks
and often leads to discrepancies between various information sources requiring
expensive and t ime-consuming reconciliations. Current applications do not yet
provide the robust transaction, messaging and da ta access services typical of
contemporary client/server applications. While there is considerable interest in
developing robust Internet applications, protection of significant investments in
client/server technology and interoperation with mainframe transaction servers
and legacy systems is a serious requirement.

Such issues are bet ter addressed by an integration of the organization's busi-
ness systems and legacy da ta with the Web and workflow management systems
based on distributed object technologies. To be successful with EC applications
workflow systems should be able to support an integrated view of all business

* This research is supported in part by the the European Union under the ESPRIT
project MEMO (Mediating and Monitoring Electronic Commerce).

Distributed, Interoperable Workflow Support for Electronic Commerce 193

elements that cut across departmental boundaries and manage the entire busi-
ness operational flow. This requires integrating business functions, application
program interfaces, and databases across departments and groups. This type of
distributed workflow technology [10] allows business processes to be shared and
passed across the value chain. This encourages networks of highly efficient vir-
tual organizations which will challenge the conventional business paradigm. The
most fully evolved and fully functional Internet-based organizations integrate
their databases with the Web to offer what is known as transactional commerce
[7]. The general idea is to use customer specific information to guide the trans-
actions between a company and a customer, while providing adequate security
and performance.

The combination of EC transactions and distributed workflows, as advocated
in this paper, provides the sequence of business activities, arrangement for the
delivery of work to the appropriate inter-organizational resources, tracking of
the status of business activities, coordination of the flow of information of (inter
and intra-) organizational activities and the possibility to decide among alterna-
tive execution paths. This results in the streamlining of business procedures and
more efficient communication between business partners. The seamless fusion
of distributed workflow and open nested (flexible) transaction technologies [3]
enables the development of applications that facilitate the effective integration
of routines and business processes across organizations and enable the exploita-
tion of distinctive competencies (from collaborating business partners) without
leakage at organizational boundaries.

In this paper we briefly describe an architectural framework that permits
the flexibility, interoperability and openness needed for EC applications rather
than a collection of independent solutions that may not work in concert. Fol-
lowing this we concentrate on the fusion of distributed workflow management
and flexible transaction technology to provide support for EC and we describe
EC components such as transactions, workflows and contracts. Issues such as
confidentiality, security and authentication are out of the scope of this paper.

2 R e l a t e d w o r k

This work is related to the following research activities.
The CommerceNet consortium, a leading consortium for Internet commerce,

has recently proposed the EcoSystem [2] an object-oriented architectural frame-
work for Internet commerce involving both e-commerce vendors and end users.
The Eco system comprises applications and services; a common business lan-
guage for applications to communicate; an extensible set of interface specifi-
cations, class libraries and network services; and a layer of middleware that
insulates applications from each other and from platform dependencies.

NetBill is a set of protocols for commerce in information goods and other
networked delivered services [1]. This protocol emphasizes atomicity, security
and privacy of transactions and certified delivery mechanisms. However, it per-
forms a lot of centralized computations on the NetBill server that checks digital

194 Mike Papazoglou et al.

signatures, funds availability and requires customers to have an account with
this sever.

Lehmann [8] proposes an ontology-based EDI, which uses a concept dictio-
nary that maintains appropriate EDI labels and descriptions of products. The
concept dictionary stores the semantic definition of the meaning of each EDI
element. This approach is done in two phases. In the first phase, the trading
partners negotiate by exchanging product type definitions and synchronize their
concept dictionaries. The second phase is the interchange of transactions. This
approach prescribes the means by which two trading partners' systems can reach
an agreement on common terms and concepts and the set of data needed for such
a transaction but does not specify the form of actual transactions.

3 S t r a w m a n R e f e r e n c e A r c h i t e c t u r e f o r E C B r o k e r i n g

In this section we describe an open architectural framework for Internet-based
EC. Purpose of this architecture is to mediate business-to-business communica-
tions and act as a central market-place where enterprises can find authoritative
information and use contracting support facilities to effectively conduct their
business transactions. This architecture is currently being developed as part of
the ESPRIT project MEMO (MEdiating and MOnitoring Electronic Commerce)
which aims at designing and developing a core electronic intermediary for elec-
tronic commerce. In particular, this project addresses the following issues:

1. Development of a flexible framework for navigating, searching and retrieving
pertinent information from a large number of interconnected information
repositories containing semi-structured business data.

