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Abstract .  In this paper attacks on double block length hash functions 
using a block cipher are considered. We present attacks on all double 
block length hash functions of hash rate 1, that is, hash functions where 
in each round the block cipher is used twice, s.t. one encryption is needed 
per message block. In particular, our attacks break the Parallel-DM pre- 
sented at Crypto'9313]. 

1 Introduct ion 

A hash function is an easily implementable mapping from the set of all 
b inary sequences to the set  of binary sequences of some fixed length. 
An iterated hash function is a hash function Hash(.)  determined by an 
easily computab le  function h(. ,-)  from two binary sequences of respective 
lengths m and I to a binary sequence of length m in the manner that  the 
message M = (M1, M2, ..., M=),  where Mi is of length l, is hashed to the 

hash value H = H= of length m by computing recursively 

Hi = h(Hi-I ,Mi)  i = 1, 2 , . . . ,n ,  (1) 

where H0 is a specified initial value. The  function h will be called the 
hash round function. We will consider i terated hash functions based on 
(m, k) block ciphers, where an (m, k) block cipher defines, for each k-bit 
key, a reversible mapping from the set of all m-bi t  plaintexts onto the 
set of all m-bi t  ciphertexts.  We write Ez (X) to denote the encryption 
of the  m-bi t  plaintext X under the k-bit key Z,  and Dz(Y)  to denote 
the  decrypt ion of the m-bi t  ciphertext  Y under the k-bit key Z. We 
define the  hash rate of such an i terated hash function (or equivalently, of 
a round function) as the number  of m-bi t  message blocks processed per 
encrypt ion or decryption.  The  complexity of an a t tack  is the total  number 
of encrypt ions  or decryptions required for the at tack.  In our discussion 
we will always assume that  the block length of the block cipher equals the 
key length and tha t  the (m, m) block cipher has no known weaknesses. 
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To avoid some trivial attacks [7], the Merkle-Damgaard Strengthening 
(MD-strengthening) is often used, in which the last block of the message 
to be hashed represents the binary length of the true message. However, 
in the attacks presented in this paper the messages are of the same length, 
therefore we will not consider MD-strengthening anymore in this paper. 

2 Double  block length  hash funct ions  

Since most block ciphers have a block length of only 64 bits, for a sin- 
gle block length hash function the complexity of a brute force collision 
attack is only 264-" encryptions using a table of size about 2" 64 bits 
quantities. As an example, with n = 20 and using todays technology this 
is computationally feasible, and the space requirements are not too large. 
Therefore many attempts have been made to construct hash round func- 
tions based on two parallel or consecutive runs of a block cipher, thereby 
obtaining a hash code of size 2m bits. 
Natural requirements for double block length hash functions based on an 
m-bit block cipher are that  the complexity of a target attack is higher 
than 2 "~ and that  the complexity of a collision attack is higher than 
2 m/2. Recently, one such scheme has been submitted for publication as 
an ISO standard [4], also known as the MDC-2. It is believed that  the 
complexities for target and collision attacks on MDC-2 based on DES 
is about 281 and 25. [5], where m above is 64. Since the hash rate of 
the MDC-2 is only 1/2, i.e. the hash function takes two encryptions 
per message block, attempts have been made to construct double block 
length hash functions of hash rate 1 [1, 3, 10]. Consider the following 
general form of a double block length hash function. 

{ H~ = EA(B)  @ C 
H~ = E2z(S) @ T (2) 

where, for a hash rate 1 scheme, A, B and C axe binary linear combina- 
tions of the m-bit vectors HL1,  HL1,  M~ and M/z, and where R, S and 
T are some binary linear combinations of the vectors H~_I, H~_I, M~, 
M~ and Hi ~. In [3] the following result was proved. 

T h e o r e m  1 ( H L M W - 9 3  [3]) For the 2m-bit  iterated hash function 
with hash rate 1/2 or 1 whose 2m-bit round function is o] type (~), the 
complexity of  a free-start target attack is upper-bounded by about 2 �9 2 m 
and the complexity of a free-start collision attack is upper-bounded by 
about 2 �9 2 "~/2 . 



