
Analysis of a Guard Condition in Type Theory
(Extended Abstract)

Roberto M. Amadio Solange Coupet-Grimal

Universit~ de Provence, Marseille *

Abstract . We present a realizability interpretation of co-inductive types
based on partial equivalence relations (per's). We extract from the per's
interpretation sound rules to type recursive definitions. These recursive
definitions are needed to introduce 'infinite' and 'total' objects of co-
inductive type such as an infinite stream, a digital transducer, or a non-
terminating process. We show that the proposed type system subsumes
those studied by Coquand and Gimenez while still enjoying the basic
syntactic properties of subject reduction and strong normalization with
respect to a confluent rewriting system first put forward by Gimenez.

1 Introduction

Coquand proposes in [4] an approach to the representation of infinite objects
such as streams and processes in a predicative type theory extended with co-
inductive types. Related analyses on the role of co-inductive types (or definitions)
in logical systems can be found in [14, 11] for the system F, [16] for the system
HOL, and [20] for Beeson's Elementary theory of Operations and Numbers. Two
important features of Coquand's approach are that: (1) Co-inductive types, and
related constructors and destructors, are added to the theory, rather than being
represented by second order types and related A-terms, as in [7, 17]. (2) Recur-
sive definitions of infinite objects are restricted so that consideration of partial
elements is not needed. Thus this work differs from work on the representation
of infinite structures in lazy programming languages like Haskell (see, e.g., [21]).

In his thesis [8], Gimenez has carried on a realization of Coquand's pro-
gramme in the framework of the calculus of constructions [5]. More precisely, he
studies a calculus of constructions extended with a type of streams (i.e., finite
and infinite lists), and proves subject reduction and strong normalization for
a related confluent rewriting system. He also applies co-inductive types to the
representation and mechanical verification of concurrent systems by relying on
the Coq system [3] extended with co-inductive types (another case study can be
found in [6]). In this system, processes can be directly represented in the logic as
elements of a certain type. This approach differs sharply from those where, say,

* CMI, 39 rue Joliot-Curie F-13453, Marseille, France. amadio@gyptis.univ-mrs.]r.The
first author was partially supported by CTI-CNET 95-1B.182, Action Incitative
INRIA, IFCPAR 150~-1, WG Confer, and HCM Express. A preliminary version of
this paper (including proofs) can be found in [1].

49

processes are represented at a syntactic level as elements of an inductively defined
type (see, e.g., [15]). Clearly the representation based on co-inductive types is
more direct because recursion is built-in. This may be a decisive advantage when
carrying on formal proofs. Therefore, the issue is whether this representation is
flexible enough, that is whether we can type enough objects and whether we can
reason about their equality. These questions are solid motivations for our work.

The introduction of infinite ' total ' objects relies on recursive definitions which
are intuitively 'guarded' in a sense frequently arising in formal languages [18].
An instance of the new typing rule in this approach is:

F, x : a I- M : a M J, x <r co-inductive type
F I- fix x.M : o (1)

This allows for the introduction of 'infinite objects' in a 'co-inductive type', by
means of a 'guarded' (recursive) definition. Of course, one would like to have
notions of co-inductive type and of guarded definition which are as liberal as
possible and that are supported by an intuitive, i.e., semantic, interpretation.

In Coquand's proposal, the predicate M $ z is defined by a straightforward
analysis of the syntactic structure of the term. This is a syntactic approximation
of the main issue, that is to know when the recursive definition fix x .M deter-
mines a unique total object. To answer this question we interpret co-inductive
types in the category of per's (partial equivalence relations), a category of to-
tal computations, and we find that the guard predicate M $ x has a semantic
analogy which can be stated as follows:

Va ((d,e) E ~ : =~" ([M][d/x],[M][e/x]) E ~r~+,) (2)

where ~'a is a monotonic function on per's associated to the co-inductive type
a, and ~-~ is its a th iteration, for a ordinal. We propose to represent condition
(2) in the syntax by introducing some extra-notation. With the side conditions
of rule (1), we introduce two types 6" and 6"+ which are interpreted respectively
by 3rff and 3r~ +1. We can then replace the guard condition M $ x by the
typing, judgment x : 6" I- M : 6"+ whose interpretation is basically condition
(2). The revised typing system also includes: (1) Subtyping rules which relate
a co-inductive type ~ to its approximations ~ and ~,+, so that we will have:
o" < ~+ _< ~. (2) Rules which overload the constructors of the co-inductive type,
e.g., if f : r --+ ~r is a unary constructor over or, then f will also have the type
6" ---r ~,+ (to be understood as Va x E ~ ::~ f(~) e .T~ '+1). The types a --+ a
and ~ --+ #+ will be incomparable with respect to the subtyping relation.

The idea of expressing the guard condition via approximating types, subtyp-
ing, and overloading can be traced back to Gimenez's system. Our contribution
here is to provide a semantic framework which:

(1) Justifies and provides an intuition for the typing rules. In particular, we will
see how it is possible to understand semantically Gimenez's system.

(2) Suggests new typing rules and simplifications of existing ones. In particular,
we propose: (i) a rule to type nested recursive definitions, and (ii) a way to type
recursive definitions without labelling types.