2. Provision of a secure storage of meta data relevant for managing electronic
commerce between business partners while facilitating adaption to special-
ized markets.

3. Provision of notarial-like services which support the negotiation and con-
tracting phase of electronic commerce by means of a formal language for
business communications (FLBC). This language lets application parties
communicate by means of meaningful messages and protocols that model
business terms and communications based on speech acts and illocutionary
logic [16].

4. The coupling of the FLBC with distributed workflows in a way that can
result in the execution of EC-like flexible transactions.

We view the EC-Brokering and Notarial Service (ECBNS) as a system that
performs mediating tasks in the world of electronic commerce and facilitates the
evolution of the Internet into a interconnected marketplace, supporting the ex-
change of information regarding a wide variety of customers, suppliers, products
and services. The ECBNS contains the following modules (see Figure 1.):

1. A Search Engine that allows searching and browsing electronic directories
and catalogs containing information about potential business partners. The

Distributed, Interoperable Workflow Support for Electronic Commerce 195

Fig. 1. The EBCNS architecture.

Search Engine makes use of a Meta-Data repository (business profiles, prod-
uct database) and external databases. The search engine uses a standard
terminology in order to describe products in a particular domain and maps
between a product an its functionality in order to support queries that ask
for products providing a given functionality.

2. A Negotiating and Contracting Manager which supports negotiating and
specifying the terms of a transaction - that is, the terms of exchange and pay-
ment. These terms may cover delivery, refund policies, arranging for credit,
installment payments, distribution rights, etc. These terms are standardized
and the negotiation protocol(s) are described by means of FLBC. FLBC
message types, as well as higher-level components, are stored in the FLBC
component library.

3. The final result of the Negotiating and Contracting is a business contract
that is stored in the Contract Base. This serves as input to the EDIFACT
workflow manager that supports the execution of the contract with standard
EDI software.

4. The Workflow Manager which automates and maps cross-organizational busi-
ness processes, relating to billing and accounting services, debit/credit , in-
voicing, etc, to flexible EC transactions.

196 Mike Papazoglou et al.

The log of the ECBNS plays a central role in terms of reliability, authentica-
tion and non-repudiation between business partners. The ECBNS must be able
to recover from software and hardware failures. Thus the log has to contain all
necessary information to re-start it when a crash has occurred. There are two
kinds of applications that may be affected:

1. Transactions on the meta-data repository. These can be restarted after re-
covery from the crash using conventional database techniques.

2. Contract enactments and EC-like transactions. These are more subtle since
they are long-running activities and their failure would create immense prob-
lems for business deals. A business deal is a collection of interrelated con-
tracts between a known group of business partners. Here recovery techniques
for flexible transactions can be used [3].

Additionally, the log records vital information about the partners involved
in a business deal. It stores the start and end time end of a contract enactment,
communications inside a workflow together with state information of the work-
flow, and events inside transactions. Partners involved in a contract negotiation
and a contract enactment have read permission on the log file, i.e. they can
use it to learn about the state of their business relation. Non-fullfillment of an
obligation (encoded as a statement in FLBC) is also regarded as an event and
recorded in the log. Such data may be used as legal evidence provided that the
partners have agreed on the legal relevance of the log file.

In MEMO it is anticipated that there would be several instances of the
ECBNS (just like ORBs for CORBA-enabled applications) and each of them
will be managed and monitored by a Trusted Third Party (TTP) , e.g., a finan-
cial institution, a Chamber of Commerce, etc. T T P s act here perform mediating
tasks between customers and suppliers. In this way this architecture has the
potential to evolve into a interconnected marketplace, facilitating the exchange
of a wide variety of products and services.

