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Abs t r ac t .  We propose an event based semantics for contextual nets, i.e. 
an extension of Place/Transition Petri nets where transitions can also 
have context conditions, modelling resources that can be read without 
being consumed. The result is a generalization of Winskel's work on 
safe nets: the event based semantics is given at categorical level via a 
chain of coreflections leading from the category W S - C N  of weakly safe 
contextual nets to the category Dorn of finitary prime algebraic domains. 
A fundamental r61e is played by the notion of asymmetric event struc- 
tures that generalize Winskel's prime event structures, following an idea 
similar to that of "possible flow" introduced by Pinna and Poign~. Asym- 
metric event structures have the usual causal relation of traditional prime 
event structures, but replace the symmetric conflict with a relation mod- 
elling asymmetric conflict or weak causality. Such relation allows one to 
represent the new kind of dependency between events arising in contex- 
tual nets, as well as the usual symmetric conflict. Moreover it is used in a 
non-trivial way in the definition of the ordering of configurations, which 
is different from the standard set-inclusion. 

1 I n t r o d u c t i o n  

Contextual  nets, as introduced in [14], extend classical Petri  nets, a formalism 
for the specification of the behaviour of concurrent systems, with the possibility 
of handling contexts: in a contextual net transitions can have not only precon- 
ditions and postconditions, but  also context conditions, that ,  intuitively, specify 
something which is necessary for the transition to be fired, but  is not affected 
by the firing of the transition. In other words, a context can be thought  of as 
an i tem which is read but not  consumed by the transition, in the same way as 
preconditions can be considered as being read and consumed and postconditions 
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being simply written. Consistently with this view, the same token can be used 
as context by many transitions at the same time and with multiplicity greater 
than one by the same transition. Context conditions of [14] are also called test 
arcs in [5], activator arcs in [10] or read arcs in [18, 19]. 

The possibility of faithfully representing the "reading of resources" allows 
contextual nets to model a lot of concrete situations more naturally than classical 
nets. In recent years they have been used to model concurrent access to shared 
data  (e.g. reading in a database) [17, 7], to provide a concurrent semantics to 
concurrent constraint (CC) programs [13], to model priorities [9], to specify a 
net semantics for the lr-caiculus [3]. Moreover they have been studied for their 
connections with another powerful formalism for the representation of concurrent 
computations, namely graph grammars [14, 6]. 

In this paper we consider marked contextual P I T  nets (shortly c-nets), tha t  
following the lines suggested in [14] for C /E  systems, add contexts to classical 
P / T  nets. The problem of giving a truly concurrent semantics based on (de- 
terministic) processes has been faced by various authors (see, e.g., [9, 14, 4, 19]). 
Each process of a c-net records the events occurring in a single computation of 
the net and the relations existing between such events. 

8O ~ s t~ # ti< 

ti' 

(a) (b) 

Fig. 1. A simple contextual net and a prime event structure representing its behaviour. 

Here we provide (weakly safe) c-nets with a truly concurrent event structure 
semantics following another classical approach. Generalizing Winskel's construc- 
tion for safe nets [20], we associate to each c-net an event structure that  describes 
all the possible behaviours of the net. Recall that  prime event structures (PES) 
are a simple event based model of (concurrent) computations in which events 
are considered as atomic, indivisible and instantaneous steps, which can appear 
only once in a computation. An event can occur only after some other events (its 
causes) have taken place and the execution of an event can inhibit the execution 
of other events. This is formalized via two binary relations: causality, modelled 
by a partial order relation and conflict, modeled by a symmetric and irreflexive 
relation, hereditary w.r.t, causality. When working with c-nets the main critical 
point is represented by the fact that  the presence of context conditions leads to 
asymmetric conflicts or weak dependencies between events. To understand this 
basic concept, consider two transitions to and tl such that  the same place s is 
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a context for to and a precondition for tl. Following [141, such a situation is 
represented pictorially as in Fig. 1.(a), i.e., non-directed arcs are used to repre- 
sent context conditions. The possible firing sequences are to, tl  and t o ; h ,  while 
tl;  to is not allowed. This situation cannot be modelled in a direct way within a 
traditional prime event structure: to and tl  are neither in conflict nor concurrent 
nor causal dependent. Simply, as for a traditional conflict, the firing of tl  pre- 
vents to to be executed, so that  to can never follow tl in a computation. But the 
converse is not true, since to can fire before tl. This situation can be naturally 
interpreted as an asymmetric conflict between the two transitions. Equivalently, 
since to precedes tl  in any computation where both are fired, in such computa- 
tions, to acts as a cause of tl .  However, differently from a true cause, to is not 
necessary for tl  to be fired. Therefore we can also think of the relation between 
the two transitions as a weak form of causal dependency. 

A reasonable way to encode this situation in a PES is to represent the firing 
of tl with two distinct mutually exclusive events (as shown in Fig. 1.(b)): t~, 
representing the execution of tl  that  prevents to, thus mutually exclusive with 
to, and t~', representing the execution of tl after to (caused by to). This encoding 
can be unsatisfactory since it leads to a "duplication" of events (e.g., see [1]). The 
events of the prime event structure associated to a system would not represent 
the elementary actions of the system, but  the possible histories of such actions. 

Several authors pointed out the inadequacy of event structures for faithfully 
modeling general concurrent computations and proposed alternative definitions 
of event structures (flow event structures [2], bundle event structures [11], prior- 
itized event structures [8]). Asymmetric conflicts have been specifically treated 
by Pinna and Poign~ in [15, 16], where the "operational" notion of event automa- 
ton suggests an enrichment of prime event structures and flow event structures 
with possible causes. The basic idea is that  if e is a possible cause of e' then e 
can precede e' or it can be ignored, but the execution of e never follows e ~. This 
is formalized by introducing an explicit subset of possible events in prime event 
structures or adding a "possible flow relation" in flow event structures. Similar 
ideas are developed, under a different perspective, in [8], where PES are enriched 
with a partial order relation modeling priorities between events. 