(3) Can be readily adapted to prove strong normalization with respect to the
confluent reduction relation introduced by Gimenez.

50

2 A s i m p l y t y p e d c a l c u l u s

We will carry on our s tudy in a simply typed)~-calculus extended with co-
inductive types. 2 Let F be a countable set of constructors. We let fl, f 2 , . . - r ange
over F. Let tv be the set of type variables t, s , . . . The language of raw types is
given by the following (informal) grammar:

r ::= *v I - + r') I v ,o (f= : . , .fk : "rk -+ tv) (3)

where r i --+ tv stands for rid -+ �9 �9 �9 --+ ri,,~, -+ ~v (--+ associates to the right), and
Mlfi are distinct. Intuitively, a type of the shape ~t.(fl : r l --+ t . . . f k : rh --~ t)
is well-formed if the type variable t occurs positively in the well-formed types
r~,j, for i = 1 . . . k , j = 1 . . . n i . Note that the type variable t is bound by ~, and
it can be renamed. We call types of this shape co-inductive types, the symbols
fl - . . f t represent the constructors of the type. We will denote co-inductive types
with the letters or, ~r ~, or1,..., and unless specified otherwise, we will suppose that
they have the generic form in (3). A precise definition of the well-formed types
is given as follows.

D e f i n i t i o n 1 t y p e s . If r is a raw type and s is a type variable then the pred-
icates w f (r) (well-formed), pos(s ,r) (positive occurrence only), and neg(s, r)
(negative occurrence only) are the least predicates which satisfy the following
conditions.

(1) If t e tv then wf(t) , pos(s, t), and neg(s, t) provided t r s.

(2) If w f (r) and w f (r ') then w f (r -+ r ') . Moreover, pos(s, r --+ r') if pos(s, r ')
and neg(s, r), and neg(s, r --+ r') if neg(s, r') and pos(s, r) .

(3) If a = yr.(f1 : r l --+ ~ . . . fk : rk --+ t) and t # s (otherwise rename t) then
wf (r provided wf(r i , j) and pos(t, ri,j) for i = 1 . . . k, j = 1 . . . h i . Moreover,
pos(s, ~) if pos(s, rl,j) for i = 1 . . . k, j = 1 . . . ni, and neg(s, ~r) if neg(s, rl,j) for
i = 1 . . . k , j = 1 . . . h i .

Example 1. Here are a few examples of well-formed co-inductive types where we
suppose that the type r is not bound by v.

(1) Infinite streams over r:/zs.(cons : r --+ (s --+ s)).

(2) Input-output processes over r: vp.(nil : p, ! : r --+ p --+ p, ? : (r -+ p) -+ p).

(3) An involution: vt.(inv : ((t --+ r) -+ r) -+ t).

Definition 1 allows mutually recursive definitions. For instance, we can define
processes over streams over processes . . . :

cr = ~, t . (n l l : t , ! : ~r' --~ t - + t, ? : (a ' -+ t) - + t) o" = ~ ,s . (cons : t - + s --+ s) .

2 Per's interpretations support other relevant extensions of the type theory, including
second-order types (see, e.g., [13]) and inductive types (see, e.g., [12]). As expected,
an inductive type, e.g., pt.(nil : t, cons: o -+ t ---> t) is interpreted as the least
fixpoint of the operator Jr described in section 3. It follows that there is a natural
subtyping relation between the inductive type and the corresponding co-inductive
type ~,t.(nil : t, cons: o --~ t -~ t).

51

These mu tua l l y recursive defini t ions lead to some compl ica t ion in the typ ing
of constructors . For instance, the type of cons should be [~ / t] (t -+ e ' -+ ~r'),
and moreover we have to make sure t h a t all occurrences of a cons have the s a m e
type (after unfolding). To make our analysis clearer, we prefer to gloss over these
technical issues by tak ing a s t ronger definition of posi t ivi ty . Thus , in the case
(3) of definit ion 1, we say pos(s, ~r) (or neg(s, ~r)) if s does not occur free in ~r.
In this way a type var iable which is free in a co- induct ive type canno t be bound
b y a v .

Let v be the set of t e rm var iables x, y, . . . A contex t _r' is a poss ibly e m p t y
list x l : v l . . . zn : r , where all xi are dist inct . R a w t e rms are defined by the
following g r a m m a r :

M ::= v I (~v .M) i (M M) I f a I case ~ I (fix v . M) . (4)

We denote with F V (M) the set of variables occurr ing free in the t e r m M . T h e
typ ing rules are defined as follows:

~ : r E I ~ F , x : r ~ - M : r ~ F b M : r ' - - ~ r /~ F" N : r '
F ~ - x : r F F A x . M : r - + r ~ F b M N : r

= yr . (f1 : r l -+ t . . . f k : r k ~ t)
Assuming: r ' ~ ~r = r ; ~ . . . z~, ~ o" (m > O)

r f ; ' : [,,It]n,, '[o-p]n,,,, --+ ,,-

F'F- c se" i ,, e --+

.P, az : -r ' --~ cr I- M : -r ' ---~ ~r M J , z
/1 I-f ix x . M : -r ' -+

T h e guard predica te ' M J, x ' is left unspecified. Intui t ively, this pred ica te has
to gua ran tee t ha t a recursive definit ion does de t e rmine a unique ' t o t a l ' object .
Before t ry ing a fo rmal definition, we will consider a few examples of recursive
definitions, where we use the no ta t ion let z = M in N for ()~x .M)N, and let
appl ica t ion associate to the left.

