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Abstract .  The linearity of "check vectors" - a technique of secure dis- 
tributed computation - gives an efficient solution t o  t h e  problem of blind 
weak signatures (where a weak signature requires the on-line participa- 
tion of a third party [17]). We refine aspects of the notion of "blinding a 
signature," and apply our weak schemes to on-line digital cash and o t h e r  

problems. The protocols we present are distinctly short, simple, and of 
low complexity. 

1 I n t r o d u c t i o n  

Blind signature schemes, as introduced by Chanm [4], allow a message holder to 
obtain a signature without disclosing the contents of the message to the signer. 
In this paper, we explore the possibility of blind signature without any crypto- 
graphic assumptions at all. This may seem an unlikely prospect, since any secure 
signature scheme - blind or otherwise - requires some intractability assumptions 
(one-way functions) [13]. However, what is true for standard signature schemes 
is not true for "weak" signature schemes. 

Weak signatures were introduced by T. Rabin and Ben-Or [16] [17] to solve 
a problem (Verifiable Secret Sharing [8]) motivated by a question of general 
multi-party secure computation in the unconditional setting (network of untap- 
pable channels). They provide a form of authentication for which the on-line 
participation of a third party is needed. Check vectors are related to work on 
authentication codes [10] [19] and on universal classes of hash functions [3]. Us- 
ing the idea of "check vectors," T. Rabin [16] showed that  weak signatures can 
be implemented simply. 

We show that  weak signatures can be blinded easily (thus increasing their 
applicability). Actually, we identify several forms of blinding that  are possible: 

- s i g n a t u r e  w i t h  b l i n d  ve r i f i ca t ion  prevents the signer from later recog- 
nizing the signature, without necessarily hiding the message from him. 

- s i g n a t u r e  w i t h  b l i n d  message  prevents the signer from later recognizing 
the message being signed, without necessarily hiding the signature from him. 

- f u l l y  b l i n d  s i g n a t u r e  combines blind verification and blind message in a 
single signature scheme (i.e., blinding in Chaum's original sense). 

* This work was partially supported by an AT&T Bell Laboratories Scholarship 
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In this paper, we describe blinding schemes (of all three types) for weak 
signatures in the unconditional setting, and show how they can be used for 
digital cash and other applications with an on-line trusted center. Our methods 
exploit the linearity of check vectors in several ways. All of our signature blinding 
techniques are based on this linearity. Our on-line digital cash system takes 
advantage oflinearity in a second way as well, to enable currency to be split easily 
into smaller denominations. An extension of our methods to multiple checking 
centers (to increase fault tolerance) can make use of linearity in yet a third way, 
since secure distributed computation of linear functions is cheap. 

1.1 The  O n - L i n e  C h e c k i n g  C e n t e r  Approach  

Our weak blind signature schemes, like the weak signature scheme on which 
they are based, rely on the presence of an on-line trusted server ("checking 
center"), separate from the signing agency and the message holder. This server 
participates in the creation of every signature, and also participates whenever 
a signed message holder wishes to prove to anyone that  a signature is valid. 
The only functions performed by this trusted server are to store and retrieve 
information received from the signing agency and the message holder, and to 
compute certain linear combinations of values it receives. It can thus be a simple 
trusted device administered by a trusted authority. An on-line trusted server is 
the approach used in many practical distributed network security systems (e.g., 
Kerberos and KryptoKnight [14, 12]). 

If the checking center is not trusted by the signing agency, then this assump- 
tion is not reasonable. In the schemes we describe, the checking center by itself 
can forge the signature of any message. Furthermore, the checking center can 
invalidate any signature by refusing to cooperate with the signed message holder 
during a validation request. However, as we will show, these vulnerabilities can 
be minimized by using multiple checking centers (as we explain in Section 4.3). 

For blind signatures, the weakness of an on-line checking center is actually 
a strength in at least one sense: the possibility of traceability is maintained. 
We assume for security purposes that  collaboration between the signer and the 
checking center will never occur. However, information held in their separate 
databases could in principle be combined to recover the message that  was signed, 
e.g., as part of an authorized criminal investigation. This blend of security for 
the user and society is similar to that  achieved by fair cryptosystems [15], where 
additional involvement of agents was suggested as a protection mechanism. 