In order to provide a more direct, event based representation of c-nets we 
introduce a new kind of event structure, called asymmetric event structure (aES). 
Despite of some differences in the definition and in the related notions, aES's 
can be seen as a generalization of event structures with possible events and 
of prioritized event structures. Besides of the usual causal relation (_<) of a 
traditional prime event structure, an aES has a relation /~, that  allows us to 
specify the new situation analyzed above simply as to/ '~  tl .  As just  remarked, 
the same relation has two natural interpretations: it can be thought of as an 
asymmetric version of conflict or as a weak form of causality. We decided to call 
it asymmetric conflict, but the reader should keep in mind both views, since in 
some situations it will be preferable to refer to the weak causality interpretation. 
Configurations of an aES are then introduced and the set of configurations of 
an aES, ordered in a suitable way using the asymmetric conflict relation, turns 
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out to be a finitary prime algebraic domain. We prove that  such a construction 
extends to a functor from the category aES  of asymmetric event structures to the 
category D o r a  of finitary prime algebraic domain, that  establishes a coreflection 
between a ES  and Dora .  Recalling that  D o r a  is equivalent to the category P E S  
of prime event structures we can recover a semantics in terms of traditional 
prime event structures. 

The seminal work by Winskel presents an adjunction between event struc- 
tures and a subclass of P / T  nets, namely safe nets. Such a result is extended 
in [12] to the wider category of weakly safe nets, i.e. P / T  nets in which the 
initial marking is a set and transitions can generate at most one token in each 
post-condition. Similarly, we restrict here to a (full) subcategory of contextual 
nets, called weakly safe c-nets and we show how, given a weakly-safe c-net N,  
an unfolding construction allows us to obtain an occurrence c-net ~a(N) .  i.e. 
an "acyclic c-net" tha t  describes in a static way the behaviour of N,  by ex- 
pressing possible events and the dependency relations between them. The un- 
folding operation can be extended to a functor lla from W S - C N  to the cat- 
egory O - C N  of occurrence c-net, tha t  is right adjoint of the inclusion functor 
~o : O - C N  --+ W S - C N .  

Transitions of an occurrence c-net are related by causal dependency and 
asymmetric conflict, while mutual exclusion is a derived relation. Thus, the se- 
mantics of weakly safe c-nets given in terms of occurrence c-nets can be naturally 
abstracted to an aES semantics. Again this construction extends, at categorical 
level, to a coreflection from aES  to O - C N .  

Finally we exploit the coreflection between aES  and Dora ,  to complete the 
chain of coreflections from W S - C N  to Dora .  

2 A s y m m e t r i c  e v e n t  s t r u c t u r e s  

We stressed in the introduction that  PES's  (and in general Winskel's event 
structures) are too poor to model in a direct way the behaviour of models of 
computation allowing context sensitive firing of events, such as string, term and 
graph rewriting, and contextual nets. The fact that  an event to be fired requires 
the presence of some resources that  are not "consumed", but  just read, leads to 
a new kind of dependency between events tha t  can be seen as an asymmetric 
version of conflict or a weak form of causality. Technically speaking, the problem 
is essentially the axiom of event structures (see [20]) stating that  the enabling 
relation }- is "monotone" w.r.t, set inclusion: 

A ~- e A A C _ B  A Bcons is ten t  :~ B t- e. 

As a consequence the computational order between configurations is set inclu- 
sion, the idea being that  if A C B are finite configurations then starting from A 
we can reach B by performing the events in B - A. This means that  the conflict 
is symmetric, i.e. it cannot be the case that  the execution of an event el prevents 
e0 to be executed but  eo can precede el in a computation. 
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To faithfully represent the dependencies existing between events in such mod- 
els, avoiding the unpleasant phenomenon of duplication of events (see Fig. 1), 
we generalize prime event structures by replacing the usual symmetric conflict 
relation with a new binary relation /~, called asymmetric conflict. If e0 /~ el 
then the firing of el inhibits e0: the execution of e0 may precede the execution 
of el or eo can be ignored, but e0 cannot follow el. By using the terminology of 
Pinna and Poign~ [16], we can say that  e0 is a "possible" cause of ez. Nicely, the 
symmetric binary conflict can be represented easily with cycles of asymmetric 
conflict. Therefore symmetric conflict will be a derived relation. 

We first introduce some basic notations. Let r C_ X x X be a binary relation 
and let Y _C X.  Then ry  denotes the restriction of r to Y x Y, i.e. r ;1 (Y x Y), 
r + denotes the transitive closure of r and r* denotes the reflexive and transitive 
closure of r. We say that  r is well-founded if it has no infinite descending chains, 
i.e. (ei)iEJN with ei+l rei ,  ei ~ ei+l, for all i E ~W. The relation r is acyclic if 
it has no "cycles" eo r el r . . .  r en r eo, with ei E X.  In particular, if r is well- 
founded it has no (non-trivial) cycles. The powerset of X is denoted by 2 x ,  while 
2~n denotes the set of finite subsets of X.  