Example ~. Let o be a basic type of numera l s wi th cons tan t s 0 : o and suc : o -+ o.
Let us first consider the type of infinite s t r eams of numera ls , wi th des t ruc tors
head and tail:

,,~ = v t . (c o n s : o -~ (t - ~ t))
hd = ,~x.case "1 x()~n.)~y.n) tl = ,~x.case ul x(~n.)~y.y) .

(1) We can in t roduce an infinite list o f O's as follows: fix x .consa l0x .

(2) We can also define a funct ion which adds 1 to every e lement of a s t ream:

fix addl.~x.case ~l x (. k n . , ~ x ' . c o n s a~ (suc n)(addl x')) .

52

(3) Certain recursive definitions should not type, e.g., fix x.consal0(t/=). The
equation does not determine a stream, as all streams of the form cons ~10z' give
a solution.
(4) The function db doubles every element in the stream:

f ix db.Ax.let n = (hd x) in cons#'n(cons#'n db(tl x)) .

(5) Next we work over the type as of finite and infinite streams. The function
C concatenates two streams.

a2 = ~, t . (ni l : t , cons : o - + t - + t)
C ---- fix conc.,kx.Ay.case "~ x y An.Ax'.(cons#~n(conc x ' y)) .

(6) Finally, we consider the type #3 of infinite binary trees whose nodes may
have two colours, and the following recursive definition:

s = ~ t . (b l n l : t - + t - + t , bin~ : t - ~ t - + t)

(f ix x . b i , ~ ~ x (f ix y .b in~ 3 x y)) .

We recall next Coquand's definition [4] of the guard predicate in the case the
type theory includes just one co-inductive type, say a = vt.(nil : t, cons : o --+
t --~ t).

D e f i n i t i o n 2 . Supposing F, �9 : r ' --+ # t- M : "1"' --+ #, we write M $ m if the
judgment F, x : r I --+ 0" I- M ~- ' - ,a x can be derived by the following rules,
where n ranges over {0, 1}. The intuition is that 'x is guarded by at least a
constructor in M' . For the sake of readability, we omit in the premisses the
conditions that x : ~" -+ cr E 1" and the terms have the right type.

x ~ F V (M) F , y : r I - M J / ~ " * " x y • x
F I- M $~ x F I- Xy .M ~r.=)~.~,, x

�9 ~FV(M~) rFM2~
F ~- cons~Ml M2 J~' x

~ FV(M~) r~ M ~
F ~ cons#M1 M2 ~ x

x ~ F V (N) Fty M1 ~.~ x F I-. M2 $o-.#...,, x x ~ F V (M i) j -- 1 . . . m
1 "~ ~- case#NM1M~ ~L~, x xMl . . . M,~ .l.'J x

Coquand's definition is quite restrictive. In particular: (i) it is unable to tra-
verse fl-redexes as in example 2(4), and (ii) it does not cope with nested recursive
definitions as in example 2(6). We present in the next section a simple semantic
framework which clarifies the typing issues and suggests a guard condition more
powerful than the one above.

3 Interpretation

In this section we present an interpretation of the calculus in the well-known
category of partial equivalence relations (per's) over a A-model (cf., e.g., [19]).
Let (D,. , k, s, c) be a Aft-model (cf. [2]). We often write de for d . e. We denote
with A, B , . . . binary relations over D. We write d A e for (d, e) E A and we set:
[d]A= {e E D] d A e } , IAI = { d E D I d A d }, and [A] = {[d]A I d E IAI}.

53

D e f i n i t i o n 3 p a r t i a l e q u i v a l e n c e r e l a t i o n s . Let D be a A-model. The cate-
gory of per's over D (perD) is defined as follows:

p e r D = {A I A _C D x D and A is symmetric and transitive}
p e r D [A , B] = { f : [A] --~ [B] I 3 r E D (r
r [A] ---r [B] iff Vd e D (d e IAI ~ Cd e f([d]A)) �9

We will use the A-notation to denote elements of the A-model D. E.g.,
Ax.zl~- f stands for [Ax.z]Dl~-f. The category p e r D has a rich structure, in
particular it has finite products, finite sums, and exponents, whose construction
is recalled below.

dAx • . . . • An e iff Vi E { 1 . . . n } (p ld)Ai (pie) where:
p~ = A u . u (A x l . . . A x , , . z l) p~l~Tr~ : [//~=x...,Ai] ---r [Ai]

: I t] [A,] (r . . . f ,) : [C3 [rZ,=l...,,a,]

dA1 + . . . + An e iff 3 i e { 1 . . . n } (d = (jid'), (e = jie') and d' A ie ') where:
ji = Au.Ayl . . .Ayn .y iu jilFini : [Ai] ~ [Si=l...nAi]

r : [A,] ~ [el =~ A d . d r 1 6 2 . . . f n] : [,U,i=I...nA,] .-> [C]

d A - - . ~ B e iff Vd' ,e ' (d ' A e ' ::r (dd ')B(ee ')) where:
Ad.(pld)(p~d)l]-ev : [B A • A] ~ B

r [C • A] --+ [B] =r Ad.Ad'.r : [C] ..-+ [BA].

