
A Cook's Tour of Equat ional Ax iomat i za t ions
for Prefix Iteration

Luca Aceto 1., Wan Fokkink T M and Anna IngSlfsdSttir 3. * *

1 BRICS (Basic Research in Computer Science),
Department of Computer Science, Aalborg University,
Fredrik Bajers Vej 7-E, DK-9220 Aalborg O, Denmark.

2 Department of Computer Science, University of Wales Swansea,
Singleton Park, Swansea SA2 8PP, Wales.

Dipartimento di Sistemi ed Informatica, Universit~ di Firenze,
Via Lombroso 6/17, 50134 Firenze, Italy.

A b s t r a c t . Prefix iteration is a variation on the original binary version of
the Kleene star operation P* Q, obtained by restricting the first argument
to be an atomic action, and yields simple iterative behaviours that can
be equationally characterized by means of finite collections of axioms.
In this paper, we present axiomatic characterizations for a significant
fragment of the notions of equivalence and preorder in van Glabbeek's
linear-time/branching-time spectrum over Milner's basic CCS extended
with prefix iteration. More precisely, we consider ready simulation, sim-
ulation, readiness, trace and language semantics, and provide complete
(in)equational axiomatizations for each of these notions over BCCS with
prefix iteration. All of the axiom systems we present are finite, if so is
the set of atomic actions under consideration.

1 I n t r o d u c t i o n

Equationally based proof systems play an impor tant role in both the practice and
the theory of process algebras. From the point of view of practice, these proof
systems can be used to perform system verifications in a purely syntactic way,
and form the basis of axiomatic verification tools like, e.g., PAM [10]. From the
theoretical point of view, complete axiomatizations of behavioural equivalences
capture the essence of different notions of semantics for processes in terms of
a basic collection of identities, and this often allows one to compare semantics
which may have been defined in very different styles and frameworks. Some
researchers also measure the naturalness of a process semantics by using the
existence of a finite complete axiomatization for it over, say, finite behaviours as
an acid test.

* Partially supported by the Human Capital and Mobility project EXPRESS. Email:
luca@cs.auc.dk. Fax: +45 9815 9889.

** Email: W.J.Fokkink@swansea.ac.ttk. Fax: +44 1792 295708.
* * * Supported by a grant from the Danish National Research Foundation. Emaih

a .nnai@dsi2. ing.unif i . i t . Fax: +39 55 4796730.

2]

An excellent example of the unifying role played by equational axiomatiza-
tions of process semantics may be found in [7]. Ibidem van Glabbeek presents the
so-called linear time/branching time spectrum, i.e., the lattice of all the known
behavioural equivalences over labelled transition systems ordered by inclusion.
The different identifications made by these semantic equivalences over finite syn-
chronization trees are beautifully characterized by the author of op. cir. in terms
of a few simple axioms. This permits an illuminating comparison of these se-
mantics within a uniform axiomatic framework. However, despite the complete
inference systems for bisimulation-based equivalences over regular processes pre-
sented in, e.g., [11, 8] and years of intense research, little is still known on the
topic of effective complete axiomatizations of the notions of semantics studied
in [7] over iterative processes.

In this study, we shall present a contribution to this line of research by inves-
tigating a significant fragment of the notions of equivalence and preorder from
[7] over Milner's basic CCS (henceforth referred to as BCCS) [12] extended with
prefix iteration. Prefix iteration [6] is a variation on the original binary version
of the Kleene star operation P*Q [9], obtained by restricting the first argument
to be an atomic action, and yields simple iterative behaviours that can be equa-
tionally characterized by means of finite collections of axioms. Furthermore,
prefix iteration combines better with the action prefixing operator of CCS than
the more general binary Kleene star. A significant advantage of iteration over
recursion, as a means to express infinite processes, is that it does not involve a
parametric process definition, because the development of process theory is eas-
ier if parameterization does not have to be taken as primitive (see, e.g., Milner
[13, page 212]).