D e f i n i t i o n  1 ( a s y m m e t r i c  e v e n t  s t r u c t u r e ) .  An asymmetric event structure 
(aES) is a tuple G = (E, < , /~ ) ,  where E is a set of events and < , / ~  are binary 
relations on E called causality relation and asymmetric conflict respectively, s.t.: 

1. the relation _< is a partial order and leJ = {e' E E : e' < e} is finite for all 
e E E ;  

2. the r e l a t i o n / z  satisfies for all e, e I E E: 
C a )  e < e I :=~ e / z~ e ' ;  1 

(b) /~LeJ is acyclic; 2 

If e / ~  e I, accordingly to the double interpretation o f / ~ ,  we say that  e is pre- 
vented by e I or e weakly causes e I. Moreover we say that  e is strictly prevented 
by e I (or e strictly weakly causes e~), written e ~ e I, if e / 7  e' and -~(e < el). 

The definition can be easily understood by giving a more formal account of 
the ideas presented at the beginning of the section. Let Fired(e) denote the fact 
tha t  the event e has been fired in a computation and let prec(e, e I) denote tha t  
e precedes e ~ in the computation. Then 

e < e' del_ Fired(e') ~ Fired(e) A prec(e,e') 
deI 

e ,/~ e I =_ Fired(e) A Fired(e I) ~ prec(e, e I) 

Therefore < represents a global order of execution, wh i l e / z  determines an order 
of execution only locally, in each configuration (computation). Thus it is natural  
to impose /~  to be an extension of <. Moreover if a set of events forms an asym- 
metric conflict cycle e 0 / ~  el //~ . . .  /~ e n / ~  eo, then such events cannot appear 

1 W i t h e < e  ~ w e m e a n e < e a n d e ~ e  ~. 
2 Equivalently, we can require (TL~J)+ irreflexive. This implies that, in particular, 7 

is irreflexive. 
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in the same computation, otherwise the execution of each event should precede 
the execution of the event itself. This explains why we require the acyclicity of 
/z,  restricted to the causes LeJ of an event e. Otherwise not all causes of e can 
be executed in the same computation and thus e itself cannot be executed. The 
informal interpretation makes also clear that  ,,z is not in general transitive. If 
e / z  e I ,/~ e" it is not true that  e must precede e" when both fire. This holds 
only in a computation where also e' fires. 

The fact that  a set of n events in a weak-cansality cycle can never occur in 
the same computation can be naturally interpreted as a form of n-cry conflict. 
More formally, it is useful to associate to each aES an explicit conflict relation 
(on sets of events) defined in the following way: 

Definition 2 (induced conflict relation). Let G = (E, <, ,,z} be an aES. 
The conflict relation #~ C 2~n associated to G is defined as: 

e 0 / z  e l / z . . . / z  e n / z  e0 #a (A U {e}) e _< e' 

#a{e0, e l , . . . ,  en} #~(A O {d}) 

where A denotes a generic finite subset of E. The superscript a in #~ reminds 
that  this relation is induced by asymmetric conflict. Sometimes we use the infix 
notation for the "binary version" of the conflict, i.e. we write e#ae ~ for #~{e, e'}. 

It is worth noticing that  the binary version of the conflict relation #a ,  satisfies 
all the properties of the conflict relation of traditional PES's, i.e. it is irreflexive, 
symmetric and hereditary w.r.t, the causal dependency relation. 

The notion of aES morphism is a quite natural extension of that  of PES 
morphism. Intuitively, it is a (possibly partial) mapping of events that  "preserves 
computations". 

Definition 3 (category aES) .  Let Go = (E0, <o,/'~o) and G1 = {El, <1 , / z l )  
be two aES. An aES-morphism f : Go ~ G1 is a partial function f : E0 ~ E1 
such that: 

1. for all e0 �9 E0, if f(eo) is defined then kf(e0)J c f(ke0J); 
2. for all e0, e~ �9 E0 

a I .  (a) (f(eo) = f(elo)) A (Co ~ elo) ~ e0#0e0, 
(b) f(eo) / z l  f(elo) ~ (Co/Zo elo) V (eo#~elo). 

We denote with aES the category of asymmetric event structures and aES 
morphisms. 

It can be shown that  aES morphisms are closed under composition and thus 
category aES is well-defined. Moreover, analogously to what happens for PES's, 
one can prove that  aES morphisms reflect the (n-cry derived) conflict relation. 

Lemma 4 (prime and asymmetric event structures). Let ES -- {E, ~_, #1 
be a prime event structure. Then G = (E, <, < O#) is and aES, where the 
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asymmetric conflict relation is defined as the union of the "strict" causality and 
conflict relations. 

Moreover, if f : ESo ~ ESx is an event structure morphism then f is an 
aES-morphism between the corresponding aES's Go and G1, and Jig : Go ~ G1 
is an aES morphism then it is also a PES morphism between the original PES's. 

By the lemma, there is a full embedding functor $ : P E S  --+ a E S  defined on 
objects as $((E, <, #})  = (E, <, < t3#) and on arrows as ~(f  : ESo --+ ES1 ) = f .  

A configuration of an event structure is a set of events representing a possible 
computation of the system modelled by the event structure. The presence of the 
asymmetric conflict relation makes such definition slightly more involved w.r.t. 
the traditional one. 

Definition 5 ( c o n f i g u r a t i o n ) .  Let G = (E, < , /~ )  be an aES. A configuration 
of G is a set of events C C E such that  

1. /~v  is well-founded; 
2. {e' E C : e ' / ~  e} is finite for all e E C; 
3. C is left-closed w.r.t. <, i.e. for all e E C, e ~ E E,  e ~ < e implies e ~ E C. 

The set of all configurations of G is denoted by Conf (G). 

Condition 1 first ensures tha t  in C there are n o / z  cycles, and thus excludes 
the possibility of having in C a subset of events in conflict (formally, for any 
A C/~n C, we have -~(#aA)). Moreover it guarantees that  /~ has no infinite 
descending chain in C, that,  together with Condition 2, implies tha t  the set 
{e' E C : e~(/~c)+e} is finite for each event e in C; thus each event has to 
be preceded only by finitely many other events of the configuration. Finally 
Condition 3 requires that  all the causes of each event are present. 