4 A L a y e r e d a p p r o a c h t o E l e c t r o n i c C o m m e r c e

The architecture presented in section-2 will consist of an extensible object-
oriented framework (class libraries, APIs, and shared services) from which devel-
opers can assemble applications from existing components. These applications
could subsequently be reused in other applications. The EC application frame-
work is a framework for building Internet Vertical-Market (IV-Market) applica-
tions based on modeling support for key business processes and services. For this
purpose we follow a layered approach and view an EC application framework,
based on the architecture depicted in Figure 1, as comprising several layers (see
Figure 2). Because these layers are built on each other, the resulting applica-
tions are tightly linked through an infrastructure of shared services. The EC
application framework layers are organized as follows:

Distributed, Interoperable Workflow Support for Electronic Commerce

C O N T R A C T L A Y E R

197

W O R K F L O W L A Y E R

B U S I N E S S S E R V I C E S
L A Y E R

T R A N S A C T I O N L A Y E R

E N A C T M E N T & N E T W O R K
L A Y E R

Fig. 2. Electronic Commerce Layers.

IV-Marke t Services: this layer comprises of services specific to closely aligned
vertical markets, such as real estate, securities trading, manufacturing, or any
vertical supply chain.

Con t rac t Layer: this layer comprises services that allow buyers and sellers to
coordinate their business activities represented in terms ofcross-organizationM
workflow communication activities that describe contractual elements such
obligations, violation-conditions, and sanctions.

Workflow Layer: this layer allows the representation of business processes that
cut across organizationM and geographic boundaries.

Business Services Layer: this layer represents generic business processes and
application components common to multiple IV-Markets. These include re-
tail (shopping order fullfilment and shipping) and business-to-business func-
tions (procurement, order entry, inventory, supply chain management, etc).

Transac t ion Services: the business services and workflow layers are imple-
mented as value-added business and workflow capabilities layered on top of a
flexible EC transaction service layer. This layer provides flexible transaction
support for such services as funds transfer, payment, billing and accounting
services, invoicing, remittance, debit/credit and models contingency, excep-
tion and remedial facilities.

E n a c t m e n t / N e t w o r k Layer: this layer provides the run-time environment
and the reliability/security services to accommodate mission-critical business
requirements. It caters for initiating, executing, sequencing and controlling
instances of a process definition in conjunction with multi-cast protocols,
delivery receipts, authenticated packages and smart firewalls [2].

Figure 3 depicts a meta-model that specifies the basic entities involved in con-
tracts, workflows, transactions and business activities. These are the principal
parameters to be specified in designing IV-Market applications. In the follow-
ing we will describe the key entities involved in this meta-model starting from
transactions.

198 Mike Papazoglou et al.

WORKFLOW ~ connects .~ CONTRACT
DEFINITION

lc~176
I I uses J WORK ,OW

m a y - h a v e ~ ~ ~uses

TRANSACTIONA, INVOKED BUSINESS ACTIVITY APPLICATION ACTIVITY

Fig. 3. Meta-model specifying basic entities involved in the EC layers.

4.1 C h a r a c t e r i s t i c s o f EC T r a n s a c t i o n s

EC transactions are generMly governed by contracts and update accounts may
include the exchange of bills and invoices, and exchange of financial information
services. EC transactions must provide modeling support and mediate commu-
nication, interaction, and coordination among collaborating people and business
activities within and between organizations. Transaction support for such coop-
erative applications demands non-traditional and rather complex mechanisms [6]
to support the sharing of uncommitted data between concurrently active (and
possibly nested) subtransactions which may have long duration. This concept is
known as open nesting and has been proposed by the multi-database commu-
nity to increase transaction concurrency and throughput. However, it requires
relaxation of standard properties of the traditional database transaction model
such as serializability and isolation [3]. Flexible transaction models address only
partly the requirements of workflow applications. Part of the problem is that
EC transactions substantially differ from conventional nested database transac-
tions as they may include a variety of unconventional behavioral features 1 which
include the following:

. General purpose information:
(a) who is involved in the transaction.
(b) what is being transacted.
(c) the destination of payment and delivery.

1 Some of the characteristics of EC transactions can also be found in the National
Information lnitiative's (NII) white paper on Electronic Commerce [9].

Distributed, Interoperable Workflow Support for Electronic Commerce 199

(d) the transaction time frame.
(e) permissible operations.

2. Special purpose information:
(a) links to other transactions.
(b) receipts and acknowledgments.
(c) identification of money transferred outside national boundaries.

3. Advanced functionality:
(a) the ability to support reversible (compensatible) and repaired (contin-

gency) transactions.
(b) the ability to reconcile and link transactions with other transactions.
(c) the ability to specify contractual agreements, liabilities and dispute res-

olution policies.
(d) the ability to support secure EDI transactions that guarantee integrity

of information, confidentiality and non-repudiation.
(e) the ability for transactions to be monitored logged and recovered.