Our study of equational axiomatizations for BCCS with prefix iteration has
so far yielded complete equational axiomatizations for all the main notions of
bisimulation equivalence [6, 1]. In this paper, we continue this research pro-
gramme by studying axiomatic characterizations for more abstract semantics
over this language than those based on variations of bisimulation. More pre-
cisely, we consider ready simulation, simulation, readiness, trace and language
semantics, and provide complete (in)equational axiomatizations for each of these
notions over BCCS with prefix iteration. All of the axiom systems we present
are finite, if so is the set of atomic actions under consideration. Although the
high level structure of the proofs of our main results follows standard lines in the
literature on process theory, the actual details of the arguments are, however,
rather subtle (cf., e.g., the proof of Thm. 4.6). To our mind, this shows how
the analysis of the collection of valid identities for the semantics considered in
this paper already becomes difficult even in the presence of very simple iterative
behaviours, like those that can be expressed using prefix iteration.

The paper is organized as follows. After a brief review of the basic notions
from process theory needed in the remainder of the paper (Sect. 2), we present
the language BCCS with prefix iteration and its labelled transition system se-
mantics (Sect. 3). Sect. 4 is devoted to a guided tour of our completeness results.
The paper concludes with a mention of further results that will be presented in
a full account of this work, and a discussion of ongoing research (Sect. 5).

22

2 P r e l i m i n a r i e s

In this section we present the basic notions from process theory tha t will be
needed in the remainder of this study.

2.1 Labelled Transitions Systems

A labelled transition system is a triple (Proc, Lab, { 41 s E lab)), where:

- Proc is a set of states, ranged over by s, possibly subscripted or superscripted;
- Lab is a set of labels, ranged over by ~, possibly subscripted;

- -~C_ Proc • Proc is a transition relation, for every ~ E Lab. As usual, we shall
l

use the more suggestive notat ion s -~ s ' in lieu of (s, s') E-~, and write s -~

iff s -~ s ' for no state s'.

All the labelled transit ion systems we shall consider in this paper will have a
special label r in their label se t - -used to represent successful t e rmina t ion- - ,

and will enjoy the following property: if s -~ # , then s ' ~ for every label ~.
For n >_ 0 and q = ~ l . . . ~ n E Lab*, we write s -~ # iff there exist states

so , sn such tha t s = s o ~ sl ~ . . . s n - 1 ~ s,~ =s ' . In tha t case, we say
tha t ~ is a trace (of length n) of the s tate s. For a state s E Pmc we define:

initials(s)~{e(E Lab l:ls': s 4 # } .

2.2 From Ready Simulation to Language Equivalence

Labelled transit ion systems describe the operational behaviour of processes in
great detail. In order to abst ract from irrelevant information on the way pro-
cesses compute, a wealth of notions of behavioural equivalence or approximation
have been studied in the l i terature on process theory. A systematic investigation
of these notions is presented in [7], where van Glabbeek studies the so-called lin-
ear t ime/branching t ime spectrum, i.e., the lattice of all the known behavioural
equivalences over labelled transit ion systems ordered by inclusion. In this study,
we shall investigate a significant fragment of the notions of equivalence and pre-
order from [7]. These we now proceed to present for the sake of completeness.

Definit ion 2.1 (Simulation, Ready Simulation and Bisimulation).

- A binary relation T~ on states is a simulation iff whenever sl 7~ s2 and ~ is
a label:

- if Sl -~ s~, then there is a transit ion s2 -~ #2 such tha t s~ 7~ s~.

23

- A binary relation T~ on states is a ready simulation iff it is a simulation with
the property that , whenever Sl T~ s2 and ~ is a label:

- if Sl ~ , then s2 ~ .

- A bisimulation is a symmetric simulation.

Two states s and s r are bisimilar, written s ~___ s ~, iff there is a bisimulation that
relates them. Henceforth the relation ~__ will be referred to as bisimulation
equivalence. We write s ~s s ~ (resp. s ~RS s ~) iff there is a simulation (resp. a
ready simulation) R with s T~ s ~.

Bisimulation equivalence [14] relates two states in a labelled transition system
precisely when they have the same branching structure. Simulation (see, e.g.,
I14]) and ready simulation I3] relax this requirement to different degrees. The
following notion, which is based on a version of decorated traces, is induced by
yet another way of abstracting from the full branching structure of processes.

