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A b s t r a c t .  In this paper we consider a new type of cryptographic scheme, 
which can decode concealed images without any cryptographic compu- 
tations. The scheme is perfectly secure and very easy to implement. We 
extend it into a visual variant of the k out of n secret shazing problem, 
in which a dealer provides a transparency to each one of the n users; any 
k of them ca~ see the image by stacking their trazasparencies, but any 
k - 1 of them gain no information about it. 

1 I n t r o d u c t i o n  

In this paper  we consider the problem of encrypting written material  (printed 
text,  handwri t ten notes, pictures, etc.) in a perfectly secure way which can be 
decoded directly by the human visual system. The basic model consists of a 
printed page of ciphertext (which can be sent by mail  or faxed) and a printed 
t ransparency (which serves as a secret key). The original cleartext is revealed by 
placing the t ransparency with the key over the page with the ciphertext, even 
though each one of them is indistinguishable from random noise. The system is 
similar to a one t ime pad in the sense that  each page of ciphertext is decrypted 
with a different transparency. Due to its simplicity, the system can be used by 
anyone without  any knowledge of cryptography and without performing any 
cryptographic computat ions.  

The best way to visualize the visual cryptographic scheme is to consider a 
concrete example.  At the end of this extended abstract  we enclose two random 
looking dot patterns.  To decrypt the secret message, the reader should photocopy 
each pat tern  on a separate transparency, align them carefully, and project the 
result with an overhead projector. 

This  basic model can be extended into a visual variant of the k out of n 
secret sharing problem: Given a written message, we would like to generate n 
transparencies so tha t  the original message is visible if any k (or more) of ' them 
are stacked together, but  totally invisible if fewer than k transparencies are 
stacked together (or analysed by any other method).  The original encryption 
problem can be considered as a 2 out of 2 secret sharing problem. 

The main results of this paper (besides introducing this new paradigm of 
cryptographic schemes) include practical implementat ions of a k out of n visual 
secret sharing scheme for small values of k and n, as well as efficient asymptot ic  
constructions which can be proven opt imal  within certain classes of schemes. 

* Research supported by an Alon Fellowship. 



2 T h e  M o d e l  

The simplest version of the visual secret sharing problem assumes that  the mes- 
sage consists of a collection of black and white pixels and each pixel is handled 
separately 2. Each original pixel appears in n modified versions (called shares), 
one for each transparency. Each share is a collection of m black and white sub- 
pixels, which are printed in close proximity to each other so that  the human 
visual system averages their individual black/white contributions. The result- 
ing structure can be described by an n x m Boolean matr ix  S = [sij] where 
sij --- 1 iff the j t h  subpixel in t h e / t h  transparency is black. When transparen- 
cies il, i2,. �9 �9 i~ are stacked together in a way which properly aligns the subpixels, 
we see a combined share whose black subpixels are represented by the Boolean 
"or" of rows i l , i 2 , . . . i t  in S. The grey level of this combined share is propor- 
tional to the Hamming  weight H ( V )  of the "or"ed m-vector V. This grey level is 
interpreted by the visual system of the users as black if H ( V )  > d and as white 
if H ( V )  < d - c~m for some fixed threshold 1 < d < m and relative difference 
c~>0 .  

This framework resembles the framework of linear codes, with the important  
difference that  the underlying algebraic structure is a semi-group rather than a 
group. In particular,  the visual effect of a black subpixel in one of the transparen- 
cies cannot be undone by the colour of that  subpixel in other transparencies 
which are laid over it. This monotonicity rules out common encryption tech- 
niques which add random noise to the cleartext during the encryption process, 
and subtracts  the same noise from the ciphertext during the decryption process. 
It  also rules out the more natural  model in which a white pixel is represented 
by a completely white collection of subpixels and a black pixel is represented by 
a completely black collection of subpixels, and thus we have to use a threshold 
d and relative difference ~ > 0 to distinguish between the colours. 