As degenerate cases of empty product and empty sum we get terminal and initial
objects:

I = D x D A z . x l ~ f : [A] ~ l 0=1~ Az .x l~- f : [0] - - r [A] .

We denote with 77 : tv -+ p e r D type environments. The interpretation of type
variables and higher types is then given as follows:

As for co-inductive types, given a type r = yr.(f1 : r l -+ t . . . f k : ~'k -'+ t), and
a type environment r/, we define a function ~'a,n on p e r D as follows:

.T,,,, 7 (A) = 2Yi=l...k (/-/j= 1...hi [rij],7[A/t]) . (5)

We then observe that p e r D is a complete lattice with respect to set-inclusion,
and that thanks to the positivity condition in the definition of co-inductive type,
5va,n is monotonic on per/9. Therefore we can define (gfp stands for greatest
fixpoint):

[~]o = U { A I A C_ 2"a,o(A)} (= gfp(.Ta,,7)). (6)

In general, if f is a monotonic function over a poset with greatest element T
and glb's, we define the iteration f a , for a ordinal as follows:

fo = T f~,+l = f (f~ ,) f~ = A~<x f " (A limit ordinal) .

54

With this notation, we have gfp(.Ta,.) = ~r~. for some ordinal c~.
Since p e r D is a CCC there is a canonical interpretation of the simply typed

)t-calculus. The interpretation of constructors and case is driven by equation (5).
Note that to validate the typing rules it is enough to know that the interpretation
of a co-inductive type is a fixpoint of the related functional defined by equation
(5) (as a mat ter of fact, these rules are sound also for inductive types). The
interpretation of fix is more problematic (and represents the original contribution
of this section as far as semantics is concerned). We proceed as follows:

�9 We define an erasure function er from the terms in the language to (pure)
untyped)t-terms, and we interpret the untyped).-terms in the)t-model D. This
interpretation, is always well-defined as the)t-model accommodates arbitrary
recursive definitions.

�9 We see what it takes for the interpretation of (the erasure of) a fixpoint
to be in the corresponding type interpretation, and we derive a suitable guard
condition which is expressed by additional typing rules in a suitably enriched
language.

�9 We prove soundness of the interpretation with respect to the enriched typing
system.

D e f i n i t i o n 4 e r a s u re . We define an erasure function from terms to (pure) un-
typed)t-terms, by induction on the structure of the term (assuming a - t~t.(fl :
r l ~ t . . . f k : r k ~ t)) .

er(x) "- z er() tx .M) --) tx.er(M) e r (M N) - e r (M) e r (N)

er(fi a) =)t~gl...)t~n,.)tYl...)tYk.Yi()tu.UZl... Znl)

er(case ~) =)tx.Ayl. . .)tyk . x U (y l) . . . U(yk) with U(y~) = Au .y i (p lu) . . . (p , ,u)

er(fix z . M) - Y() tx .er (M)) with Y -) t f . () tx . f (xz)) () tx . f (xx)) .

If ni = 0 then we have er(fi a) = Ayl. . .Ayk.yi(Au.u) and U(yi) = Au.yi. If
k = 1 then the definitions simplify to er(fl a) = Axl . . .Axn~ .Au .ux l . . . z ,~ and
er(case =)t .)tYl .Yl (Pl

The erasures of fl a and c a s e a are designed to fit the per interpretation of co-
inductive types, in particular they rely on the definition of sum and product in
p e r D.

We sketch with an informal notation an instance of our semantic analysis.
We write ~ P : r if [p i p E [[7-][. The typing rule for recursive definitions is
sound if we can establish:

Y(),x.er(M)) : a , (7)

Given the iterative definitions of the interpretation of the co-inductive type ~,
we can try to prove:

Va ordinal ~ Y()~x.er(M)): Y:~ (8)

55

by induction on the ordinal a. The case a = 0 is trivial since Sr~ -- 1, and the
case a limit ordinal follows by an exchange of universal quantifications. For the
case a = a ' + 1, it would be enough to know:

Va (~ Y(Ax.er(M)) : .T~, =e~ ~ Y(Ax.er(M)) : fi~+l) . (9)

Since Y(J~x.er(U)) = [Y(, kx .er (U)) lx]U, property (9) is implied by the fol-
lowing property:

Vot, P (~ P : ~ ' ~ :=~ ~ [P/x]er(M) : ~'~§ . (10)

In order to represent this condition in the syntax, we parameterize the type
interpretation on an ordinal a, and we introduce types ~ and ~+ so that [~ |" =
~r~,, and [~+1~ = ~'2+~. Property (10) is then expressed by the judgment z :
~-H M : ~ + .

Let T be the set of types specified in definition 1. We define the set T' as
the least set such that: (i) T C T', (ii) if r ~ T is a co-inductive type then
/~ ~ T' and &+ ~ T', and (iii) if r ~ T ~ and r ' ~ T' then r --+ r ~ ~ T'. We also
define the set T + as the set of types in T' such that all types of the form & and
&+ appear in positive position (the interpretation of these types is going to be
anti-monotonic in the ordinal). I f / ' is a context then T(F) - {r I x : r ~ F}.