Definition 2.2 (Readiness Semant ics) . For a state s we define:

-~ ~(q ,X) I ~ E Lab*,X C Lab and Ss ' : s -~ s' and initials(s') -- X ~ readies(s)
()

For states s, s ~ we write s -ER s ~ if[readies(s) is included in readies(s~).

The classical notion of language equivalence for finite state au tomata may be
readily defined over labelled transition systems. To this end, it is sufficient to
consider the states from which a ,/-labelled transition is possible as accept states.

Definition 2.3 (Language and Trace Semantics).

- We say that a sequence of labels q is accepted by a state s iff s t_~ s ~ for some
state s ~. For states s, s' we write s EL s ~ iff every sequence accepted by s is
also accepted by s ~.

- For states s, s ~ we write s ~T Sl iff the set of traces of s is included in that
of s ~.

For O E {S, RS, L, R, T}, the relation To is a preorder over states of an arbitrary
labelled transition system; its kernel will be denoted by -~o.

3 B C C S w i t h P r e f i x I t e r a t i o n

We begin by presenting the language of Basic CCS (henceforth often abbreviated
to BCCS) with prefix iteration [6], together with its operational semantics.

24

3.1 The Syntax

We assume a non-empty alphabet Act of atomic actions, with typical elements
a, b, c. The language BCCS p* of Basic CCS with prefix iteration is given by the
following BNF grammar:

P : : = O l l la .PI P + P la*P .

We shall use P, Q, R, S, T to range over BCCS v*. In writing terms over the above
syntax, we shall always assume that the operator a._ binds stronger than +. We
shall use the symbol = to stand for syntactic equality of terms. The expression
P[+Q] will be used to denote the fact that Q is an optional summand. The size
of a term is the number of operators occurring in it.

Remark 3.1. The reader might have noticed that the syntax for the language
BCCS p* presented above includes two distinguished constants, viz. 0 and 1.
Intuitively, the term 0 will stand for a deadlocked process, whereas 1 will stand
for a process that can only terminate immediately with success. Our choice of
notation is in keeping with a standard one for regular expressions, cf., e.g., [5].

3.2 Opera t iona l Semant ics

Let 4" be a distinguished symbol not contained in Act. We shall use 4" to stand
for the action performed by a process as it reports its successful termination.
The meta-variable ~ will range over the set Act O {4" }. The operational semantics
for the language BCCS v* is given by the labelled transition system

(BCCSV*, Act U {~'}, {~l ~ E Act U {r

where the transition relations ~-~ are the least binary relations over BCCS v*
satisfying the rules in Table 1. Intuitively, a transition P 2~ Q means that the
system represented by the term P can perform the action a, thereby evolving

into Q. On the other hand, P -~ Q means that P can terminate immediately
with success; the reader will immediately realize that, in that case, Q - 0.

With the above definitions, the language BCCS v* inherits all the notions of
equivalence and preorder over processes defined in Sect. 2.2. The following result
is standard.

Proposition 3.2. For 0 6 {RS, S, L, R, T}, the relations ~o and ~-o are pre-
served by the operators in the signature of BCCS p*. The same holds for bisim-
ulation equivalence.

4 E q u a t i o n a l A x i o m a t i z a t i o n s

The study of equational axiomatizations of behavioural equivalences and pre-
orders over BCCS v* was initiated in the paper [6]. In op. cir. it is shown that

25

a . P ~ P 1 4 0

P ~ P ' Q s
P + Q ~ P ' P + Q ~ Q '

p ~ p e

a*P~a*P a * P ~ P '

Table 1. Transition Rules

the axiom system in Table 2 completely axiomatizes bisimulation equivalence
over the language of 1-free BCCS p* terms. Our aim in the remainder of this
study will be to extend this result to the semantics in the linear-time/branching-
time spectrum discussed in Sect. 2.2.