In another sense, the weakness of an on-line checking center is no weakness 
at all. One of the principle applications of blind signature schemes is to digital 
cash. Most digital cash schemes in the literature are "on-line," i.e., require that  
the bank be contacted for every transaction. Off-line digital cash schemes (intro- 
duced by Chanm, Fiat, and Naor [6]) are possible, but, because they can only 
detect certain abuses long after perpetration, they are often inapplicable (e.g., if 
an embezzler can reach a safe haven before being identified by the bank). Instead 
of contacting the bank for each transaction, on-line cash schemes that  use our 
blind signatures contact the checking center for each transaction. The "cost" of 
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consulting the checking center for signature verification replaces the comparable 
cost of consulting the bank in a typical on-line cash scheme. In practice, many 
banks may be overseen by one central bank ("Federal Reserve"); the checking 
center could be managed naturally by the central bank to ensure overall con- 
trol and integrity of the money supply (e.g., to prevent individual banks from 
exceeding their quotas for issuing new banknotes). 

We conclude that the notion of a (somewhat) trusted checking agent - al- 
though inappropriate in some settings - is reasonable in various scenarios and 
systems; we assume such scenarios in the rest of the paper. 

1.2 Organ iza t ion  of  the  P a p e r  

In Section Two, we present some background and our model. Blind weak sig- 
natures based on check vectors are discussed in Section Three, along with ap- 
plications. Section Four describes the use of blind weak signatures for digital 
cash. 

2 B a c k g r o u n d  N o t i o n s  

2.1 Secure  C o m p u t a t i o n  B a c k g r o u n d  

Secure distributed computation protocols enable a publicly known circuit to be 
jointly computed by a collection of processors, where each processor privately 
knows some of the inputs, such that certain properties of privacy and correctness 
are guaranteed despite some forms of misbehavior by the processors. Misbehavior 
may be passive (e.g., gossiping - but otherwise behaving as intended) or active 
(e.g., disrupting during the protocol in a coordinated manner). 

After general cryptographic solutions appeared for the two-party case (by 
Yao [20]) and multi-party case (by Goldreich, Micali, and Wigderson [11]), more 
recent protocols have focused on the "unconditional" ("non-cryptographic") set- 
ting. In this setting, intractability assumptions are replaced by assumptions 
about the underlying communication model, e.g., that an untappable authenti- 
cated communication channel connects every pair of processors. General solu- 
tions in this model were given by Ben-Or, Goldwasser, and Wigderson [2] and 
by Chanm, Cr6peau, and Damggrd [5]. 

T. Rabin and Ben-Or [17] showed how increased protection against an active 
attack could be obtained in a (necessary) somewhat stronger communication 
model, i.e., adding a broadcast channel to an untappable network (see also [1]). 
These solutions depended on a strong secret sharing scheme due to T. Rabin 
[16], for which check vectors were originally designed. 

It may be interesting to note that in this work we employ very efficiently 
tools from this area of "general secure distributed computation." Typically, this 
setting involves large communication overhead and has thus been doubted by 
practitioners. For example, Lampson, on this issue, has said: "...it has always 
been a complete mystery to me why anyone would ever want to do such a thing 
[general secure computation]." [9]. 
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2.2 Check Vectors  Background 

In this subsection, we review check vectors [16] [17], which provide a type of "dis- 

tributed error detection" combined with secrecy (note the relation to authenti- 
cation codes). Specifically, the problem solved by check vectors is the following. 
There are three parties: a dealer D L R ,  a receiver R C V ,  and an intermediary 
I N T .  D L R  holds a secret s E Zp, and wishes to give s to I N T  so that  I N T  may 
later give s to R C V .  R C V  is said to "accept" s from I N T  if R C V  is convinced 
that  this is the value D L R  originally sent to I N T .  Two properties must hold: 
(1) If  D L R  and R C V  are honest, and if D L R  originally sends s to I N T ,  then 
R C V  will always accept s, and R C V  will reject s ~ r s with high probability; 
(2) After I N T  receives a value from D L R ,  I N T  will know with high pro.bability 
whether R C V  will subsequently accept that  value. 

A protocol that  solves these properties is called an Information Checking 
Protocol. R C V  (or anyone else) would certainly accept the value s from I N T  (or 
from anyone else) if it were signed by D L R .  Rabin gives the following solution. 
It assumes that  untappable authenticated communication channels connect all 
pairs of participants. 

D L R  gives s to I N T  

1. D L R  chooses a l , b l , y l , - " ' , a 2 k ,  b2k, Y2k E Zp such that  ais + bi = Yi m o d p  
for all i, 1 < i < 2k. 

(a) D L R  ---* I N T :  s, Y l , ' " ,  y2k. 
(b) D L R  ---+ R C V :  al ,  bl , - - . ,  a2~, b2~. 