In contrast to flexible transaction models, EC transactions and workflow ap-
plications, due to their very nature, are not data-centered. EC characteristics
are better addressed by a process-centered approach to transaction management
that supports long-lived concurrent, nested, multi-threaded activities [10]. We
are currently developing a framework that addresses this situation by provid-
ing unified programming and flexible transaction support necessary to program
network-centric workflow applications [10] . The properties of EC transactions
(occasionally referred to as actions) in this work are summarized in the following:

S p e c i f i c a t i o n o f c o m p e n s a t i n g ac t ions : these are used to undo, from a se-
mantic point of view, the effects of an action at a particular site. Rules
defining compensating transactions are attached to objects and facilities are
provided for transactions to distinguish between such tasks and proceed ac-
cordingly.

S p e c i f i c a t i o n o f c o n t i n g e n c y ac t ions : to execute in case that a given trans-
action fails. Actions can be vital or non-vital. If a vital transaction aborts,
then its parent must abort. Non-vital actions can be simulated by serial-
alternative and parallel alternative schedulers, whereas serial and parallel
schedulers can simulate vital transactions.

U n s a f e C o m m i t m e n t : actions normally communicate via shared objects and
data structures. Once an activity commits, its effects become automatically
visible to other activities. To avoid corrupting shared data structures and
violate internal consistency - in case tat uncommitted transactions have
"observed" each other's intermediate results - the notion of unsafe commit
is introduced.

P r i m i t i v e T r a n s a c t i o n Class: this type provides low level transaction func-
tionality and supports primitives such as unsa fe commit, and cance l .

A t o m i c T r a n s a c t i o n Class: this class uses primitive classes to materialize
atomic units of work such as contingency and compensatable actions.

S c h e d u l i n g Classes: these implement the scheduling and synchronization pro-
cesses described in the workflow layer.

200 Mike Papazoglou et al.

In summary, our approach to EC transactions allows transactions to be
nested, shared data, reversed, repaired, monitored, logged/recorded, audited,
reconciled and linked with other transactions.

4.2 T h e B u s i n e s s S e rv i ce s L a y e r

The business service layer holds a collection of predefined workflow components.
The components are encoded knowledge about how certain sequences of workflow
actions can be performed. For example, a component sh• may specify
the s tandard way of sending a product p r via a t ransport agency ag from a
supplier sup to a customer ous t , irrespectively of the companies being involved.
The components of the business services layer are parameterized. The advantage
of such components is that certain parts of a workflow must not be defined from
scratch.

The approach taken here resembles the reference models found in the ARIS
toolset [13]. Reference models in ARIS are diagrams which represent a proto-
typical model of an aspect of an enterprise. Instead of modeling the enterprise
from scratch, one can copy the suitable reference model and fit it to the specific
requirements of the application.

4.3 T h e W o r k f l o w L a y e r

We base the workflow layer on previous work in progress reported in [10] where
we provide transactional semantics for distributed workflow programs on the
basis of an object library. This library supports specifying the interactions be-
tween transactions and workflows which are long-lived activities characterized
by a well-defined set of process actions. The workflow layer models processes as
complex and possibly nested transactions involving customers, performers, and
conditions for satisfaction (including scheduling constraints) for the process as a
whole, as well as for each milestone action within the process. Work units that
can be found on the leaf-level of such an activity tree are mapped to conven-
tional ACID database transactions. The attr ibutes that apply to each workflow
activity (process), which may spawn transactions (actions), can be summarized
as follows:

Pre-activity/post-activity conditions: These are the conditions under which
a particular activity can be enacted and can be terminated. Actions may
be specified to s tar t before or after the activity starts or terminates. Such
scheduling actions can be serial actions (executed sequentially), parallel,
event-to-start (conditional), serial alternative, and parallel alternative ac-
tions. These workflow types are described in what follows.

Se r i a l s c h e d u l e r : this allows actions to be submit ted and commit ted sequen-
tially. The actions within this scheduler establish a begin-on-commit depen-
dency with each other, i.e., an action cannot begin unless the previous one
commits .

Distributed, Interoperable Workflow Support for Electronic Commerce 201

P a r a l l e l s c h e d u l e r : this allows all of its actions to be submitted and executed
in parallel as independent actions. These actions also commit independently.
It is expected that all actions should commit before their parent commits.