A1 x + y = y + x
A2 (x + y) + z = x + (y + z)
A3 x + x = x
A4 x + O = x
PAl a.(a*x) + x = a*x
PA2 a*(a*x) = a*x

Table 2. The axiom system 9 v

For an axiom system T, we write T t- P _< Q iff the inequation P < Q is
provable from the axioms in T using the rules of inequational logic. An equation
P = Q will be used as a short-hand for the pair ofinequations P < Q and Q < P.
Whenever we write an inequation of the form P[+I] < Q[+I], we mean that
if the 1 summand appears on the left-hand side of the inequation, then it also
appears on the right-hand side. P =Ac Q denotes that P and Q are equal
modulo associativity and commutativity of +, i.e., that A1,A2 t- P = Q. For a

(x)
collection of (in)equations X over the signature of BCCS p*, we write P ~ Q as
a short-hand for A1,A2,X t- P _< Q. For I = {Q,. . . ,in} a finite index set, we
write ~'~iel Pi for P~I + " " + Pi.. By convention,)-~e~ Pi stands for 0.

Henceforth process terms will be considered modulo associativity and com-
mutativity of the +-operation, i.e., modulo axioms A1-2.

26

We begin the technical developments by noting that the proof of the com-
pleteness of the axiom system jc with respect to bisimulation equivalence over
the language of 1-free BCCS p* terms applies mutatis mutandis to the whole of
the language BCCS p*.

P ropos i t i on 4.1. For every P, Q E BCCS p*, P ~ Q iff JZ F - P = Q.

The collection of possible transitions of each process term P is finite, say {P -~

Pi I i -- 1, ..., m} U (P -~ 0 I J = 1 , . . . , n}. We call the term

m

exp(P) '~ ~ E = ai.Pi + 1
i : 1 j----1

the expansion of P. The terms aiPi and 1 will be referred to as the summands
of P. A straightforward structural induction on terms, using axiom PAl, yields:

L e m m a 4.2. Each process term is provably equal to its expansion.

We aim at identifying a subset of process terms of a special form, which will
be convenient in the proof of the completeness results to follow. Following a
long-established tradition in the literature on process theory, we shall refer to
these terms as normal forms. The set of normal forms we are after is the smallest
subset of BCCS p* including process terms having one of the following two forms:

Z ai.P~[+l] or a * (Z a,.P,[+ l]),
iEI iEI

where the terms Pi are themselves normal forms, and I is a finite index set. (Re-
call that the empty sum represents 0, and the notation [+1] stands for optional
inclusion of 1 as a summand.)

L e m m a 4.3. Each term in BCCS p* can be proven equal to a normal form using
equations A3, A4 and PAl.

4.1 R e a d y Simula t ion

We begin our tour of equational axiomatizations for prefix iteration by presenting
a complete axiom system for the ready simulation preorder (cf. Defn. 2.1 for
the definition of this relation). The axiom system CRs consists of the laws for
bisimulation equivalence (cf. Table 2) and of the inequations RS1-2 below:

RS1 a.x <_ a.x + a.y
RS2 a*x <_ a*(x + a.y) .

T h e o r e m 4.4. For every P ,Q E BCCS p*, P ~ns Q iff s t- P <_ Q.

27

Proof. We leave it to the reader to check the soundness of the axiom system
s and concentrate on its completeness. In view of Lem. 4.3, it is sufficient
to show that if P ~Rs Q holds for normal forms P and Q, then CRS t- P < Q.
This we now proceed to prove by induction on the sum of the sizes of P and Q.

We proceed by a case analysis on the form the normal forms P and Q may
take.

- - C A S E : P =Ac)-~ie~ ai .Pi[+l] and Q =AC)-~jeJ bj.Qj[+I].
As P ERS Q, we infer that:

1. for every i there exists an index ji such that a~ = bj~ and Pi ~Rs Qj~,
2. 1 is a summand of P iff it is a summand of Q, and
3. the collections of actions {ai 1 i E I} and {bj I J e J} are equal.

The induction hypothesis and substitutivity yield that, for every i E I,

CRs b a~.Pi < bj, .Qj, .

Again using substitutivity, we obtain that

ERs ~- P < Z bj, .Qj, [+1] .
i

Note now that, for every index j that is not contained in the set {jl I i E I},
there is an index jt (! E I) such that bj = b~,. We can therefore apply axiom
RS1 as necessary to infer that

z . s bj,.Qj, [+1] < Q
i

The provability of the inequation P < Q from the axiom system Cns now
follows immediately by transitivity.