2. INT----} R C V :  i l , ' " , i k  E {1,-- . ,2k}.  
3. R C V  ---* I N T :  ail,  hi1," " ", aik, bik. 

(a) I N T  verifies that  aiis  + bi~ = Yij m o d p  for all j ,  1 < j < k. 

I N T  gives s to R C V  

1. I N T  ---* R C V :  s, Yl, �9 �9 ", Y2k 

(a) R C V  accepts if yi = ais + bi mod p for all i, 1 < i < 2k. 

It can be shown that  the necessary properties of an Information Checking 
protocol hold in this case (where the high probabilities depend on p and the 
security parameter k). 

T. Pedersen has suggested that  the same properties of check vectors can be 
achieved at a decrease of a factor of k in communication complexity. Only two 
check equations are created by DLR, with s, Yl, Y2 going to INT and al ,  bl, a2, b2 
going to RCV. INT challenges RCV by sending a uniformly random c E Z~. 
l~CV responds by sending a ~ = ca1 + as mod p and b ~ = cbl + b2 rood p. INT 
verifies that  a~s+ b ~ = cyl + y2 mod p. The probability of cheating remains small, 
i.e., p_~l 1 . The reduction in communication complexity extends to the Verifiable 
Secret Sharing protocol of Rabin [16] and the secure distributed computation 
protocols of Rabin and Ben-Or [17], as well as to the weak signature protocols 
in this paper. 
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Notation: We will often write a, b, y to denote the corresponding vectors of 
check information. 

2.3 Secur i ty  Model  

Our signature protocols have three parties. These parties usually will be referred 
to as a "message holder," a "signing agency," and a "checking center." We assume 
that messages can be sent between any pair of parties without any information 
about its contents being learned by any other participants; (in fact, no private 
messages are ever sent by the checking center). 

The description of our signature protocols include a security parameter k and 
a field size p. A weak signature protocol is secure if (1) the message holder cannot 
forge a signature without the collaboration of the checking center, except with 
very small probability (inversely proportional to p, and inverse exponentially 
proportional to k); and (2) cheating by the checking center or the signing agency 
which invalidates the signature will be detected by the message holder with high 
probability. 

3 Blind Weak Signature 

Here, we explain how check vectors enable a form of weak signature, and we 
describe how to modify the basic Information Checking Protocol so that the 
weak signatures are blinded. We assume throughout this section that all pairs 
of participants are connected by an untappable authenticated communication 
channel. 

3.1 Check Vectors Give Weak Signature 

Rabin's Information Checking Protocol gives a weak signature scheme. Consider 
that the intermediary I N T  wishes to have a message s signed by the dealer D L R.  
If I N T  gives the message s to DLR,  then the first phase of the Information 
Checking Protocol has the following effect. The original message holder I N T  
ends up with the "signed message" s, y, while a third party R C V  ends up with 
the check information a, b. Anyone can determine the validity of the signature 
by asking R C V  to reveal the check information; this request, and its reply, do 
not need to be sent through private channels. The signature is weak, because 
the assistance of this third party is needed to verify a signature. More generally, 
any authentication code [10] [19] can be used as a weak signature scheme by 
giving the message and tag to the original message holder and the key to the 
third party. 

Notice that the Information Checking Protocol can be modified so that the 
Receiver ends with many check vectors a, b for the same signed message s, y. 
Each subsequent request for signature validation can be met by revealing a new 
set of check information. Forgery by a message holder would be possible if check 
information were reused. 
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Notice also that  the Receiver never needs to see the messages it is validating. 
Suppose the signing Dealer sends the same random tag to both the message 
holder I N T  and the validator R C V  in Step 1 of the Information Checking 
Protocol.  Each request for signature validation can then be indexed by this 
random tag, so R C V  knows which check pairs to reveal. 

We remark that  another signature scheme in the unconditional setting was 
introduced by Chaum and Roijakkers [7]. It satisfies a stronger set of conditions 
than Rabin's Information Checking Protocol, at a great increase in communica- 
tion cost. 

3.2 W e a k  S i g n a t u r e  w i t h  Blinded Verification 

One aspect of blind signature schemes is that  the signer should not be able to 
connect a signature to the protocol that  produced it without collaboration from 
another participant in the signing protocol. We call a scheme with this property 
a signature scheme with "blinded verification." 

C l a i m  1. There exists a weak signature scheme with blinded verification. 