412 

Hash functions obtaining these upper bounds as lower bounds for the 
free-start attacks are said to be optimum against a free-start at tack [3]. 
The  idea is, that  given a specific initial value of the hash function the 
designer hopes that  the complexity of collision and target attacks are 
higher than the proven lower bounds. In [3], the P a r a l l e l - D M ,  a new 
double block length hash function of rate 1 with op t imum security against 
free-start attacks was proposed. We give two attacks on Parallel-DM, a 
target attack and a collision attack with about the same complexities as 
of the free-start target and free-start collision attacks. This means that  
the Parallel-DM is no more secure than the Davies-Meyer hash mode 
(DM), which was the purpose in the first place. Our attacks can be 
generalized and the following result holds 

T h e o r e m  2 Consider a double block length hash function with round 
function of the form (3), where each h i contains one encryption. 

H hi(H1 1 ' 2 1 2 = H i - l ,  M~,  M i ) 
H 2 = h2(H~_l, 2 1 H,-1,  M~, M?)  

(s) 

If  for a fixed value of H~ (or H~ or H~ ~H~), it takes T operations to find 
one pair of (M~,M?) for any given value of (HL1,H?-I),  such that the 
resulting 4-tuple 1 2 1 (Hi_a, H,_a, , M?) yields the fixed value for H~ (or 
H? or H~ ~ H~ ), then a target attack on the hash function needs at most 
( T +  3)- 2 m operations; and a collision attack on the hash function needs 
at most (T + 3) �9 2 rnl2 operations. The attacks succeed with probability 
0.63. 

Proof: The  target attack: Let (H0 ~, H0 2) be the given initial value and 
(H~., H .  2) be the hash code of a message M. We proceed as follows: 

(H . -1 ,  H . - 1 )  from the given hash value 1. Compute  forward the pair 1 2 
M~-I )  randomly cho- H.-2)  and a pair of messages (M.1_1, 2 

sen. 
2. Find the pair 1 2 H 1 H 2 (M~, M~) from the pair ( , -1 ,  , - 1 )  obtained above 

Hrt-1 M~,, M , )  yields the fixed value for ( H n - t ,  so tha t  the 4-tuple 1 2 a 2 
HL 

3. Compute  the value for H~ from the 4-tuple (H,-a,1 H,_12 , MC,,M~).I 2 
Repeat  the above procedure 2 m times. Note that  H2n is m bits long, so 
after obtaining 2 '~ values of H~, with a high probability we hit the given 
value of Hn 2. Finally, note that  step 1 takes two operations, step 2 T 
operations and step 3 one operation. 
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The collision attack: Let (H~o,H~) be the given initial value. We shall 
find two different messages M and M ~, such that  both messages yield 
the same hash code tH  1 H 2~ Choose some random values and compute  k n ~  h i .  

a value for / /1 ,  and fix it, then proceed in the same way as in the tar- 
get attack, i.e. perform steps 1, 2 and 3 above. Repeat this procedure 
2 m/2 times. Because / /~  is m bits long, the "birthday argument" implies 
tha t  some two values of the H~ will be the same with a high probability.Q 

We will show that  for the Parallel-DM, the T of Theorem 2 is about  zero. 
The  scheme is defined 

(It~ 1 1 = EMX.$M?(H,_I ~ Mi ) @ H~.-1 ~ M~ (4) 

T h e o r e m  3 There exists a target attack on the Parallel-DM scheme 
that given a message M and its hash value H ( M )  finds a message M' ,  
s.t. H ( M )  = H ( M ' ) .  The attack succeeds with probability 0.63 in time 
3 x 2 "n. There exists a collision attack on the Parallel-DM scheme that 
given I V  finds two message M r M' ,  s.t. H(IV,  M)  = H(IV,  M') .  The 
attack succeeds with probability 0.63 in time 3 • 2 m12. 

Proof: Let A and B be two fixed (given or chosen) values such tha t  
H~ "- E B ( A ) ~  A. For any given value of (H~_I,H~_I), one can obtain 
one par of M?) where 

M~ = A ~ H~_I a n d M ? = B g M ~  

such tha t  the 4-tuple 1 2 1 (Hi - l ,  Hi_l ,  Mi ,  M~) will yield the fixed value for 
H~ in (4). Theorem 2 then implies that  the complexity of a taxget at tack 
is about  3- 2 m (with T = 0) and the complexity of a collision at tack is 
about  3 �9 2 m/2. 13 

Theorem 2 is for the "parallel" version of a double block length hash 
function, where the two encryptions work side-by-side. A similar result 
holds for the "serial" version of a double block length hash function, 
which is proved in a similax manner as Theorem 2. 