- - C A S E : P = A c ~iel ai .Pi[+l] and Q =AC b*(~ je s bj.Qj[+l]).
To deal with this case, begin by applying PAl to Q to obtain the equality

Q = b.Q + ~_, bj.Q3[+l] .
jEJ

We can now reason as in the first case of the proof to derive tha t

P <_ b.Q + ~ bj.Qj[+l] .
jEJ

Transitivity now yields the inequation P < Q.
- CASE: P =Ac a * (~ i ai .Pi[+l]) and Q =Ac ~ i b~..Qj[+l].

Apply PAl to P, and reason as in the previous case.
- CASE: P =Ar a*(Zi ai.Pi[+l]) and Q =Ac b*(Zj bj.Qj[+l]).

As P -~ns Q, we infer that:

1. there exists a Q~ such that Q -st Q~ and P ~RS Qt,
2. for every i there exists a Q(i) such that Q ~ Q(i) and Pi ~Rs Q(i),

28

3. 1 is a summand of P iff it is a summand of Q, and
4. the collections of actions {a~ I i e I} U {a} and {bj I J e J} U {b} are

equal.

Because of the form Q takes, Q* and every Q(i) is either Q itself or one of
the Qj's. Therefore we may apply the inductive hypothesis to each of the
inequivalences Pi ~Rs Q(i) and substitutivity to infer that

~ns F E a,.P, <_ Z ai.Q(i) . (1)
i i

We proceed with the proof by considering the following two sub-cases:

A. There is an index j such that a = bj and P ~ns Qj;
B. For no index j with a = bj it holds that P ~Rs Qj.

We consider these two cases in turn.

A. Assume that there is an index j such that a = bj and P ~Rs Qi. In this
case, we may apply the inductive hypothesis to derive that

~Rs I- P <_ Qi �9 (2)

We can now finish the proof of the inequation P _< Q from the axiom
system CRS as follows:

(PAl) Z P = a.P + ai .Pi[+l]
i

(1),(2)
<_ bj.Qj + Z a~.Q(i)[+l]

i

(Rsl)
<_ bj.Qj + Z a~.Q(i) + exp(Q)[+l]

i

(A3),(PA1)
= Q .

B. Assume that for no index j with a = bj it holds that P ERs Qj. In this
case, we infer tha t a - b. We can now reason as follows:

(1)
P =- a*(~a,.P,[+l]) < a*(Z a,.Q(i)[+ll)

i i
(RSI),(RS2)

<_ a* (~ a,.Q(i) + a.Q + Z bj.Qj[+l])
i j

(A3),(PA1)
<__ a*Q

(PA2) = Q �9

This completes the proof of the theorem.

29

4.2 S imula t ion

The axiom system s consists of the laws for bisimulation equivalence in Table 2
and of the axiom

S x <_ x + y .

Inequation S is well-known to characterize the simulation preorder over finite
synchronization trees. Unlike in the case of ready simulation, no extra law is
needed to deal with prefix iteration explicitly.

T h e o r e m 4.5. For every P,Q E BCCS p*, P ~s Q iff s ~- P <_ Q.

4.3 Read ines s

In this section we present a complete axiom system for prefix iteration with
respect to the readiness preorder. The axiom system ~ consists of the collection
of laws for ready simulation and of those listed below:

R1
R2
R3

a.(b.x + b.y + v)
a.a* (b.x + b.y + v)

a*(b.x + b.y + v + a.(b.y + w))

< a.(b.x + v) + a.(b.y + w)
< a.a*(b.x + v) + a.a*(b.y + w)
= a*(b.x + v + a.(b.y + w)) + b.y

T h e o r e m 4.6. For every P, Q E BCCS p*, P ~R Q iff CR t- P < Q.

We focus on the completeness of s and leave soundness to the reader. Before
proving this completeness theorem, we introduce some auxiliary definitions and
results.