S e r i a l - a l t e r n a t i v e s c h e d u l e r : this at tempts actions sequentially until one pro-
duces the desired outcome. The parent only aborts if all its descendent ac-
tions were tried unsuccessfully or if the transaction is timed out.

P a r a l l e l - a l t e r n a t i v e s chedu l e r : where alternative choices are pursued in par-
allel until one succeeds.

D o w n l o a d a b l e s chedu l e r : whereby workflows can be downloaded remotely
and executed locally. This is possible in cases where organizations partner
very closely to each other and may actually wish to implement homogeneous
environments and download workfiow scripts to each other for just-in-time
execution [12].

S c h e d u l i n g c o n s t r a i n t s a n d d e p e n d e n c i e s : activity scheduling and timing
can be specified as part of workflow activities, thereby allowing more flexi-
bility for transaction scheduling.

E x c e p t i o n h a n d l i n g : pre-defined handlers can be executed depending on the
type of exception raised. This allows to trap and distinguish different kinds
of aborts and special messages.

S p e c i f i c a t i o n o f c o m m i t d e p e n d e n c i e s : between actions so that a task waits
for a signal from another, i.e., blocks, before it is allowed to commit. Also
automatic cancel procedures are provided to semantically undo the effects
of unsafely-committed actions if the global activity fails.

In the following we give a high-level view of how a workflow process can be
coded. For this purpose we use natural language-like description.

dass PROCESS-NAME{parameters} is T Y P E with
Local variables

work is
scheduling & synchronization constraints
action-execution

end (s ta tus) ; - -work

- - blocking $z synchronizing statements
- - produce results

end(status);

As shown a workflow process has a type, i.e., scheduler, that can take the
values described previously. After instantiation a process object executes its
work routine which describes the process script, i.e., the sequence of actions,
e.g., other workflows or transactions, it executes over its lifespan. The work

statement materializes the behavioral part of a process object which provides
the means to create other processes, actions, and objects at remote sites; and
to request asynchronous execution of their features and to communicate with
them. A process can spawn actions, each with its own independent thread of

202 Mike Papazoglou et al.

control, executed in the sequence specified in the work statement. These actions
may have to be synchronized.

4.4 C o n t r a c t L a y e r

Electronic contracts link cash flows to the exchanges of products, goods, and
services rendered. Contracts include instructions regarding the handling, rout-
ing, scheduling, storing and workflow of the contract itself and of the objects
contained or referenced by the contract. Contract instructions can address li-
abilities, acceptance forms of payment , terms of payment , billing and payment
instructions, delivery instructions, return policies, methods of dispute resolution,
and so on [9].

In [15] we have extended the workflow constructs described above to model
situations that involve contracts and obligations. A contract is modeled as a se-
mantic agreement between two or more collaborating (distributed) workflows in
terms of a protocol-oriented specification of obligations. Contracts spell out the
conditions under which transactions representing payments are to be made and
include payment and other contract related instructions in the form of obliga-
tions. Contracts specify also conditions under which a contract can be reviewed,
violated and sanctions for potential contract violations. In general, a contract
represents a reciprocal relationship between a customer and a supplier(s) and
typically consists of two or more interconnected workflow loops. Overall a con-
tract specifies the exchange of a special set of synchronization messages at prede-
fined activities or events mediated between two (or more) workflow enactments.
A specification of a contract based on the workflows and transactions, described
in the previous subsections, follows.

contract class PROCESS-NAME{cormected-workf lows, parameters} is S E R I A L
with

Local variables
- -blocking ~ synchronizing s tatements

obligation is
obligation-execu tion
changed_by-part
violation-part
sanction-part

end ; - -obligation

obligation is

end ; - -obligation

end-contract;

The fact that a contract is a serial action implies that its obligations must
be executed in sequence.

Distributed, Interoperable Workflow Support for Electronic Commerce 203

5 I m p l e m e n t a t i o n S t r a t e g y

MEMO is designed as a user-driven project where small and medium enterprises
review the quality of the service in three milestones. The user groups are orga-
nized by Chambers of Commerce in Germany and the Netherlands, as well as
by an Internet service provider in Spain. At the first milestone, the meta data
repository will be made available to the user groups. The second milestone adds
the search engine and the negotiation support. Finally, the integrated EC bro-
ker will be constructed and evaluated within a major trade bank (which also
serves as the coordinating partner in MEMO). The integrated EC broker will
be implemented on the basis of existing building blocks such as the meta-data
repository and the search engine.