D e f i n i t i o n  1. A solution to the k out of n visual secret sharing scheme consists 
of two collections of n x m Boolean matrices Co and C1. To share a white pixel, 
the deMer randomly chooses one of the matrices in Co, and to share a black 
pixel, the dealer randomly chooses one of the matrices in C1. The chosen mat r ix  
defines the colour of the m subpixels in each one of the n transparencies. The 
solution is considered valid if the following three conditions are met: 

1. For any S in Co, the "or" V of any k of the n rows satisfies H ( V )  < d - ~  .m.  
2. For any S in C1, the "or" V of any k of the n rows satisfies H ( V )  > cl. 
3. For any subset {il ,  i~. , . . . iq} of {1, 2 . . . .  n} with q < k, the two collections of 

q • m matrices Dt for t E {0, 1} obtained by restricting each n • m matr ix  
in C~ (where t = 0, l)  to rows i l ,  i2 .... , iq are indistinguishable in the sense 
tha t  they contain the same matrices with the same frequencies. 

Condition 3 implies that  by inspecting fewer than k shares, even an infinitely 
powerful cryptanalyst  cannot gain any advantage in deciding whether the shared 

2 It is conceivable that handling larger groups of pixels simultaneously yields better 
results 



pixel was white or black. In most  of our constructions, there is a function f such 
tha t  the combined shares from q < k transparencies consist of all the V's with 
H(V)  = f(q)  with uniform probabili ty distribution, regardless of whether the 
matrices were taken from Co or C1. Such a scheme is called uniform. The first 
two conditions are called contrast and the third condition is called security. 

The impor tan t  parameters  of a scheme are: 

- m, the number  of pixels in a share. This represents the loss in resolution 
f rom the original picture to the shared one. We would like m to be as small 
as possible. 

- a ,  the relative difference in weight between combined shares that  come from 
a white pixel and a black pixel in the original picture. This represents the 
loss in contrast. We would like a to be as large as possible. 

- r, the size of the collections Co and C1 (they need not be the same size, but in 
all of our constructions they are). log r represents the number of random bits 
needed to generate the shares and does not effect the quality of the picture. 

R e s u l t s :  We have a number  of constructions for specific values of k and n. For 
general k we have a construction for the k out k problem with m = 2 k-1 and 

= 2k1_1 and we have a proof of opt imali ty  of this scheme. For general k and n 
1 we have a construction with m = logn �9 2 ~176 and a = ~--a~- 

3 E f f i c i e n t  s o l u t i o n s  f o r  s m a l l  k a n d  n 

The 2 out of n visual secret sharing problem can be solved by the following 
collections of n x n matrices: 

Co = {all the matrices obtMned by permuting the columns of 

t00 

C1 = {all the matrices obtained by permuting the columns of 

and n -  1 
Hamming  
Hamming  
two cases 

Any single share in either Co or C1 is a random choice of one black 
white subpixels. Any two shares of a white pixel have a combined 
weight of 1, whereas any two shares of a 1 pixel have a combined 
weight of 2, which looks darker. The visual difference between the 
becomes clearer as we stack additional transparencies. 

The original problem of visual cryptography is the special case of a 2 out of 
2 visual secret sharing problem. It  can be solved with two subpixels per pixel, 
but in practice this can distort the aspect ratio of the original image. It  is thus 



horizontal shares vertical shares diagonal shares 

Fig. 1. 

recommended to use 4 subpixels arranged in a 2 x 2 array where each share has 
one of the visual forms in Figure 1. A white pixel is shared into two identical 
arrays from this list, and a black pixel is shared into two complementary arrays 
from this list. Any single share is a random choice of two black and two white 
subpixels, which looks medium grey. When two shares are stacked together, the 
result is either medium grey (which represents white) or completely black (which 
represents black). 

The next case is the 3 out of 3 visual secret sharing problem, which is solved 
by the following scheme: 

[0011] 
C0 = { a l l themat r ices  obtained by permuting the columns of |01011 } 

k0110J 

[1100] 
el = {all the matrices obtained by permuting the columns of | 1010| } 

[1001J 

Note that  the six shares described by the rows of Co and C1 are exactly the six 
2 x 2 arrays of subpixels from Fig. 1. Each matrix in either Co or C1 contains one 
horizontal share, one vertical share and one diagonal share. Each share contains 
a random selection of two black subpixels, and any pair of shares from one of 
the matrices contains a random selection of one common black subpixel and 
two individual black subpixels. Consequently, the analysis of one or two shares 
makes it impossible to distinguish between Co and Cl. However, a stack of three 
transparencies from Co is only 3/4 black, whereas a stack of three transparencies 
from C1 is completely black. 