If a set of events A satisfies only the first two properties of Definition 5 it 
is called consistent and we write co(S). Notice that ,  unlike for traditional event 
structures, consistency is not a finitary property. 3 For instance, let A = {ei : i E 
Fr C E be a set of events such that  all e~'s are distinct and ei+l /~ ei for all 
i E Z~ r. Then A is not consistent, but  each finite subset of A is. 

A remarkable difference w.r.t, to the classical approach is tha t  the order 
on configurations is not simply set-inclusion, since a configuration C cannot be 
extended with an event inhibited by some of the events already present in C. 

Definition 6 (extension).  Let G = (E, _<,/z) be an aES and let A,A'  C_ E 
be sets of events. We say that  A ~ extends A and we write A __U A ~, if 

1. ACA~;  
2. --(e' ,2  e) for all e E A, e' E A' - A. 

3 A property Q on the subsets of a set X is finitary if given any Y C X, from Q(Z) 
for all finite subsets Z C Y it follows Q(Y). 
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An important result is the fact that the set Con] (G) of configurations of an 
aES endowed with the extension relation is a finitary prime algebraic domain, 
i.e. a coherent, prime algebraic, finitary partial order, in the following simply re- 
ferred to as domain. Therefore asymmetric event structures, as well as prime [20] 
and flow [1] event structures, provide a concrete presentation of prime algebraic 
domains. 

The proof of such result is technically involved and will appear in the full 
paper: only a sketch is presented here. The fact that (Conf(G), E) is a partial 
order immediately follows from the definition. Moreover for pairwise compatible 
sets of configurations the least upper bound and the greatest lower bound are 
given by union and intersection. 

Interestingly, the primes of the domain of configurations turn out to be the 
possible histories of the various events. We call history of an event e in a config- 
uration C the set of events of C that must be executed before e (together with 
e itself). Recall that in a prime event structure an event e uniquely determines 
its history, that is the set [eJ of its causes, independently from the configuration 
at hand. In the case of asymmetric event structures, instead, an event e may 
have different histories. In fact, given a configuration C, the set of events that 
must precede e is C~e] = (e ~ �9 C : e~(/~e)*e}, and clearly, such a set depends 
on the configuration C. The set of all possible histories of an event e, namely 
(C[e~ : C �9 Conf(G)} is denoted by gist(e). 

T h e o r e m  7. Let G be an aES. Then (Con](G), E) is a (finitary prime alge- 
braic) domain. The primes of Con] ( G) are the possible histories of events in G, 
i.e. the configurations in UeeE Hist(e). 

Winskel in his seminal work [20] proved the equivalence between the category 
PES of prime event structures and the category Dora of domains and additive, 
stable, immediate precedence-preserving functions. 

T 

PES ~ ~ D o m  
L 

The functor L associates to each PES the domain of its configurations, while the 
functor T associates to each domain a PES having its prime elements as events. 

We want now to generalize this result to our framework by showing the 
existence of a coreflection between aES and Dom. One can prove that aES 
morphisms preserve configurations and that the natural function between the 
domains of configurations induced by an aES morphism is a domain morphism. 
These results, together with Theorem 7, ensure that the functor f~a leading from 
the category aES of asymmetric event structures to the category Dora of finitary 
prime algebraic domains is well-defined. The functor Ta performing the backward 
step is obtained simply by embedding in aES the Winskel's construction. 

Defini t ion 8. Let La : aES ~ D o m  be the functor defined as: 
- La(G) = (Con](G), E), for any aES-object G; 
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- Lo( f )  = f* : Lo(G0) -+ Lo(G1), for any aES-morph i sm f : Go --~ G1.4 
The functor T~ : D o r a  -~ a E S  is defined as ~ o T. 

The proof  of the following main result will appear  in the full paper.  

T h e o r e m  9. The functor To is left adjoint of Lo. The counit of the adjunction 
e : To o Lo -~ 1 is defined by ev(C) = e, if C E Hist(e). 

3 C o n t e x t u a l  n e t s  

We introduce here marked contextual P I T  nets (c-nets), that ,  following the lines 
suggested in [14] for C / E  systems, add contexts to classical P / T  nets. We first 
recall some notat ion for multisets. Let A be a set; a multiset of A is a function 
m : A -~ zW. Such a multiset will be denoted sometimes as a formal sum m = 
~ a e A n a  .a,  where na = re(a). The set of multisets of A is denoted as ~uA. 
The  usual operations and relations on multisets of A are used. As an example, 
multiset  union is denoted by + and defined as (m + ml)(a) = re(a) + ml(a);  
multiset  difference (m - m t) is defined as (m - m~)(a) = re(a) - mr(a) if re(a) >_ 
m~(a) and (m - m~)(a) = 0 otherwise. We write rn ~ m ~ if m(a) <_ m~(a) for all 
a E A. I f m  is a multiset of A, we denote by Ira] the multiset ~-~(aeAim(o)>O} 1 .a, 
obtained by changing all non-zero coefficients of m to 1. Sometimes we will 
confuse the multisets [m] with the corresponding subsets {a E A : re(a) > 0} 
of A, and use on them the usual set operations and relations. A multirelation 
f : A -+ B is a multiset of A • B. I t  induces in an obvious way a function 
# f  : #A -+ #B,  defined as ~f(~-~aeA no" a) = EbEB ~oEA(  no" f (a ,  b)) . b. If  the 
multirelation f satisfies f (a,  b) _< 1 for all a E A and b E B then we sometimes 
confuse it with the corresponding set-relation and write f (a,  b) for f (a ,  b) = 1. 