The revised typing system contains the typing rules presented in section 2
(applied with the enriched set of types) but for the rule for fix which is replaced
by the rules displayed below. Of course, all the rules are applied on the enriched
set of types, and under the hypothesis that all types are well-formed.

= v t . (f l : r i --+ t . . . f ~ : r , - 0 t)
Assuming: -r' ~ r --- r~ - + . . . ~ -o a (m _> O)

T(/ ') U {r~ . . . ~n} C T

F , z : r ' -4 ~1- M : r ! - - ~ +
F t- fix x . M : *" - o v

TiF) U {r~ . . . r~} C T +
, / ' ,x : ~.t _+ ~ F M : ~.e _@ ~+

r v'fi ~ i'[~i,]n., -+. . .":+'[~/t]'~. , ,-+ ~ '
r I - M : r r<_r'

F b M : r '

r v C,,e <' ~ + - + ([~'f i iT;-+ ~') -->.. "'([~'/d~ --7 ~-) -4,~"

We give some motivation and intuition for these rules. In the first rule, the
condition M ~ x is replaced by the typing judgment P, x : v -4 �9 b M : v -@ gr+.
The second rule for fix is used to type nested fixpoints as in example 2(6).
In the rules for fix, the side conditions T(r) u {rl...r~} g T and T(/'} U
{r~.. . r~ } C T + guarantee independence and anti-monotonicity, respectively, of
the type interpretation with respect to the ordinal parameter.

56

The additional rule for the constructors fi is needed to introduce terms of
type gr+. Note that in this way we overload the constructors fi by giving them
two related types (but incomparable with respect to subtyping). There is also a
related rule which overloads the destructor case.

The following rules just state the subtyp ing relations between ~r ~r, and b+,
and the way this relation is lifted higher-order. The obvious transitivity rule for
the subtyping relation < can be derived. Types with the relation < form a quite
simple partial order. In particular, if R = < U <-1 then {r ' I rR*r '} is finite.
We state some basic properties of the typing system.

L e m m a 5 . (1) Exchange. I f F , x : v l , y : r2 ,1 ~' t- M : r then F , y : r 2 , x :
r l , F ' t- M : r (wi th a proo f o f the s a m e depth) .

(2) R e m o v e . I f F, x : 7" F- M : r and x ~ B Y (M) , then F ~" M : r .

(3) W e a k e n i n g (restr ic ted) . I f F t- M : r, x fresh, and e i ther r ~ E T or fix does
not occur in M then F , x : v ~ t- M : v .

(4) Transi t iv i ty . I f k r < r I and t- 7 "l < v" then ~" r < v ' .

(5) Subs t i tu t ion . I f F, ~: : v ' ~- M : r and F k N : r ' then F F [N / x] M : r .

The terms typable using Coquand's guard condition, are strictly contained
in the terms typable in the proposed typing system (as a matter of fact, all
examples in 2 (but (3) of course) can be typed). This is a consequence of the
following lemma.

L e m m a 6 . (1) I f F, x : r -+ q t- M : r , x q~ F V (M) , and M has no occurrence
o f fix, then r', x : v -.4 ~ t- M : v.

(2) l f [' , x : r---~ ~ l " M J,~'-*~ ~ then l~,x : ~ ' -+ ~ l - M : ~J--+ ~.

(3) I f F, x : r " ~ ~ " M $~"-*~' x then I~,x : r " + ~ l - M : r~--~ # +.

We parameterize the type interpretation on an ordinal ~, and we define for
= vt.(fl : r l "-+ t . . . f k : rk --+ t):

IriS' = ,7(t) #- --, =
[a]]~ = gfP(J:a,o,a) Y:a,o,a(A) = ,U,i=l...k(IIj=l...n,[']~[Ait])

O'jr/~Or

R e m a r k . If r E T then [r],~ does not depend on e. In particular, if ~r E T' or
h + E T ~ then ~ E T and therefore ~'a,0,~ = 9v-,, �9 If r E T + and e < ~ then
[r]~ ~ Ir iS ' , since the types of the shape # and #+ occur in positive position.

Let us now consider the soundness of the typing rules. If P is a pure ,~-term,
we w r i t e ~ x : r ~ . . . ~ , : r , # P : r i f

Va,~/ ((Vi e { 1 . . . n } di [vii, di) ==~ ([P][d/x] [v]g[P] [d ' /x])) .

P r o p o s i t i o n 7 s o u n d n e s s . I f -P I- M : r then F ~ er(M) : r .

57

It follows from proposition 7 that: ~" M : r ~ [e r (M)] E II~]l. This result
justifies the interpretation of a typed term as the equivalence class of its erasure
(it is straightforward to adapt this interpretation to take into account contexts
and environments). Thus, if t- M : r , then we set [M] = [Ier(M)]][d.

Clearly, there is a trade-off between power and simplicity/decidability of the
type system. Our contribution here is to offer a framework in which this trade-
off can be studied, and to extract from it one possible type system. We will s e e

in section 4 that this 'experimental ' type system has some desirable syntactic
properties, and we will discuss its relationships with Gimenez's system. We hint
here, by example, to limits and possible extensions of the system.