The following scheme generalizes this 3 out of 3 scheme into a 3 out of n 
scheme for an arbitrary n >_ 3. Let B be the black n x (n - 2) matrix which 
contains only l's, and let I be the identity n x n matrix which contains l 's  on the 
diagonal and 0's elsewhere. Let BI denote the n x (2n - 2) matrix obtained by 
concatenating B and I, and let c(BI) be the Boolean complement of the matrix 
BI. Then 

Co = {all the matrices obtained by permuting the columns of c(BI)} 
C1 = {all the matrices obtained by permuting the columns of BI} 



has the following properties: Any single share contains an arbitrary collection 
of n - 1 black and n - 1 white subpixels; any pair of shares have n - 2 common 
black and two individual black subpixels; any stacked triplet of shares from go 
has n black subpixels, whereas any stacked triplet of shares from C1 has n + 1 
black subpixels. 

The 4 out of 4 visual secret sharing problem can be solved by the shares 
described in Figure 2 (along with all their permutations). 

shares of  a white pixel 

Fig. 2. 

shares of  a black pixel 

Any single share contains 5 black subpixels, any stacked pair of shares con- 
tains 7 black subpixels, any stacked triplet of shares contains 8 black subpixels, 
and any stacked quadruple of shares contains either 8 or 9 black subpixels, de- 
pending on whether the shares were taken from go or gl. It is possible to reduce 
the number of subpixels from 9 to 8, but then they cannot be packed into a 
square array without distorting their aspect ratio. 

4 A g e n e r a l  k o u t  o f  k s c h e m e  

We now describe two general constructions which can solve any k out of k visual 
secret sharing problem by using 2 k and 2 k-1 subpixels respectively. We then 
prove that  the second construction is optimal in that any k out k scheme must 
use at least 2 k-1 pixels. 
C o n s t r u c t i o n  1 

To define the two collections of matrices we make use of two lists of vectors 
jo ,  j o , . . . j o  and J11, j 1 , . . . j ~ .  Let jo ,  j o , . . . j o  be vectors of length k over 
GF[2] with the property that  every k - 1 of them are linearly independent over 



GF[2] ,  but  the set of  all k vectors is not  independent.  Such a collection can 
be easily constructed,  e.g. let j o  = 0 i - l l 0 k - i  for 1 < i < k and J~ = lk-10 .  
Let J~, J ~ , . . .  J~ be vectors of length k over GF[2]  with the proper ty  tha t  they 
are linearly independent  over GF[2] .  (This can be thought  of  as a first order 
Reed-Muller code [7]) 

Each list defines a k x 2 k mat r ix  S t for t E {0, 1} and the collections Co and 
C1 are obta ined by permut ing  the columns of the corresponding mat r ix  in all 
possible ways. We index the columns of S t by vectors of  length k over GF[2] .  
For t E {0, 1} let S ~ be defined as follows: St[i ,x]  - <  J t , x  > for any 1 < i < k 
and any vector x of length k over GF[2] where < x, y > denotes the inner 
p roduc t  over GF[2] .  

L e m m a  2. The above scheme is a k oul of k scheme with parameters  m = 2 k, 
= 1/2 k and r = 2k!. 

P r o o f :  In order to show contrast ,  note tha t  in mat r ix  S O there are two columns 
tha t  are all zero; in the example given theses are the column indexed by x = O k 
and the column indexed by x = 0 k - l l .  On the other hand,  in S 1 there is only 
one column tha t  is all 0, the one corresponding to x = O k. Therefore in any 
pe rmuta t ion  of  S O the "or" of  the k rows yields 2 k - 2 ones, whereas in any 
pe rmuta t ion  of  S 1 the "or ~ of the k rows yields 2 k - 1 ones. 

In order to show security, note  tha t  the vectors corresponding to any k - 1 
rows in bo th  S O nd S 1 are linearly independent  over GF[2] .  Therefore if one 
considers the rows as subsets of a ground set of size 2 k, then every intersection 
of  k - 1 rows or their complement  has the same size, two. (Note tha t  we include 
complemented  sets, and thus if all possible intersections of  k - 1 are the same; 
then all smaller intersections are the same as well.) Hence a r andom permuta t ion  
of  the columns yields the same distr ibution regardless of  which k - 1 rows were 
chosen (provided the corresponding vectors are linearly independent) .  [] 
C o n s t r u c t i o n  2 

We now show a slightly bet ter  scheme with parameters  m = 2 k - l ,  ol = 
1/2 k-1 and r = 2k- l ! .  Consider a ground set W = {el, e 2 , . . ,  ek} of  k elements 
and let 7rl,Tr2,.. .r2~-1 be a list of  all the subsets of  even cardinal i ty and let 
or1, a~ , . . . a2k -1  be a list of  all the subsets of  W of  odd cardinali ty (the order is 
not  impor tan t ) .  