T h e o r e m  4 Consider a double block length hash ]unction of hash rate 
1 with round function of the form (5), where each h i contains one en- 
cryption. 
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H~ = h2(HL1,HL~,M~,M?,H~)  
(~) 

I f  for a fixed value of H~, it takes T operations to find one pair of 
(M/1,M~) for any given value of (H~_I,H?_I) , such that the resulting 
4-tuple (HLa, HL1, M~, M?) yields the fixed value for H~, then a tar- 
get attack on the hash function needs at most (T + 3) �9 2 m operations; 
and a collision attack on the hash function needs at most (T + 3) �9 2 ".`/2 
operations. 

3 A t t a c k s  on all d o u b le  b lock  l e n g t h  hash  
f u n c t i o n s  of  hash rate  1 

In [11] it was shown that  there exist basically two secure single block 
length hash functions. The Davies-Meyer scheme, 

Hi = EMi ( Iti-1) e Hi-1 (6) 

is one of them, the other one is the following 

Hi = EMI (Hi-l)  ~ Hi-1 e Mi (7) 

All other secure single block length hash functions can be transformed 
into either (6) or (7) by a linear transformations of the inputs Mi and 
Hi-1 [11]. It means that for a double block length hash function one can 
obtain optimum security against free-start attacks if the scheme is equiv- 
alent to either two runs of (6) or two runs of (7) by a simple invertible 
transformation of the inputs mi 1, M~, HL1 and H 2 1 .  
We show that  the double block length hash functions of hash rate 1, 
where (at least) one of the hash round functions has the form of any 
single block length hash function, has a security not much higher than 
for the single block length hash function. Also we show target attacks on 
all double block length hash functions of rate 1. In the following we will 
consider double block length hash functions of the form (2). We consider 
schemes of hash rate 1, that  is, we can write 

I'H~_~ I 
= bl b2 b3 b4 [ M/a | 

c ,  c2 c3 c ,  L M~ J 
(8) 

for some binary values ai, bi and ci (1 < i <_ 4). We denote by L the 
3 x 4 matrix in eq. (8). 
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T h e o r e m  5 For the 2m-bit iterated hash function with rate 1, where 
(at least) one of the hash round functions has the form of a single block 
length hash function, i.e. the matrix L of (8) has a rank of less than or 
equal to two, the complexity of a target attack is upper-bounded by about 
3 x 2", and the complexity of a collision attack is upper-bounded by about 
3 X 2 rn/2. The attacks succeed with probability about 0.63. 

Proof: We will show that  the T of Theorem 2 is about zero. We assume 
w.l.g, that  the hash round functions of type (8) is Hi 1 and tha t  we are 
given the target 1 2 (H., H.). 
Rank(L) = 1: Trivial, since with the same intermediate hash values 

1 (Hn-a, H~_I) used in the computat ion of the target H i ,  there are at 
least 2" possible values of (MLM ) obt ning Hi. Thus, Theorem 4 
holds with T _ 0. 
Rank(L) = 2: We can rewrite (8) as follows 

where Nx and N2 are 2 x 2 binary matrices. We distinguish between cases 
depending on the rank of N2. 
Rank(N2) < 1: With  the intermediate hash values x 2 H , _ I )  in (H , -1 ,  used 
the computa t ion  of the target H i ,  there are at least 2 m possible values 
o f  1 2 1 ( M , ,  M,,) obtaining Ha. Thus, Theorem 4 holds with T __. 0. 
Rank(N2) = 2:N2 is invertible and we can rewrite (9) into 

[ M, [H1_I 

Given the target Hln and by letting (A, B) be the values used in the 
computat ion of the target Hln, we can find (Mn 1, Mn z) for any values 

1 2 ( H , _ I ,  Hn-1) ,  s.t. we hit the target H i .  Thus, Theorem 4 holds with T 
0, (time used to invert the matrix N2 and to do the adding operations 
is negligible). The  Parallel-DM [3] is an instance of this class of hash 
functions. D 