Def ini t ion 4.7. A term P is saturated if for each pair of derivations P 2~ Q _~

Q' and P -~ R with b E initials(R) we have R -~ R' with Q' ~R R'.

The following lemma stems from [2].

L e m m a 4.8. If P ~ R Q and P -~ P~ and ~ is saturated, then Q -~ Q~ with
P' ~ R Q'.

Defini t ion 4.9. A normal form P is strongly saturated if:

1. P is saturated;
2. if P =AC ~ e l ai.Pi[+l], then the term Pi is strongly saturated, for every

i E I .

Axioms R1-R3 play a crucial role in the proof of the following key result.

L e m m a 4.10. Each term is provably equal, by the axioms in s to a strongly
saturated normal form, in which each subterm of the form a*R occurs in the
context a._.

30

Finally we are in a position to prove TAm. 4.6.

Proof. Suppose that P c_R Q; we prove that s F- P < Q. By Lem. 4.10 it is not
hard to see that it suffices to establish the claim under the following assumptions:

1. P and Q are normal forms;
2. Q is strongly saturated;
3. proper subterms of P and Q of the form a*R occur in the context a._;
4. if P =Ac a*R and Q =Ac b'S, then a = b.

(In fact, according to Lem. 4.10, the last two conditions could be replaced by the
stronger condition that all subterms of P and Q of the form a*R occur in the
context a._. However, we shall need the weaker formulation above to be able to
satisfy the induction hypothesis.) We derive the desired inequality P _< Q from
CR by induction with respect to the following lexicographic ordering on pairs of
process terms: (P, Q) < (R, S) if

- either size(P) < size(R);
- or size(P) = size(R) and size(Q) < size(S).

The next two cases distinguish the possible syntactic forms of P.

- CASE 1: P =Ac ~eiai .Pi[+l] .
Since P ~R Q, P -~ Pi and Q is saturated, Lem. 4.8 implies that for each
i E I we have Q -~ Qi for some Qi such that Pi ~R Qi. According to
Lem. 4.10, ~R ~- Qi = Ri, with Ri a strongly saturated normal form, in
which each subterm of the form c*S occurs in the context c._. Moreover,
each Pi is a normal form, in which all proper subterms of the form c*S occur
in the context c._, with size(Pi) < size(P). Hence, we can apply induction
to Pi ~R Ri to derive s ~" Pi <_ R~. Therefore, for each i E I ,

s ~- ai.P~ <_ ai.Ri = ai.Qi �9 (3)

By substitutivity, we have that

P =Ac E ai.Pi[+l] (~_ E ai.Qi[+l] �9 (4)
iGI i E l

Since P ~R Q implies initials(P) = initials(Q), it follows that initials(Q)\ {r
is equal to {ai I i E I}. Furthermore, P ~R Q implies that P has a summand

1 if and only if Q -~ 0. Hence,

E a,.Qi[+l] (~" exp(Q)(,.om.____4.2, Q

i E l

which together with equation (4) yields Ca D- P <_ Q.
- CASE 2: P =Ac a*(~ielai.Pi[+l]).

The next two cases distinguish the possible syntactic forms of Q.

31

-- CASE 2 .1 : Q ----AC ~-~jEJ bj.Qj[+l].

Suppose that P ~ P~. Since P ~R Q and Q is saturated, Lem. 4.8 implies
that there is a j E J such that c = bj and pt ~R Qj. Both P~ and Qj
are normal forms, and since Q is strongly saturated, by Defn. 4.9(2) Qj is
strongly saturated too. Furthermore, if P~ ----AC d*R and Qj =AC e ' S , then
c = d and bj = e, owing to property 3 of P and Q, and so d = c = bj = e.
Moreover, it is easy to see that property 3 of P and Q implies that the same
property holds for Pt and Qj. Finally, size(P ~) <_ size(P) and size(Qj) <
size(Q). Hence, we can apply induction to P~ ~R Qj to derive s i- P~ < Qj.
Substitutivity now yields

ER F- c.P' < bj.Qj . (5)

Hence,

p (Lem____.4.2)exp(P) (~ Z bj.Qj[+l] (6)
jeJo

for some J0 C_ J. It is easy to see that P gR Q implies initials(Q) \ {,/} =

initials(P) \ {4"} = {bj I J E J0}. Moreover, P -~ 0 if and only if Q has a
summand 1. Hence,

Z bj.Qj[+l] (~2) Z bj.Qj[+l] =AC Q �9
jeJo J~J

Together with equation (6) this yields s F- P _< Q.
- CASE 2.2: Q =Ac a*(Y]~3ejbj.Qj[+l]).