(1) The following two definitions 'make sense' but are not typable. Here we
work with the type of infinite streams ~ = v t . (c o n s : o --+ t ---r t):

- If x is a stream of numerals we denote with zl its i th element. We define a
function F such that F(=)i = (suc(2~)xi), for i E w:

F -- fix f.)~x.conse(suc(hd x)) (f (f (t l x))) . (11)

- A 'constant ' definition which determines the infinite stream of O's.

f i x x . c a s e = x(An.Ay.(fix x ' . c o n s = 0 x ')) .

(2) We can soundly generalize the two rules for fix as follows:

T(F) U {r~ .. . ~ } C_ T pos(t, r~) T(F) U {r~ . . . 7',~} C_ T + pos(t, r~)
F, x : [~r/tl(r' -+ t) t- M : [c,/t](r' --+ t)

F,x : [b/t](r ' -.+ t) I- M : [&+ / t](r ' --+ t) F,[#/t](~" --+ t) t- M : [~r+/t](f ' --+ t)
F I- fix x . M : [a/t](r' -o t) 1 ~ t- fix x . M : [~/t](a" --+ t)

(12)
where ~ E {&, &+ }. These rules are particularly powerful and will be analysed in

a forthcoming paper. For instance, they can be used to type: the representation
of a sequential circuit as a function over streams of booleans (we found the rules
trying this example), the example (11) above, and a tail append function.

(3) One may consider the extension of the type system with a finite or infinite
hierarchy of approximating types, say: v < . . . < ~+++ < &++ <: &+ < &.

Next we turn to equations. We say that an equation M = N : r is valid in
the per interpretation, if

VP (F b M : r a n d F F ' N : r ~ / ' ~ M = N : r)

w h e r e z l : r l . . . x , = : r n ~ M = N : r , if

Va, r/ ((V i e { 1 . . . n } di[v~]~d~) =r [er (M)][d /x] [r] ~ [e r (N)] [d ' / x]) .

Reasoning at the level of erasures, it is easy to derive some valid equations.

P r o p o s i t i o n 8 va l id e q u a t i o n s . The following equations are valid in the per
interpretation:

([3) ()~x.M)N = [N/x]M : r (r/))~x.(Mx) = M : r --+ r' x ~ F V (M)

(case) (case = (fi=Ma . . . Mni)N) = N I M I . . . Mni : 1"
(casen) (case" x f~ . . . f~) = x : r (fix) fix x . M = [fix x . M / x] M : ~r --.> a .

58

The following proposition introduces an important principle to prove the
equality of terms of co-inductive type.

Proposition9 u n i q u e f ixed po in t . Suppose F I" N : ~" ~ tr, F I- N ' : I"
~, F, z : T -+ ~ ~- M : r --+ ~+, and T (F) U {~} C T. Then I" ~ [N/x]M - N :

Proposition 9 resembles Banach's theorem: contractive functions have a unique
fixed point (in our case, 'contractive' is replaced by 'guarded'). Combining with
unfolding (fix), one can then prove equivalences such as (cf. [18]):

f ix x.cons n (cons n x) = fix x . c o n s , x .

An interesting question is whether the interpretation identifies as many closed
terms of co-inductive type as possible. We consider this question for the type of
streams of numerals a = ut.(cons : o --~ t --~ t) (cf. example 2) and leave the
generalization to a following paper. Suppose that for M, N closed terms of type
o we have:

M = g : o iff [M] = IN]

where the left equality denotes conversion. We define a simulation relation ,,~'~
over the closed terms of type o, say A ~ as ,-,~= Nn<~ " ~ , where:

~0= A0a • A0a ~ - + 1 = { (M , N) l (hdM = h d N and (t iM, t l g) EN")} . (13)

Equivalently, we can characterize ,,,~ as:

M ~ N iff V n E ~ h d (t l n M) = h d (t l n N) .

Clearly N ~ is the largest (sensible) equivalence we can expect on A~ We can
show that this equivalence is precisely that induced by the per's interpretation.

Proposition 10. Let M, N E A ~ Then M ,,~ N iff [M] - IN] .

4 Reduct ion

It is easy to see that the equality induced by the per's interpretation on co-
inductive types is in general undecidable (E.g., let the n :h element of a stream
witness the termination of a Turing machine after n steps). In the presence of
dependent types (like in the Calculus of Constructions), it is imperative to have
a theory of conversion which is decidable. Thus the approach is to: (i) Consider a
weaker (but decidable) notion of conversion on terms, and (ii) Define in the log-
ical system a notion of term equivalence which captures the intended meaning,
e.g., using a notion of simulation as in (13). A standard way to achieve decidabil-
i ty for an equational theory is to exhibit a rewriting system which is confluent
and terminating. In order to achieve termination, the unfolding of fixpoints has
to be restricted somehow. Gimenez has proposed a solution in which fix is un-
folded only under a case. Intuitively, fix is considered as an additional constructor

59

which can be simplified only when it meets the corresponding destructor. 3 In the
following we will simplify the matter by ignoring the extensional rules:

()~x.M)N --r [N/x]M
c a s e '~ (f~M)N -'r NiM
case ~ ((fix x.M)M)N --+ case ~ (([fix x .M/x]M)M)N.

We also denote with --r the compatible closure of the rules above. It is easily
seen that the resulting rewriting system is locally confluent. Subject reduction
is stated as follows.