T h e o r e m  6 For the double block length hash functions of hash rate 1, 
for which one of the m-bit hash round functions are of type (8), the 
complexity of a target attack is upper bounded by about 4 • 2 " .  For two 
classes of hash functions, the attack needs a pre-computed table with 2" 
2m-bit values. 
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Proof: We will show that the T of Theorem 4 is at most 1. We assume 
w.l.g, that  the hash round functions of type (8) is H~ and that  we axe 
given the target (H~, H~). We denote by L the 3 x 4 matrix in (8). 
Rank(L) < 3: Proved in Theorem 5. 
Rank(L) = 3: The first hash round function in this scheme has the form 
Hi = EA(B) @ C, where A, B and C are linearly independent. A and B 
can be expressed as in (9). We split the proof into two cases. 
Rank(N2) = 1. Let Mz be the set {M~,M~, M~ (9 M~} and let Mab E 
Mz be the message variable contained in A and B. If C does not con- 
tain any of the messages in Mz or contains only Mab, Theorem 4 holds 
with T _ 0, since in this case we use the same intermediate values 

1 2 1 (i.e. the (Hn-1, Hn-1) used in the computation of the target H ,  use 
same messages/1//1, ...,M,,-1). Since the rank of N2 is one, there are 2 '~ 
possible values of (M~, M~) obtaining the hash code H~. 
If C contains one message Mc E Mz, s.t. Mc ~s Mab then for any given 

1 2 (Hn-1, compute z Hn-1), EA(B) -" for a random value of Mab. Now use 
the correct value of the 2 m possible values of Mc to hit H~, i.e. such that  
C (9 z = H~. In this case Theorem 4 holds with T _~ 1. The PBGV hash 
function proposed in [9] is an instance of this class of hash functions. 
Rank(N2) = 2. H~ can be written 

Hi = EA(B) (9 CO 
= EA(B) (9 B (9 C 1 

= EA(B) (9 A (9 B (9 C 2 

Since the rank of L is 3 and the rank of N2 is 2, either C ~ C 1 or C 2 does 
not contain any of the messages M a, M 2 or M 1 (9 M 2. Let C ~ denote 
that  value of C. 
In the case where C i = C ~ for any given value of (H,-a,a Hn-a)2 and 
thereby also for C ~ it is possible to find [M 1 M 2~ n, nj s.t. the target H~ is 
hit. Simply decrypt DA(C 0 (9 H1,.,) "= B using one of the two free message 
variables in A and using the other free message variable to adjust to the 
g i v e n  1 2 (H ,_ I ,  H~_I) appearing in B. Again Theorem 4 holds with T ___ 1. 
In the case where C ~ -- C 1, we first pre-compute (and sort) a table K T  
of 2 '~ triples (Kl, xt, yz), s.t. 

= E . ,  e yt 

for random values (xz, yl). Then for any given 1 2 (H,_I ,  H~- I )  compute 
Q = C 1 (9 H~. Look up Q = Kj in table K T  and set A = xj and set 
B = yj for A and B in equation (9). Since N2 is invertible, by assumption, 
we find the values of 1 2 (M~, M~), s.t. the target H~ is hit. Theorem 4 holds 
with T _ 0. We have assumed here that the time to sort a table of size 
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2 '~ is negligible compared to the time of 2 m encryptions. The LOKI- 
DBH hash function proposed in [1] is an instance of this class of hash 
functions. 
In the case where C i -- C 2, we first prc-compute (and sort) a table K T  
of 2 m triples (Kl, xz, Yz), s.t. 

Kz = g. ,  

for random values (zz, y~) and proceed slmila~ as in the previous case. ca 

4 C o n c l u s i o n  

We have shown attacks on double block length hash functions of hash 
rate 1. Our attacks show that  a double block hash function of hash rate 
1, which has optimum security against free-start attacks, is also vulnera- 
ble to real attacks with only slighty higher complexities. Furthermore we 
have shown that  for all double block length hash functions of hash rate 1 
based on a secret key block cipher, there exist target attacks with com- 
plexity of about 4 x 2 m. In some cases the attack needs a pre-computed 
table of size 2 '~. 
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