The meta data repository is based on the ConceptBase system [5]. Concept-
Base has a highly flexible data model for meta data and an expressive deductive
query language. It can capture and link information from heterogeneous data
sources at different abstraction levels. For example, ConceptBase can record the
various product description schemata as well as their instances, the product
data.

The search engine is based on an extension of an initial prototype system [11]
developed around subject gateways which provide subject related terminology
and search facilities. It is anticipated that a subject gateway will be developed
for each IV-Market to include product denitiions and descriptions as well as a
standard terminology for interaction.

6 S u m m a r y

In this paper we have described architectural requirements for electronic com-
merce relying on core constructs such as automated workflows, transactions and
electronic contracts required for transacting parties. In particular we described
a process-centric environment based on an extensible object-oriented framework
(class libraries, application programming interfaces, and shared services) on
which EC application developers can develop and assemble applications from
standard components or even specialize existing applications. This EC develop-
ment environment is realized on a unification of concepts from object-oriented
programming with distributed interprocess communication, core open-nested
transaction primitives and the notion of workflows and contracts to provide
modelling solutions for advanced business applications.

R e f e r e n c e s

1. Cox, B., Tygar, 3., Sirbu, M.: NetBill Security and Transaction Protocol. Proceed-
ings 1st Usenix Workshop 1995, htttp://www.nin.cmu.edu/NETBILL/pubs.html.

2. Cross-Industry Working Team: Electronic Commerce in the National Information
Initiative. White paper, winter 1995, http://nii.nist.gov/pubs.

204 Mike Papazoglou et al.

3. Elmargarmid, A.: Transaction Models for Advanced Database Applications.
Morgan-Kaufmann, February, 1992, San Mateo, CA.

4. Georgakopoulos, D., Hornick, M., Sheth, A.: An Overview of Workflow Management:
from Process Modeling to Workflow Automation Infrastructure. Distributed and
Parallel Databases 3 (1995) 119-153.

5. Jarke, M., GallersdSrfer, R., Jeusfeld, M.A., Staudt, M., Eherer, S.: ConceptBase - a
deductive object base for meta data management. Journal of Intelligent Information
Systems 4(2) (1995) 167-192

6. Hsu, M.: Workflow Systems. IEEE Data Engineering Bulletin 18(1) (1995).
7. Kosiur, D.: Understanding Electronic Commerce. Microsoft Press (1997).
8. Lehmann, F.: Machine-negotiated Ontology-based EDI Electronic Data Interchange.

Electronic Commerce: Current Research Issues & Applications, Springer-Verlag
(1996).

9. National Information Infrastructure: Electronic Commerce in the NII.
ht tp://nii.nist.gov/pubs/pubs_list _and_abstract.html

10. Papazoglou, M.P., Delis, A., Bouguettaya, A., Haghjoo, M.: Class Library Support
for Workflow Environments and Applications. IEEE Transactions on Computer Sys-
tems 46(6) 673-686 (1997).

11. Papazoglou, M.P., Weigand, H., Milliner, S.: TopiCA: A Semantic Framework for
Landscaping the Information Space in Federated Digital Libraries. DS-7: 7th Int'l
Conf. on Data Semantics, Leysin, Switzerland, (1997).

12. Paul, S, et al.: RainMan: A Workflow System for the Internet. Proceedings USENIX
Symposium on Internet Technologies and Systems, Monterey, Cal. (1997).

13. Scheer, A.W.: Business Process Reengineering - Reference Models for Industrial
Business Processes. Springer-Verlag (1994).

14. Sheth, A. (ed.): NSF Workshop on Workflow and Process Automation in Informa-
tion Systems, Univ. of Georgia (1996).

15. Verharen, E.M., Papazoglou, M.P.: Introducing Contracting in Distributed Trans-
actional Worldtows. Proceedings Hawaii Int'l Conf. on System Sciences (HICSS-31),
Hawaii (1998).

16. Weigand, H., Verharen, E.M., Dignum, F.: Dynamic Business Models as a Basis
for Interoperable Transaction Design. Information Systems 22(2) (1997).