D e f i n i t i o n  10 ( e - ne t ) .  A (marked) contextual Petri net (c-net) is a tuple N = 
{S, T, F, C, m), where 

- S is a set of places; 
- T is a set of transitions; 
- F = (Fpre, Fpost) is a pair of multirelations from T to S; 
- C is a multirelation from T to S, called the context relation; 
- m is a multiset of S, called the initial marking. 

We assume, without loss of generality, that  S A T  = O. Moreover, we require tha t  
for each transit ion t E T, there exists a place s E S such tha t  Fpre(t, s) > 0. 5 

Let N be a c-net. As usual, the functions from p T  to # S  induced by the 
multirelations Fpre and Fpost are denoted by "( ) and ( ) ' ,  respectively. If  A E # T  
is a multiset of transitions, ".4 is called its pre-set, while A ~ is called its post-set. 
Moreover, by A we denote the context of A, defined as A = pC(A).  

4 With f* we denote the natural extension of the function f to the powerset of Eo 
(i.e., f* (A) = { f (a ) :  a E A}, for A C_ Eo). 

s This is a weak version of the condition of T-restrictness that requires also 
Fpost(t, s) > 0, for some s E S. 
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The same notat ion is used to denote the functions from S to 2 T defined 
as, for s �9 S, "s = {t E T : Fpost(t,s) > 0}, s" = {t E T : Fpre(t,s) > 0}, 
s_ = {t 6 T :  C(t,s) > 0}. 

In the following when considering a c-net N,  we implicitly assume tha t  N = 
(S, T, F, C, m).  Moreover superscripts and subscripts on the nets names carry 
over the names of the involved sets, functions and relations. For instance Ni -- 
(Si, Ti, Fi, Ci, m~). 

For a finite multiset of transitions A to be enabled by a marking M,  it is 
sufficient tha t  M contains the pre-set of A and at  least one additional token in 
each place of the context of A. This corresponds to the intuition tha t  a token in 
a place can be used as context by many  transitions at  the same t ime and with 
multiplicity greater  than  one by the same transition. 

D e f i n i t i o n  11 ( t o k e n  g a m e ) .  Let N be a c-net and let M be a marking of 
N ,  tha t  is a multiset M 6 #S. Given a finite multiset A 6 #T ,  we say tha t  A 
is enabled by M if ",4 + [A] < M. 6 The transition relation between markings is 
defined as 

M [A) M '  iff A is enabled by M and M '  = M - ",4 + A ' .  

We call M [ A ) M '  a step. A simple step or firing is a step involving just one 
transition. A marking M is called reachable if there exists a finite step sequence 
m [A0) M1 [A1) M 2 . . .  [An) M,  start ing from the initial marking and leading to 
M.  

A c-net morphism is a partial  mapping between transitions tha t  "preserves" 
pre- and post-sets, and also contexts in a weak sense. 

Def in i t ion  12 ( c - n e t  m o r p h i s m ) .  Let No and N1 be c-nets. A c-net mor- 
phism h : No -+ N1 is a pair h = (hT, hs), where hT : To --+ T1 is a part ial  
function and hs  : So --+ $1 is a multirelation such tha t  (1) #hs(mo) = ml and, 
for each A �9 #T, (2) #hs('A) = "tthT(A), (3) #hs(A' )  = #hT(A)" and (4) 
[tthT(A)] <_ #hs(A) <_ #hT(A). 
We denote by C N  the category having c-nets as objects and c-net morphisms 
as arrows. 

Conditions (1)-(3) are standard,  but  condition (4), regarding contexts, deserves 
some comments.  I t  can be explained by recalling that ,  since in our model a single 
token can be used as context with multiplicity greater  than one, the firing of a 
transit ion t can use as context any multiset X satisfying ~_t] _< X _< t. Given 
any multiset of tokens that  can be used as context in a firing of a transition, 

6 Other approaches (e.g. [9, 18]) allow for the concurrent firing of transitions that use 
the same token as context and precondition. For instance, in [9] the formal condition 
for a multiset A of transitions to be enabled by a marking M is ".4 < M and A < M. 
We do not admit such steps, the idea being that two concurrent transitions should 
be allowed to fire also in any order. 
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its image should be a set of tokens that  can be used as context by the image of 
the transition. This can be formalized by requiring that  [#hT(A)] <_ #hs (X)  <_ 
phT(A) for any X E pS0 such that  [A] _~ X _< A_A_, which is equivalent to the 
above condition (4). 

The basic result to prove (to check that  the definition of morphism is "mean- 
ingful") is that  the token game is preserved by c-net morphisms. 

Theorem 13 (morphisms preserve the token game). Let No and N1 be 
c-nets, and let h = (hT, hs) : No --~ N1 be a c-net morphism. Then for each 
M , M  ~ E pS and A E pT  

M [A) M'  ~ #hs(M) [#hT(A)) phs(M') .  

Therefore c-net morphisms preserve reachable markings, i.e. if Mo is a reachable 
marking in No then #hs(Mo) is reachable in N1. 

The seminal work by Winskel [20] presents a coreflection between event struc- 
tures and a subclass of P / T  nets, namely safe nets. In [12] it is shown that  
essentially the same constructions work for the larger category of "weakly safe 
nets" as well (while the generalization to the whole category of P / T  nets requires 
some original technical machinery and allows one to obtain a proper adjunction 
rather than a coreflection). In the next sections we will relate by a coreflection 
event structures and "weakly safe c-nets". 

Definition 14 (weak ly  safe c-nets) .  A weakly safe c-net is a c-net N such 
that  the initial marking m is a set and Fpost is a relation (i.e. t" is a set for all 
t E T). We denote by W S - C N  the full subcategory of C N  having weakly safe 
c-nets as objects. 