Since P ~R Q and P -~ Pi and Q is saturated, Lem. 4.8 implies that for
each i E I

1. either ai = a and Pi ~R Q,
2. or there is a j such that ai = bj and Pi ~R Qj.

Clearly, each Pi is a normal form in which all proper subterms of the form
c*S occur in the context c._, and with size(Pi) < size(P).
In the first case, applying induction to Pi ~R Q, we infer that s ~- Pi <_ Q.
Therefore, by substitutivity,

EI~ F" ai.Pi <_ a.Q . (7)

In the second case, Lem. 4.10 implies s t- Qj = Rj, with Rj a strongly
saturated normal form, in which each subterm of the form c*S occurs in the
context c._. Then by induction Pi ~R R j implies ER I- P~ <_ Rj. It follows,
by substitutivity, that

CR t- ai.Pi <_ ai .Rj = bj.Qj . (8)

32

Hence, for some Jo C_ J:

(RS2)
P <_ a* (a .Q+~a , .p i [+ l]) (s)'(') < a*(a.Q + ~ b ~ . Q j [+ l]) .

i~I jeJo

It is easy to see that P ~a Q implies that initials(Q) \ (~) = {b~

J0} U {a}, and that P -~ 0 if and only if Q -~ 0. Hence

a*(a.Q + Z bj.Qj[+l]) (~1, a*(a.Q + Z bj.Qj[+l]) ,PA1).____(PA2) Q .
j~Jo j~J

Together with equation (9) this yields ER F- P < Q.

The proof is now complete.

(9)

4.4 Traces

The axiom system ~T consists of the laws for bisimulation equivalence in Table 2
and of

T1 a.(x + y) = a.x + a.y
T2 a*(x + y) = a*x + a*y
T3 a*(a.x) = a.(a*x) .

Axiom T1 is a well-known equation used to characterize trace equivalence over
finite synchronization trees, and axiom T2 is the adaptation of this equation to
the case of prefix iteration. Finally, T3 is, to the best of our knowledge, a new
axiom.

T h e o r e m 4.11. For every P, Q E BCCS p*,

1. P~--TQ iffs
2. P ~ T Q i f f eTU{(S)) } -P<_Q.

4.5 Language Semant ics

The axiom system s consists of the laws for bisimulation equivalence in Table 2,
T1-3 and the equations

L1 a.0 = 0
L2 a*0 = 0 .

Axiom L1 is an adaptation to action prefixing of a well-known equation from
regular algebra, and axiom L2 is the generalization of this equation to the case
of prefix iteration.

T h e o r e m 4.12. For every P,Q E BCCS p*,

1. P~--L Q iff gL t- P = Q ;
2. P ~L Q iff EL U (S) t- P <_ Q.

33

Proo]. We leave it to the reader to check the soundness of the axiom system
EL U iS), and concentrate on the completeness results.

1. Assume that P --L Q- We shall prove that E L ~- P = Q. A simple term
rewriting analysis (which is omitted here) shows that each process term is
provably equal to a term which is either 0-free, or of the form 0.
Suppose that two terms P and Q are language equivalent. We distinguish
two cases.

CASE 1: P -- 0. Then clearly also Q = 0, so P = 0 ~ Q.
CASE 2: P is 0-free. Then clearly Q is also 0-free. Since P and Q are
0-free and language equivalent, it is not hard to see that they are also
trace equivalent. So, according to Thm. 4.11, the equation P = Q can
be derived from ET, which is included in EL.

2. Note that, for every P, Q E BCCS p*, the following holds:

P~ L Q iff P + Q --L Q �9

Thus the completeness of the axiom system EL U {iS)} with respect to ~T
is an immediate consequence of the first statement of the theorem.