Due to the linearity of the basic check equation y = as + b mod p, it is easy 
for I N T  and R C V  to blind the signature y and check information a, b so that  
they will be unrecognizable to DLR.  I N T  sends to R C V  uniformly random 
vectors of offsets Aa, Ab ER Z~, where j is the length of a and b. R C V  finds 
a ~ = a + A a  modp ,  and b ~ = b + A b  modp.  I N T f i n d s  y' = y + s A a + A b  modp .  
The check equation remains valid: y~ = y + sAa + Ab = (as + b) + sAa  + Ab = 
(a + Aa)s  + (b + Ab) = a's + b' mod p. 

This means that  weak signature is possible such that  the signature is later 
unrecognizable to the signer. Although the message s is unchanged, the vectors 
y, a, b are replaced by uniformly random vectors that  satisfy that  check equation. 
The signer will be unable to distinguish two identical messages that  were signed 
at different times. 

3.3 Weak Signature with Blinded Message 

Another aspect of blind signature schemes is that  the message itself should be 
concealed from the signer in the absence of collaboration from another party in 
the signing protocol. We call a scheme with this property a signature scheme 
with "blinded message." 

C l a i m  2. There exists a weak signature scheme with blinded message. 

The linearity of the basic check equation y = as + b mod p also makes this 
form of blinding easy to achieve. Suppose that  I N T  wishes to have a message s 
signed by the dealer DLR.  I N T  randomly chooses r ER Z~, and sends rs  mod 
p to D L R .  The parties now run the first phase of the Information Checking 
Protocol on rs modp .  The checking center R C V  ends up with a, b, and the 



73 

message holder I N T  ends up with y, such that  y = ars  -t- b mod p. Now I N T  
sends r to R C V ,  and R C V  computes a ~ -- ar mod p (or invalidates the signature 
if r is not sent promptly). R C V  stores the check information s  b, and the check 
equation holds: y = ar s § b mod p. 

3.4 Fu l ly  B l i n d e d  W e a k  S i g n a t u r e  

We call a signature scheme "fully blind" if it is both verification blinding and 
message blinding; this is blinding in Chaum's original sense. Combining the 
techniques of the preceding two subsections yields a fully blind weak signature 
scheme. At the point in the message blinding scheme where I N T  would send r 
to R C V ,  I N T  sends instead r, z~a, Ab to R C V .  I N T  computes i f  = Y + s A a  + 
Ab modp .  R C V  computes a ~ -- ar § Aa  m o d p  and b ~ = b § Ab modp.  The 
check equation still holds: i f  -= a~ s § b I mod p. 

C l a i m  3. There exists a fully blind weak signature scheme. 

3.5 A p p l i c a t i o n s  a n d  Cos t  o f  W e a k  B l i n d  S i g n a t u r e  

Weak blind signatures can replace blind signatures in an application if it rea- 
sonable to include an on-line trusted checking center. One application is for 
pseudonymous credentials, allowing a user to establish different identities with 
different organizations. Another application is timestamping, allowing a user to 
associate a digital document with its time of creation; since such documents of- 
ten become public when the t imestamp is verified, signature with blind message 
may suffice. A third application area is for anonymous access control schemes and 
digital cash schemes, where signed messages are tokens that  can be exchanged 
for some product or service; when only a few types of token are in circulation, 
signature with blind verification may suffice. 

For all of these applications, the complexity of the protocol is distinctly low. 
The signing agency performs one simple linear computation, and stores nothing. 
The message holder performs one simple linear computation, and stores a k- 
tuple of elements (in Zp) as large as the element being signed (e.g., the size 
of an access token or random tag, or the size of a hash of a document). The 
checking center performs one simple linear computation, and stores two k-tuples 
of checking elements for later retrieval. The signing protocol takes one and a 
half rounds, where no message is longer than two k-tuples of elements. The 
checking procedure is another simple linear computation. The signing agency 
and message holder each need to select uniformly random elements of Zp for the 
signing protocol, which can be done efficiently in practice using cryptographically 
strong pseudorandom generators. 

4 Weak Digital Cash 

A digital cash scheme [4] is a set of cryptographic protocols for withdrawal (by 
a customer from the bank), transfer (by a customer to a vendor or another 
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customer), deposit (by a vendor to the bank), and also division (by a customer), 
such that  the security needs of all participants are satisfied: anonymity of use and 
assurance of authenticity for customers, and impossibility of undetected reuse 
or forgery for the bank. 

A cash scheme is "on-line" if additional agents (e.g., bank or checking center) 
must participate in transfer or division protocols. Weak signature with blinded 
verification can be used to implement an on-line digital cash scheme, in which 
the checking center is consulted for each purchase. We call such a scheme a "weak 
digital cash scheme." 