A weakly safe c-net is called safe if also Fp~ and C are relations (i.e., "t and 
t are sets for all t E T) and each reachable marking is a set. 

4 O c c u r r e n c e  c - n e t s  a n d  t h e  u n f o l d i n g  c o n s t r u c t i o n  

Occurrence c-nets are intended to represent, via an unfolding construction, the 
behaviour of general c-nets in a static way, by expressing the events (firing of 
transitions) which can appear in a computation and the dependency relations 
between them. Occurrence c-nets will be defined as safe c-nets such that  the 
dependency relations between transitions satisfy suitable acyclicity and well- 
foundedness requirements. While for traditional occurrence nets one has to take 
into account the causal dependency and the conflict relations, by the presence 
of contexts, we have to consider an asymmetric conflict (or weak dependency) 
relation as well. Interestingly, the conflict relation turns out to be a derived (from 
asymmetric conflict) relation. 

Causal dependency is defined as for traditional nets, with an additional clause 
stating that  transition t causes t ~ if it generates a token in a context place of t ~. 

Definition 15 (causal d e p e n d e n c y ) .  Let N be a safe c-net. The causal de- 
pendency relation <N is the transitive closure of the relation -~ defined by: 
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1. i f s E I t t h e n s - ~ t ;  
2. i f s E t * t h e n t - ~ s ;  
3. i f t  ~  

Given a place or transition x E S U T, we denote with [xJ the set of causes of x, 
defined as LxJ = {t e T : t _<N X} C_ T, where __~N is the reflexive closure of <N- 

D e f i n i t i o n  16 ( a s y m m e t r i c  conf l ic t ) .  Let N be a safe c-net. The  strict asym- 
metric conflict relation ~ N  is defined as 

t ~ N t '  iff _tn'v#O or ( t ~ t '  h "tn'e#O). 
The asymmetric conflict relation//~lv is the union of the strict asymmetric con- 
flict and causal dependency relations: 

t / ~ N  t I iff ~ <N t I or t ~'lv tC 

In our informal interpretation, t / ~ N  t ~ if t must precede t ~ in each computa- 
tion in which both fire or, equivalently, t ~ prevents t to be fired: 

t / ~  t' de_l Fired(t) A Fired(t') ~ prec(t, t') (t) 

As noticed in the introduction, this is surely the case when the same place s 
appears as context for t and as precondition for t'. But (t) is trivially true (with 
t and t' in interchangeable roles) when t and t' have a common precondition, 
since they never fire in the same computation. This is apparently a little tricky 
but  corresponds to the clear intuition that  a (usual) symmetric (direct) conflict 
leads to asymmetric conflict in both directions. Finally, since, as noticed for the 
general model of aES, (~) is weaker than the condition that  expresses causality, 
the condition (T) is satisfied when t causes (in the usual sense) t'. 7 For technical 
reasons it is convenient to distinguish the first two cases from the last one. 

The c-net in Fig. 2 shows that ,  as expected, the re la t ion/~N is not transitive. 
In fact we have tl /~N t3 /2~N t2 / ~ g  tl,  but, for instance, it is not true tha t  
tl /2IN t2. 

I 
Fig. 2. An occurrence c-net with a cycle of asymmetric conflict. 

An occurrence c-net is a safe c-net that  exhibits an acyclic behaviour and 
such that  each transition in it can be fired. 

7 This is the origin of the weak causality interpretation of/~. 
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D e f i n i t i o n  17 ( o c c u r r e n c e  c - n e t s ) .  An occurrence c-net is a safe c-net N 
such that  

- each place s E S is in the post-set of at most one transition, i.e. I~ _< 1; 
- the causal relation <N is irreflexive and its reflexive closure _<g is a partial 

order, such that  [tJ is finite for any t E T; 
- the initial marking m is the set of minimal places w.r.t. <N, i.e., m = {s E 

S: "s = 0};  
- (/~g)It] is acyclic 8 for all transitions t E T. 

The full subcategory of W S - C N  having occurrence c-nets as objects is denoted 
by O-CN.  

The last condition corresponds to the requirement of irreflexivity for the 
conflict relation in ordinary occurrence nets. In fact, if a transition t has a / ~ N  
cycle in its causes then it can never fire, since in an occurrence c-net N,  the 
order in which transitions appear in a firing sequence must be compatible with 
the transitive closure of the (restriction to the transitions in the sequence of the) 
asymmetric conflict relation. 

As anticipated, the asymmetric conflict relation induces a symmetric conflict 
relation (on sets of transitions) defined in the following way: 

D e f i n i t i o n  18 ( c o n f l i c t ) .  Let N be a c-net. The conflict relation # C_ 2~n 
associated to N is defined as: 

tO /21t1 ~ . . .  J~tn /Z~to 
#{to, t , , . . . ,  t,,} 

# ( A U { t } )  t < t '  

#(A u {t'}) 

where A denotes a generic finite subset of T. As for aES's, we use the infix 
notation t # t '  for #{t ,  t'}. 

For instance, referring to Fig. 2, we have # { t l ,  t2, t3}, but not #{ t i ,  tj} for any 
i , j  e {1,2,3}. 

As for traditional occurrence nets, a set of places M is concurrent if there is 
some reachable marking in which all the places in M contain a token. However for 
the presence of contexts some places that  a transition needs to be fired (contexts) 
can be concurrent with the places it produces. 