P r o p o s i t i o n l l . If F h M : 1" and M -~ M' then I" ~- M' : r.

The strong normalization proof is based on an interpretation of types as
reducibility candidates. We outline the construction (which is quite similar to
the one for per's) by assuming that there is just one ground type o and one
co-inductive type ~r = ~t.(cons : o -+ t --+ t). Let SN be the set of strongly
normalizing terms. We say that a term is not neutral if it has the shape (we omit
the type labels on cons and case):

Ax.M, consM, (fix x.M)M, case, case(consMiM2), case((fix x.M)M) .

We note a fundamental property of neutral terms.

Lemma 12. If M is neutral, then for any term N, M N and caseMN are neu-
tral , and they are not redexes.

Therefore a reduction of M N (or caseMN) is either a reduction of M or
a reduction of N. Following closely [10], we define the collection of reducibility
candidates.

De f in i t i on 13. The set of terms X belongs to the collection RC of reducibility
candidates if: (C1) X C_ SN. (C~) I f M E X and M -+ M' then M ' E X. (Cs)
If M is neutral and VM'(M --+ M I =~ M ~ E X) then M E X.

The following are standard properties of reducibility candidates (but for (/)5)
and (P6) which mutatis mutandis appear in [8]):

P r o p o s i t i o n 14. The set RC enjoys the following properties:

(P1) SN ~ RC.
(P2) If X E RC then z ~ X. Hence X # ~.

(P3) I f X , Y E R C t h e n X - - - r Y = { M I V N E X (M N e Y) } E R C .

(P4) I f V i E I Xi E RC then~ iexXi E RC.

(t)5) If X e ~RC then

Af(X) = {M IVY E RC VP E SN --+ X -+ Y case MP E Y} E RC .

(t'6) If X C X ' then A/'(X) C_ H(X ') .

s Another possible approach, is to stop unfolding under a constructor. However this
leads to a non-confluent system (exactly as in a 'weak' ,\-calculns where reduction
stops at)ds).

60

We can then define the type interpretation which is (again) parameterized
on an ordinal a (of course, we take Af ~ = SN):

[o] ~ = S N Iv --~ r '] a = [I"] ~ -+ [r '] ~

[~r]" = gfp(Af) [#]~ = .Af" [~+]~ = A f~+l .

W e d e f i n e x l : r l . . . z , : r , ~ R c M : r i f V a ((V i e {1 . . . n} P i f i [r i] a) =~
[P 1 / z l . . . P , / x ,] M 6 [r]~). We can then state the following result from which
strong normalization immediately follows by taking Pi = zi.

P r o p o s i t i o n l 5 s t r o n g n o r m a l i z a t i o n . I f F b M : r then F ~ n a M : r .

Remark. From these results, we can conclude that it is always better to normalize
the body M of a recursive definition fix z .M, before checking the guard condition,
e.g., consider: M = (Az.case z(An.Az ' .z ')) (cons n (cons n x)). This term cannot
be typed, but if M I is the normal form of M then fix x .M I can be typed.

In his thesis, Gimenez has studied an extension of the calculus of construc-
tions with the co-inductive type of finite and infinite streams (cf. example 2(5)).
In the Coq system, the user can actually introduce other co-inductive types.
Among the examples of co-inductive type considered in this paper, the type in
example 1(3) is the only one which is rejected. The reason is that Coq relies on
a stricter notion of positivity to avoid some consistency problems which arise
at higher-order types [9]. It should be noted that Coq implementation of co-
inductive types was developed before the type theory was settled, and cannot be
considered as a faithful implementation of it.

We sketch a semantic reconstruction of Gimenez's system. In the interpreta-
tion studied in section 3, all approximating types are assigned the same ordinal.
We might consider a more liberal system in which different ordinals can be as-
signed to different approximating types. However, to express the guard condition,
we still need a linguistic mechanism to say in which cases the ordinal assignment
really has to be the same. Following this intuition, we label the approximat-
ing types with the intention to assign an ordinal to each label. As before, we
restrict our attention to the type of infinite streams, say ~ with constructor
c o n s : o --~ o" -+ o'. The collection of types is then defined as follows:

r : := o I ~ I ~ I ~+~ I (" ~ ") - (14)

Roughly, we replace the type ~ with the types ~ and the type ~+ with the
types ~ + ~ , where x is a label which we take for convenience as ranging over the
set of term variables x, y , . . . (any other infinite set would do). More precisely,
if h denotes an assignment from variables to ordinals then we define a type
interpretation parametric in h.

[o]h = 0 (for some chosen per O) Iv -+ r']h = [r]h -+ [r']h
[a]h -- gfp(.T) • (A) = 0 x A
[a ~] h = .~.h(~) (,7~+~]h = y h (~) + l .

6]

If P is a pure A-term, we write xl : rl . . . xn : rn ~ P : 1" if

Vh ((V i e { 1 . . . n } di [ri]hd~) =:# ([P] [d /x] [v]h [P] [d ' / x])) .