Each list defines the following k x 2 k-1 matr ices S o and SI :  For 1 < i < k 
and 1 < j  < 2 k-1 let S~ = 1 iffei  e 7rj and S l [ i , j ]  = 1 iffei  E aj .  

As in the construct ion above, the collections Co and C1 are obtained by per- 
mu t ing  all the columns of  the corresponding matr ix.  

L e m m a 3 .  The above scheme is a k out of  k scheme w~th parameters  m = 2 k - l ,  
a = 1/2 k-1 and r = 2k-1!. 

P r o o f :  In order to show contrast ,  note the in mat r ix  S O there is one column 
tha t  is all zero, the one indexed by the empty  set. On the other  hand,  in S 1 
there is no column tha t  is all 0. Therefore in any permuta t ion  of  S o the "or" of  



the k rows yields only 2 k-1 - 1 ones, whereas in any permutat ion of S 1 the "or" 
of the k rows yields 2 k-1 ones. 

In order to show security, note that  if one examines any k - 1 rows in either 
S o and S 1 then the structure discovered is similar: consider the rows as subsets 
of a ground set of size 2k-1; every intersection of k - 1 rows or their complement 
has the same size, two. Hence a random permutat ion of the columns yields the 
same distribution regardless of which k - 1 rows were chosen. 

[] 

U p p e r  b o u n d  o n  c~: 
We show tha t  c~ must  be exponentially small as a function of k and, in fact, 

get a tight bound tha t  a >__ 2 k-1. The key combinatorial fact used is the following 
(see [5, 6]: given two sequences of sets A1, A2 , . . .  Ak and B1, B 2 , . . .  B/c of some 
ground set G such that  for every subset U C {1, ..k} of size at most k -  1 we have 
][qi~u Ail = ]Nieu Bil, then I U,k=l Ail < 2L1 �9 IGI + ] to~=l Bil. In other words, 
if the intersections of the Ai 's and Bi 's  agree in size for all subsets smaller than 
k elements, then the difference in the union cannot be too large. 

Consider now a k out k scheme C with parameters  m, a and r. Let the two 
collections be Co and C1. We construct from the collections two sequences of sets 
A1, A2, �9 �9 �9 Ak and B1, B2,. �9 �9 Bk. The ground set is of size m .  r and its elements 
are indexed by (x, y) where 1 < x < r and 1 < y < m. Element (x, y) is in Ai iff 
S~ = 1 and element (x ,y)  is in Bi iffS~[iy] = 1. 

We claim tha t  for any U C {1, ..k} of size q < k the equality INieuAi] = 
[[')ieu Bi] holds. The security condition of C implies that  we can construct a 1-1 
mapping  between all the q x m matrices obtained from considering only rows 
corresponding to U in Co and the q • m matrices of C1 such that  any two matched 
matrices are identical. (Strictly speaking, the security condition is not strong 
enough to imply it, but given any scheme we can convert it into one that  has 
this property without changing a and m.) Therefore when considering ] ~ i e v  Ail 
and ] Nieu Bil the contribution of each member  of a pair of matched matrices 
is identical and hence [Niev  Ail = I ~ie~7 Bil. Applying now the combinatorial  
fact mentioned above yields tha t  [ U/~=I Bi[ <_ 2kl-,.rm + [uk=l Ai[ which means 
that  for at least one mat r ix  in C1 and one matr ix  in C0 the difference between 
the Hamming  weight of the "or" of their rows is at most 2~-1 "m. Hence we have 

T h e o r e m 4 .  In any k out k scheme a <<_ ~kl_~ andre>_2 ~-1. 

5 A g e n e r a l  k o u t  o f  n s c h e m e  

In this section we construct a k out of n scheme. What  we show is how to go 
f rom a k out of k scheme to a k out of n scheme. 