D e f i n i t i o n  19 ( c o n c u r r e n c y  re la t ion) .  Let N be an occurrence c-net. A set 
of places M C S is called concurrent, written conc(M), if 

1. Vs, s' E M. -~(s < s'); 
2. [MJ is finite, where [MJ = U{[sJ : s  e M}; 
3. /~LM] is acyclic (and thus well-founded, since [MJ is finite). 

s We can equivalently require ((/mN)ttj)q- tO be irreflexive. In particular this implies 
/~n irreflexive. 
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It can be shown that ,  indeed, the concurrent sets of places of an occurrence 
c-net coincide with the (subsets of) reachable markings. In particular, for each 
transition t in an occurrence c-net, since conci't + t), there is a reachable mark- 
ing M _~ "t + t, in which t is enabled. 

It is possible to prove that  c-net morphisms preserve the concurrency relation. 
Moreover, they preserve the "amount of concurrency" also on transitions. More 
precisely, they reflect causal dependency and conflicts, while asymmetric conflict 
is reflected or becomes conflict. These results are fundamental for establishing a 
connection between occurrence c-nets and aES's. 

T h e o r e m  20. Let No and N1 be c-nets and let h : No -~ N1 be a morphism. 
Then, for all to, t~o E To 

1. [hT(to)J C hT([toj); 
2. (hT(to) = hTit~o)) A (to ~ t~o) =~ to#otto; 
3. hT(to) /Zl  hT(tlo) =t, (to /Zo t~o) V (to#otto); 
4" # h T ( A )  ~ # A .  

Given a weakly-safe c-net N,  an un]olding construction allows us to obtain 
an occurrence c-net lla (N) that  describes the behaviour of N. As for traditional 
nets, each transition in ~[~(N) represents an instance of a precise firing of a 
transition in N,  and places in ~1~ (N) represent occurrences of tokens in the places 
of N. The unfolding operation can be extended to a functor lla : W S - C N  
O - C N  that  is right adjoint of the inclusion functor ~o : O - C N  -~ W S - C N  and 
thus establishes a coreflection between W S o C N  and O - C N .  

D e f i n i t i o n  21 (un fo ld ing ) .  Let N = (S, T, F, C, m) be a weakly safe c-net. 
The unfolding ~a(N)  = ( S ' , T ' , F ' , C ' , m ' )  of the net N and the folding mor- 
phism f g  : I ~ ( N )  --+ N are the unique occurrence c-net and c-net morphism 
satisfying the following equations. 

m' = {(0, s ) :  s m}  
S ' =  m ' U { i t ~ , s ) : t ' = i M p ,  Mc, t) E T  ' A s e t ' }  
T ~ = {iMp, M~, t) : Mp, U~ _C S' ^ Mp N M~ = 0 A conc(Mp U M~) ^ 

t E T A t tys(Up) = "t A [t] < # f s ( U c )  < t_} 

F~reit',s' ) iff t' = IMp,Mc, t) A s' e Mp ( t e T) 
C'( t ' ,s ' )  iff t' = iMp, Me,t) A s' �9 Me (t E T) 
F ~ o s t ( t ' , s ' )  i f f  s' = ( t ' , s )  (s �9 S) 

fT(t ' )  = t iff t' = (Mp, Me, t) 
f s (s ' ,  s) iff s' = (x, s) (x E T '  U {0}) 

The unfolding can be effectively constructed by giving an inductive definition. 
Uniqueness f(~ilows from the fact that  to each item in a occurrence c-net we can 
associate a finite depth. 

Places and transitions in the unfolding of a c-net represent respectively tokens 
and firing of transitions in the original net. Each place in the unfolding is a pair 
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recording the "history" of the token and the corresponding place in the original 
net. Each transition is a triple recording the precondition and context used in 
the firing, and the corresponding transition in the original net. A new place 
with empty history (0, s) is generated for each place s in the initial marking. 
Moreover a new transition t' = (Mp, Me, t) is inserted in the unfolding whenever 
we can find a concurrent set of places (precondition Mp and context Me) tha t  
corresponds, in the original net, to a marking that  enables t. For each place s in 
the post-set of such t, a new place (t', s) is generated, belonging to the post-set 
of t'. The folding morphism f maps each place (transition) of the unfolding to 
the corresponding place (transition) in the original net. 

We can now state the main result of this section, establishing a coreflection 
between weakly safe c-nets and occurrence c-nets. 

Theorem 22. The unfolding construction extends to a functor I ~  : W S - C N  --r 
O - C N  which is right adjoint to the obvious inclusion functor fro : O - C N  -+ 
W S - C N  and thus establishes a coreflection between W S - C N  and O - C N .  

The component at an object N in W S - C N  of the counit of the adjunction, 
f : ~o o l~a -5~ 1, is the folding morphism fN : ~ (N) -+ N .  

5 O c c u r r e n c e  c - n e t s  a n d  a s y m m e t r i c  e v e n t  s t r u c t u r e s  

We now show that  the semantics of weakly safe c-nets given in terms of occur- 
rence c-nets can be related with event structures and prime algebraic domains 
semantics. First we show that  there exists a coreflection from a E S  to O - C N  
and thus aES's represent a suitable model for giving event based semantics to 
c-nets. Given an occurrence c-net we obtain an aES simply forgetting the places, 
but  remembering the dependency relations that  they induce between transitions, 
namely causality and asymmetric conflict. In the same way a morphism between 
occurrence c-nets naturally restricts to a morphism between the corresponding 
aES's. 

D e f i n i t i o n  23. Let Ea : O - C N  -~ aES  be the functor defined as: 

- Ea(N) = (T, _<N,/~N), for each occurrence c-net N; 
- Ea(h : No -~ N1) = hT, for each morphism h : No -+ N1. 

Notice tha t  the induced conflict relation #4  in the aES Ea(N), given by Defi- 
nition 2, is the restriction to transitions of the induced conflict relation in the 
net N,  given by Definition 18. Therefore in the following we will confuse the two 
relations and simply write # .  