5 F u r t h e r W o r k

The completeness results presented in this paper deal with a significant fragment
of the notions of semantics discussed in [7]. To our mind, the most important
omission is a complete proof system for failures semantics [4] over BCCS with
prefix iteration. We conjecture that a complete axiomatization for the failure
preorder can be obtained by adding the laws

a . (x + y) <
a.a*(x + y) < a.a*x + a.a*iy -t- z)

a.a*x <_ a*a.(x -b y)
<

a*x <_ a*(x § a.y)

to those for bisimulation equivalence (cf. Table 2), and we are currently working
on the details of such a proof. The crux of the argument is a proof to the
effect that the suggested inequations are sufficient to convexly saturate each
process term, in the sense of [2]. We have also obtained irredundancy results
for the axioms systems for ready simulation, simulation, trace and language
equivalence. These will be presented in the full version of this paper, together
with a characterization of the expressive power of BCCS with prefix iteration.

Acknowledgements : The research reported in this paper originates from a
question posed by Rocco De Nicola. We thank the anonymous referees for their
comments.

34

R e f e r e n c e s

1. L. ACETO, W. J. FOKKINK, R. J. VAN GLABBEEK, AND A. ING6LFSD6TTIR,
Axiomatizing prefix iteration with silent steps, Information and Computation, 127
(1996), pp. 26-40.

2. J. BEROSTRA, J. W. KLOP, AND E.-R. OLDEROG, Readies and failures in the
algebra of communicating processes, SIAM J. Comput., 17 (1988), pp. 1134-1177.

3. B. BLOOM, S. ISTRAIL, AND A. R. MEYER, Bisimulation can't be traced, J. Assoc.
Comput. Mach., 42 (1995), pp. 232-268.

4. S. BROOKES, C. HOARE, AND A. ROSCOE, A theory of communicating sequential
processes, J. Assoc. Comput. Mach., 31 (1984), pp. 560-599.

5. J. H. CONWAY, Regular Algebra and Finite Machines, Mathematics Series (R.
Brown and J. De Wet eds.), Chapman and Hall, London, United Kingdom, 1971.

6. W. J. FOKKINK, A complete equational axiomatization for prefix iteration, Inf.
Process. Lett., 52 (1994), pp. 333-337.

7. R. J. v. GLABBEEK, The linear time - branching time spectrum, in Proceedings
CONCUR 90, Amsterdam, J. Baeten and J. Klop, eds., vol. 458 of Lecture Notes
in Computer Science, Springer-Verlag, 1990, pp. 278-297.

8. - - . , A complete axiomatization for branching bisimulation congruence of finite-
state behaviours, in Mathematical Foundations of Computer Science 1993, Gdansk,
Poland, A. Borzyszkowski and S. Sokotowski, eds., vol. 711 of Lecture Notes in
Computer Science, Springer-Verlag, 1993, pp. 473-484. Available by anonymous
ftp from Boole. stanford, edu.

9. S. KLEENE, Representation of events in nerve nets and finite automata, in Au-
tomata Studies, C. Shannon and J. McCarthy, eds., Princeton University Press,
1956, pp. 3-41.

10. H. LIN, An interactive proof tool for process algebras, in 9th Annual Symposium on
Theoretical Aspects of Computer Science, vol. 577 of Lecture Notes in Computer
Science, Cachan, France, 13-15 Feb. 1992, Springer, pp. 617-618.

11. R. MILNER, A complete inference system for a class of regular behaviours, J. Com-
put. System Sci., 28 (1984), pp. 439-466.

12. , Communication and Concurrency, Prentice-Hall International, Englewood
Cliffs, 1989.

13. , The polyadic It-calculus: a tutorial, in Proceedings Marktoberdorf Summer
School '91, Logic and Algebra of Specification, NATO ASI Series F94, Springer-
Verlag, 1993, pp. 203-246.

14. D. PARK, Concurrency and automata on infinite sequences, in 5 th GI Conference,
Karlsruhe, Germany, P. Deussen, ed., vol. 104 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, 1981, pp. 167-183.