We now turn to syntax. Let va t (r) be the set of variables which occur in the
type r . If F is a context, we also define vat(F) = U{var(r) I x : r E F}. If x is a
variable, we define T + (z) as the set of types such that all subtypes of the form
~ or ~z+t occur in positive position. Following the interpretation above, the
typing rules for, e.g., fix can be formulated as follows, where ~'~ ---r ~r u = r~ -+
�9 .. -~ v~ ---r ~u, m > 0, u can be a label or nothing.

r var()uU{ r(W)I i = 1 . m}
/~, :c : ,-rl -.-~ o- I- M : ,r~ -..+ a-

E, z : ~" ---r ~,x t- M : "r' --+ a ~r+l

/~ i- fix x .M : ~" --+

T(F) O {r[l i = 1 . . . m) C T+(y)
/~, z : ~-' --+ ~Y b- M : ~'~ -+ ~y+l

.r' I- fix a:.M : r ' ~ b "y+~

Soundness can be proved as for proposition 7. When Gimenez's system is consid-
ered in a simply-typed framework, the following differences appear with respect
to the system with labelled types (ignoring some minor notational conventions):
(1) Gimenez's typing system is presented in a 'Church' style. More precisely,
the variables bound by A and fix carry a type, and this type is used to constraint
(in the usual way) the application of the related typing rules. (2) The subtyp-
ing rule for functional types r -+ r I is missing. (3) The second rule for typing
recursive definitions is missing.

Obviously these differences imply that one can give less types to a term in
Gimenez's system than in our system. To be fair, one has to notice tha t the
presentation as a Church system and the absence of subtyping at higher-types is
essentially justified by the complexity of the calculus of constructions, and by the
desire to avoid too many complications at once. On the other hand, the lack of
the second rule for fix is, in our opinion, a genuine difference, which moreover has
an impact in practice, as the rule is needed to type nested recursive definitions
as that of example 2(6) and can be further generalized as shown in (12). A
question which should be raised is whether the system with type labels is better
in practic e than the simpler system without type labels. So far, we could not
find any 'natural ' example suggesting a positive answer.

Acknowledgement The first author would like to thank Eduardo Gimenez for pro-
viding the simply typed formulation of Iris system and explaining its motivations, and
Alexandra Bac for a number of discussions on the type system presented here�9

R e f e r e n c e s

1. R. Amadio and S. Coupet-Grimal. Analysis of a guard condition in type the-
ory (preliminary report). Teclmical Report TR 1997.245. Also appeared as RR-
INRIA 3300, UIfiversit~ de Provence (LIM), 1997. Available at http://protis.univ-
mrs.fr/,,~ arnadio.

62

2. H. Barendregt. The lambda calculus; its syntax and semantics. North-Holland,
1984.

3. Coq-project. The Coq proof assistant reference manual. Available at
http://pauillac.inria.fr/coq, 1996.

4. T. Coquand. Infinite objects in type theory. In Types for proofs and programs,
Springer Lect. Notes in Comp. Sci. 806, 1993.

5. T. Coquand and G. Huet. A calculus of constructions. Information and Compu-
tation, 76:95-120, 1988.

6. S. Coupet-Grimal and L. Jakubiec. Coq and hardware verification: a case study.
In Proc. TPHOL, Springer Lect. Notes in Comp. Sci. 11~5, 1996.

7. H. Geuvers. Inductive and coinductive types with iteration and recursion. In Proc.
of Workshop on types]or p~vofs and programs, NordstrOm et al. (eds.), pages 193--
217, 1992. Available electronically.

8. E. Gimenez. Un calcul de constructions infinies et son application d la vgrification
de syst~mes communicants. PhD thesis, ENS Lyon, 1996.

9. E. Gimenez. Personal communication. October 1997.
10. J.-Y. Girard, Y..Lafont, and P. Taylor. Proofs and Types. Cambridge University

Press, 1989.
11. F. Leclerc and C. Paulin-Morhing. Programming with streams in Coq. A case

study: the sieve of Eratosthenes. In Proc. TYPES, Springer Lect. Notes in Comp.
Sci. 806, 1993.

12. R. Loader. Equational theories for inductive types. Annals of Pure and Applied
Logic, 84:175-218, 1997.

13. G. Longo and E. Moggi. Constructive natural deduction and its modest interpre-
tation. Mathematical Structures in Computer Science, 1:215-254, 1992.

14. N. Mendler. Recursive types and type constraints in second-order lambda calculus.
In Proc. IEEE Logic in Comp. Sci., 1987.

15. M. Nesi. A formalization of the process algebra CCS in higher order logic. Techni-
cal Report 278, Computer Laboratory, University of Cambridge, December 1992.

16. L. Paulson. Mechanizing coinduction and corecursion in higher-order logic. J. of
Logic and Computation, 7(2):175-204, 1997.

17. C. Ratfalli. L'arithmgtique fonctionnelle du second ordre avec point fixes. PhD
thesis, Universit~ Paris VII, 1994.

18. A. Salomaa. Two complete systems for the algebra of complete events. Journal of
the ACM, 13-1, 1966.

19. D. Scott. Data types as lattices. SIAM J. of Computing, 5:522-587, 1976.
20. M. Tatsuta. Realizability interpretation of coinductive definitions and program

synthesis with streams. Theoretical Computer Science, 122:119-136, 1994.
21. S. Thompson. Haskell. The craft of functional programming. Addison-Wesley,

1996.