We consider schemes that  require at least one on-line checking center in 
addition to the bank. No cryptographic assumptions are required, other than 
untappable channels between pairs of participants. Our scheme relies on weak 
signature with blinded verification, and does not require the power of fully blind 
weak signatures. 

4.1 Why Sign At All?  

Simple schemes - without any form of signature - are possible given a second 
trusted agency. For example, something like a numbered "Swiss bank account" 
can be set up at the checking center, which then authorizes every purchase di- 
rectly. The bank issues an identifying random tag (pseudonym) to the customer 
when money is withdrawn, and an account using that  tag is set up at the sec- 
ond agency. The customer can then "refresh" the random tag at the second 
agency (by sending the old random tag together with a new one), and then 
have all transactions be essentially simple withdrawals and deposits from this 
"numbered" account. 

However, the second agency learns the size of all purchases and transfers in 
this type of scheme. This presents temptations that  could be problematic, and 
also threatens anonymity of money users. In an automatic toll collection scheme, 
for example, purchases correspond to distance traveled, which may be sensitive 
information. We would like a scheme where the on-line agency learns nothing 
about  the size of any transactions. 

4.2 W e a k  S i g n a t u r e  w i t h  B l i n d e d  Ve r i f i c a t i o n  H i d e s  A m o u n t s  

Using weak signature with blinded verification, it is possible to have a digital 
cash scheme in which the checking center learns nothing about money amounts 
of any transactions. 

C l a i m 4 .  There exists a weak digital cash scheme supporting anonymity, secu- 
rity, unlimited transferability, and divisibility. 

To withdraw a d unit coin, a customer ( INT)  gets a signature of d from 
the bank (DLR) with the help of an on-line checking center(RCY), where the 
amount  of check information given to R C V  determines the number of transac- 
tions possible with this coin. The customer and the on-line checking center then 
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blind the signature and check information with offsets, as described in the sec- 
tion on weak signature with blinded verification. To transfer a coin (e.g., make a 
purchase), the old coin holder convinces the new coin holder that  the signature 
of d is valid by revealing some of the check information; the new coin holder then 
takes over the money by reblinding signature and remaining check information. 
To make a deposit, the current coin holder gives it to the bank, and asks the 
on-line check center to send the remaining check information to the bank as 
well; the bank accepts the deposit if the check equations hold. Throughout  the 
lifetime of a coin, the checking center indexes its check information by a random 
tag which is also known to the coin holder, initially assigned by the bank, and 
updatable by the new coin holder for transfers. 

Divisibility of coins is simple as well, again due to the linearity of the basic 
check equation. The holder of a coin of value d splits each check signature y 
into two check signatures y/2 rood p, y/2 mod p. The coin holder also asks the 
check center to split each check pair [a, b] into two check pairs [a, b/2 mod p], 
[a, b/2 mod/9]. All check equations still hold for the two split coins of value _d 

2"  
Now signature and check information for both split coins are reblinded. 

However, care must be taken to prevent a one unit coin from being split into 
two ~ unit coins. One way to prevent this type of cheating is to assume that 
the modulus of the check equations is a large prime p = 2q + 1, where q is itself 
prime, and that  all withdrawals are for d = 2 k units, where 0 < k < log 2 p. This 
restriction of allowable denominations implies that  a cheating coin holder would 
need to perform an infeasible number (O(p - logp)) of splits to produce a valid 
larger denomination from a one unit coin. 

4.3 M u l t i p l e  C h e c k i n g  Centers  

In the money scheme described above, each consumer runs the risk that  the 
checking center will forget the check pairs or tag values for some of its money. 
The bank runs the risk that  the checking center will create its own money through 
forgery. Protection against these abuses is straightforward if there is more than 
one checking center. Each checking center can be given its own check pairs, and 
they all can participate in money transactions. If majori ty agreement is necessary 
for every transaction, then no minority of checking centers can cause a consumer 
to lose money that  rightfully belongs to it, and no minority can cheat the bank 
through forgery. There is no need for the checking centers to communicate among 
themselves. 

C l a i m  5. There exists a weak digital cash scheme with multiple checking centers 
which is secure against active cheating by any minority of checking centers. 

To protect the user's privacy against collaboration between bank and check- 
ing center, multiple checking centers could use secure distributed computation 
protocols [2] [5] [17] to simulate a single check center. This would require untap- 
pable channels among the checking centers, but little communication since all 
secure computations are for linear operations. Thus employing a small number 
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of distributed checking centers (e.g., three or five) to compute together the role 
of a centrMized one still yields a very practical system. 
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