Let C be an k out of k visual secret sharing scheme with parameters  m, r, c~. 
The scheme C consists of two collections of k~x m Boolean matrices Co = 
T ~ T ~  ~ and Cl = T~, T ~ , . . . T ~ .  Furthermore, assume the scheme is uni- 
form, i.e. there is a function f(q) such that  for any matr ix  T/t where t E {0, 1} 
and 1 < i < r and for every 1 < q < k -  1 rows of T/t the Hamming weight of 



the "or" of the q rows is f ( q ) .  Note that  all our previous constructions have this 
property. 

Let H be a collection of s functions such that  

1. Vh E H we have h :  {1..n} ~-* {1..k} 
2. For all subsets B C {1..n} of size k and for all 1 < q _< k the probabil i ty 

tha t  a randomly chosen h E H yields q different values on B is the same. 
Denote this probabil i ty by/~q 

We construct from C and H a k out of n scheme C ~ as follows: 

- The ground set is V = U x H (i.e. it is of size m . l  and we consider its 
elements as indexed by a member  of U and a member  of H).  

- Each 1 < t < r e is indexed by a vector ( Q , t 2  . . . .  Q)  where each 1 _< t i  <_ r.  
- The matr ix  S~ for t = ( t l , t 2 , . . . Q ) )  where b E {0, 1} is defined as 

S~[i,  (j, h)] = T~bj[h(i),j] 

L e m m a  5. I f  C is a s c h e m e  wi th  p a r a m e t e r s  m ,  c~, r, then  C ~ is a s c h e m e  wi th  
p a r a m e t e r s  rn ~ = m �9 g, a '  = a �9 ~k,  r ~ = r s 

P r o o f :  In order to show contrast, note that  for any k rows in a mat r ix  S~ and 
any h E H,  if the subset corresponding to the k rows is mapped  to q < k different 
values by h, then we know by the assumption of uniformity that  the weight of 
the "or" of the q rows in C is f ( q ) .  The difference between white pixels and black 
pixels occurs only when h is 1 - 1 which happens a t / ~  of the h E H and it is 
c~. m in this case. Therefore the Hamming  weight of an "or" of k rows of a white 
pixel is at most  e ( ~ k .  (d - a m )  + ~ = ~  ~q .  f ( q ) )  and the weight of a black pixel 

k - 1  
is ~(~k " d + ~ q = l  flq " f ( q ) )  which means that  the relative difference between 
them is at l e a s t / ~  �9 a .  

In order to show security note that  we are essentially repeating g t imes the 
scheme C where each instance is independent of all other instances. Therefore 
from the security of C we get the security of S. [] 
C o n s t r u c t i o n  o f  H:  

One can construct H from a collection of k-wise independent hash functions 
(see e.g. [3], [4], [9]). Suppose that  H is such that  for any k values xl ,  x 2 , . . ,  x k  E 
{1,..n} the k random variables defined by X1 - h ( x l ) , X 2  - h ( x 2 ) , . . . X k  --  
h ( x k )  for a randomly chosen h E H are completely independent. Since they are 
independent, the probabili ty that  they yield q different values is the same, no 
ma t t e r  what  xl ,  x2 , . . ,  xk are. For a concrete example, assume that  k is a prime 
(otherwise we have to deal with its factors), and let I be such that  k I > n. The 
family H is based on the set of polynomials of degree k - 1 over GF[k-T], where 
for ever h E H there is a corresponding polynomial  q(x), and h ( x )  = q (x )  mod k. 
The size of H is about  n k. The probabi l i ty /~  that  a random h is 1 - 1 on a set 

k! (k/~) k ~-': 
of k elements is V > k~v~-s = :7~7~" We can therefore conclude by applying 
L e m m a  5: 

T h e o r e m 6 .  For  any  ~ and k there ex is t s  a v isual  secret  shar ing  s c h e m e  wi th  
p a r a m e t e r s  rn = n k . 2 ~-1 ,  (~ = ( 2 e ) - k / ~ - ~ ' k  and r = nk(2k- l ! ) .  



5.1 R e l a x i n g  t h e  c o n d i t i o n s  on  H 

Suppose now that  we relax Condition 2 in the definition of H to the following: 
there exists an c such that  for all subsets B C {1..n} of size k and for all 1 < q < k 
the probability that  a randomly chosen h E H yields q different values on B is 
the same to within c. As we shall see, this leeway allows for much smaller H's.  