An aES can be identified with a canonical occurrence c-net, via a free con- 
struction that  mimics Winskel's: for each set of events related in a certain way by 
causal dependency or asymmetric conflict relations we generate a unique place 
that  induces such kind of relation on the events. 

D e f i n i t i o n  24. Let G = (E, ~ , / ~ )  be an aES. Then Na(G) is the net N = 
(S, T, F, C, m) defined as follows: 
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m = I (O,A,B) : A, B C_ E , Va E A. Vb E B. a /~ b V a#b, l 
Vb, b ~ E B. b ~ b ~ ~ b#b ~ 

A, B C _ E ,  e E E ,  V x E A U B .  e < x , }  
- S = m U  ( e , A , B ) : V a e A .  V b e B .  a , /~b V a#b, 

Vb, b ~ E B. b 7 s b ~ ~ b#b ~ 
- T = E ;  

- f -- (Fpre, Fpo,~), with 
Fpre = { ( e , s ) : s  = ( x , A , B )  e S, e �9 B} ,  
Fpos~ = {(e,s) : s = ( e ,A ,B)  �9 S}; 

- C = { ( e , s ) : s = { x , A , B ) � 9  e � 9  

The generation process extends to a functor :Na : aES  -+ O - C N  

The only unexpected thing for the reader could be the fact tha t  we insert a 
place that  gives rise to asymmetric conficts  between the transitions of B and 
A, but  we require only that  all the transition of B are in asymmetric conflict or 
in conflict with all the transitions in A. Therefore we add asymmetric conflicts 
between events that  are in conflict. Abstracting from the formal details, this 
becomes very natural  since, being # the symmetric conflict relation, we can 
think that  conceptually t # t  ~ implies t / ~  t ~. 

The next proposition relates the causal dependency and asymmetric conflict 
relations of an aES with the corresponding relations of the c-net :N~(G). In 
particular it is useful in proving that  :Na (G) is indeed an occurrence c-net. 

P r o p o s i t i o n  25. Let G = (E, <,/'~) be an aES and let Na(G) be the net N = 
{S, T, F, C, m). Then ]or all e, e' e E: 

1. e <N e ~ iff e < et ; 
2. e /,~N e' iff e /~ e' or e#e ' .  

Let G = (E, < , /~ )  be an aES. By Proposition 25, Ea(Na(G)) = (E, < , /~  
U#).  Therefore the identity on events YG : G --+ Ea(Na(G)), defined by yG(e) = 
e, for all e E E,  is an aES morphism. Moreover ya  1 : Ea(Na(G)) ~ G, again 
defined as identity on events is clearly a morphism, and r/G and ~ 1  are one the 
inverse of the other. Therefore YG is an isomorphism. We are now able to state 
the main result of this section. 

T h e o r e m  26. The ]unctor Na : aES ~ O - C N  is left adjoint to Ea : O - C N  --+ 
aES and it establishes a corefleetion from aES  to O - C N .  The unit of the the 
coreflection is r] : 1 -2+ Na o Ea. 

Such a result completes the chain of coreflections leading from W S - C N  to 
D o m .  Therefore, as claimed at the beginning, we provide weakly safe c-nets 
with a truly concurrent semantics, by associating to each weakly safe c-net a 
finitary prime algebraic domain. The construction works at categorical level and 
establishes a coreflection between the corresponding categories. 
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Finally, notice that, as an easy extension, Winskel's coreflection between PES 
and Dora can be used to provide weakly safe c-nets with a traditional event 
structure semantics. The PES semantics is obtained from the aES semantics by 
introducing an event for each possible different history of events in the aES. This 
reflects the idea of duplication of events discussed in the introduction. 

6 Conclusions and future work 

We presented a truly concurrent event-based semantics for (weakly safe) P /T  
contextual nets. The semantics is given at categorical level via a coreflection be- 
tween the categories W S - C N  of weakly safe c-nets and D o m  of finitary prime 
algebraic domains (or equivalently PES of prime event structures). Such a core- 
flection factorizes through the following chain of coreflections: 

Jo ~,~ ~P~ 

W S - C N  ~ - ~ )  O-CN ~ aES • ~ D o m  

It is worth noticing that such a construction associates to a safe c-net without 
context places (thus essentially a traditional safe net), the same domain pro- 
duced by Winskel's construction and therefore can be considered as a consistent 
extension of Winskel's result. The use of finitary prime algebraic domains, widely 
accepted as standard semantics models for concurrency, makes our result satis- 
factory. Moreover the existence of a coreflection provides an abstract semantics 
(the domain associated to each c-net) and a standard choice in each class of 
equivalent c-nets (the c-net obtained by embedding the semantics into the cat- 
egory of nets), defined by a universal property. This is one of the more pleasant 
semantic frameworks one can desire. 

An immediate future work should be the generalization of these results to 
general P /T  c-nets, based on a suitable extension of the notions of decorated 
occurrence net and family morphism introduced in [12] to give unfolding seman- 
tics to traditional P /T  nets. Moreover, notions and results on c-nets can be seen 
as a first step towards the definition of an unfolding semantics for graph gram- 
mars. We think that the work on c-nets could be a guide for the introduction of 
the notions of non-deterministic occurrence graph grammar and graph grammar 
unfolding that are still lacking or not consolidated. 

Apart from the application to c-nets analyzed in this paper, asymmetric event 
structures seem to be rather promising in the semantic treatment of models of 
computation, such as string, term and graph rewriting, allowing context sensi- 
tive firing of events. Therefore, as suggested in [16], it would be interesting to 
investigate the possibility of developing a general theory of event structures with 
asymmetric confict (or weak causality) similar to that in [20]. 
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