Taking e to be small, say smaller than c~k/4,  cannot make a big difference 
in the quality of our construction: The Hamming weight of an "or" of k rows of 
a white pixel is at most 

k - 1  

~ ( ( ~  + c) . (d - a m )  + E ( / 3 q  + e) . f (q ) )  
q=l 

and the weight of a black pixel is at least 

k - 1  

~((1 - e ) /3k .d+  E e l -  c ) . ~ q . f ( q ) ) .  
q=l 

The relative difference between black and white is therefore at least/~k �9 c~ - 2e. 
Note that  the security of the scheme is not effected at all, since fewer than k 

shares never map to k different values. 
C o n s t r u c t i o n  o f  r e l a x e d  H:  

We use small-bzas probabzlity spaces to construct such a relaxed family (see 
[8], [2], [3] for definitions and constructions). A probability space with random 
variables that  are e-bias is an approximation to a probability space with com- 
pletely indpenedent random variables, in that the bias (i.e. the difference between 
the probabili ty tha t  there parity is 0 and 1) is bounded by �9 (as opposed to 0 in 
the complete independence). Similarly, a probability space which is k-wise e-bias 
is an approximation to k-wise independent probability spaces. 

Assume that  k is a power of 2. Let R be a k log k-wise 6-bias probability 
space on n log k random variables which takes values in {0, 1}. They are indexed 
as Y/j for 1 < i < n and 1 < j < log k. There are explicit constructions of such 
probability spaces of size 2 ~ log k) log n (see [8] [1]). 

Each function h corresponds to a point in the probability space, h(x)  is the 
value of Yzl, Yz~, �9 �9 Yx log k treated as a number between 0 and 2 ~ - 1. It can be 
shown that  for all x l , x 2 , . . . x k  E {1,..n} and for all Yl,Y2,...Yk E {0,..2 k -  1} 
w e  h a v e  

1 kk k- ~ - 5 .  < Prob[h(~ l )  = y l , h ( x 2 )  = Y 2 , . . . h ( x k )  = Yk] g + 6k k. 

1 Therfore taking 6 = ~ implies that  �9 __< 2 -2k and we get a scheme in which 
the number of subpixels grows only logarithmically with the number of shares 
/2. 

T h e o r e m T .  For any n and k there exzsts a visual secret sharing scheme with 
parameters  m : logn �9 2 ~176 ot -- 2 -~(k). 
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6 E x t e n s i o n s  

There are many possible enhancements and extensions of the basic model intro- 
duced in this paper. Consider, for example, the problem of visual encryption of 
a continuous tone image whose pixels have grey levels ranging from 0 to 255. A 
brute force solution can divide an original pixel with grey level g into an 8 x 8 ar- 
ray of g black and 256-g white subpixels, and then encrypt each black and white 
subpixel separately by dividing it further into an array of subsubpixels with 
our techniques. However, we propose a more direct and elegant solution to the 
continuous tone visual encryption problem by using the following observation: 

Fig. 3. 

first share second share stacked share 

Each pixel in each one of the two transparencies is represented by a rotated 
half circle. When the two half circles (with rotation angles a and b) are carefully 
aligned, the superposition of the two half circles can range in colour from medium 
grey (representing white) to completely black (representing black) depending on 
the relative angle a - b between the two rotated half circles (see Figure 3). If we 
choose for each pixel in each share a random absolute rotation angle (with the 
desired relative rotation angle between them), then each transparency will look 
uniformly grey and will reveal absolutely no information, but the superposition 
of the two transparencies will be a darker version of the original continuous tone 
image. 

Another interesting extension of the original model deals with the problem 
of concealing the very existence of the secret message. Is it possible to send 
(by mail or fax) an innocent looking image of k house, superimpose on it an 
innocent looking transparency of a dog, and get a spy message with no trace 
of either the house or the dog? To construct such a scheme, we consider 2 x 2 
arrays of subpixels, and define two types of shares (white with 2 black subpixels 
and black with 3 black subpixels) and two types of superimposed results (white 
with 3 black subpixels and black with 4 black subpixels). If the desired result is 
white, we use the shares presented in the top row of Figure 4 (along with their 
permutations).  If the desired result is black, we use the shares presented in the 
bot tom row of Figure 4 (along with their permutations): 

The reader can easily convince himself that each transparency can contain 
an arbitrary image which reveals no information whatsoever about the superim- 
posed image. 



]] 

two white shares white and black shares two black shares 

two white shares white and black shares 

Fig. 4. Use top row for white and bottom row for black 

two black shares 
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