
Asynchronous Observations of Processes*

Michele Boreale 1 Rocco De Nicola 2 Rosario Pugliese 2

1Dipartimento di Scienze dell'Informazione, Universit~ di Roma "La Sapienza"
2Dipartimento di Sistemi e Informatica, Universit~ di Firenze

Abs t rac t . We study may and must testing-based preorders in an asyn-
chronous setting. In particular, we provide some full abstraction theo-
rems that offer alternative characterizations of these preorders in terms
of context closure w.r.t, basic observables and in terms of traces and
acceptance sets. These characterizations throw light on the asymmetry
between input and output actions in asynchronous interactions and on
the difference between synchrony and asynchrony.

1 I n t r o d u c t i o n

Distributed systems can seldom rely on a global clock, and little assumptions can
be made about their relative speed; as a consequence, it is natural to adopt for
them an asynchronous communication mechanism. This calls for non-blocking
sending primitives that do not oblige producers and consumers to synchronize
when exchanging messages, but allow the sender of a message to continue with
its task while the message travels to destination. Therefore, for describing dis-
t r ibuted systems, a model based on a paradigm that imposes a neat distinction
between input and output primitives, in the style of [1] and [17], appears to
be a natural choice. In spite of these considerations, the most studied concur-
rency models in the process algebra community (e.g. [18, 3, 14, 20]) are based
on synchronous communications and model process interaction as the execution
of simultaneous "complementary actions".

Only recently, variants of process algebras based on asynchronous communi-
cations have been studied. Two main approaches have been followed to this pur-
pose. They differ in the way (non-blocking) output actions are modelled. These
actions are rendered either as state trans]ormers or as processes themselves. The
asynchronous variants of ACP [9] and CSP [16] follow the first approach and
introduce explicit buffers in correspondence of output channels. This makes out-
puts non-blocking and immediately executable; their executions make messages
available for consumption. The asynchronous variants of ~r-calculus [15, 6, 12, 2]
and CCS [21, 11, 8] follow the second approach and model outputs by creating
new concurrent processes. This amounts to modelling an output prefix ~ .P as a
parallel composition a l P-

Work partially supported by EEC: HCM project EXPRESS, and by CNR: project
"Specifica ad alto livello e verifica formale di sistemi digitali". The third author
has been supported by a scholarship from CNR - - Comitato Scienza e Tecnologie
dell'Informazione.

96

The problem of specifying the abstract behaviour of asynchronous processes,
i.e. of defining "good" observational semantics, has not yet been investigated
in depth. Only few observational semantics have been considered. The maxi-
mal congruence induced by completed trace equivalence has been studied in [9]
for asynchronous ACP. Bisimulation [18] for asynchronous ~r-calculus has been
investigated in [15, 12, 2].

A natural alternative is represented by the testing framework of [10, 13].
Testing offers a uniform mechanism to define sensible behavioural equivalences
on different process algebras, as it relies on little more than a notion of reduc-
tion relation (~). Moreover, testing has the advantage of identifying only
those processes that cannot be differentiated by running observers in parallel
with them. No new operator is introduced, as both the parallel composition op-
erator and the observers are taken from the process description language under
investigation. The testing approach has been partially followed in [22], where
synchronous processes and observers are connected via input/output queues.
This permits asynchronously testing synchronous processes.

In this paper we investigate the testing theory for a variety of asynchronous
process algebras. For the sake of simplicity, the basic theory will be developed for
an asynchronous version of CCS [18] (ACCS); we will then see how the obtained
results can be extended with little effort to an asynchronous variant of ~r-calculus
and to an asynchronous version of CCS with non-injective relabelling. The latter
leads to a significantly different theory.

We shall study both the may and the must testing preorders. While nat-
ural, these preorders rely on a universal quantification over the set of all ob-
servers that makes reasoning about processes extremely difficult. This calls for
alternative, observers-independent characterizations that permit a full appre-
ciation of the impact of an asynchronous semantics over the considered lan-
guages. For each preorder, we will offer two characterizations: one in terms of
the traces/acceptances of processes, the other in terms of the context-closure
w.r.t, some basic observables, in the same spirit as [5].

As far as basic observables are concerned, we will see that, differently from the
synchronous case, the only important actions are the output ones. In particular,
for capturing the may preorder, we will need, as basic observables, tests about
the possibility of processes to perform specific output actions. For capturing the
must preorder, we will need, as basic observables, tests about the guarantee that
processes offer of performing specific output actions.

The other alternative characterizations for the may preorder will be based
on sequences of visible actions (traces), while that for the must preorder will
rely on pairs (trace, acceptance set) in the same spirit as [13] and [7]. However,
the usual trace containment for may is not adequate anymore, and the notion
of acceptance-set for must is more complicate. We have for both may and must
preorders equalities like a.~ -- 0. The underlying reason is that, since no be-
haviour can causally depend upon outputs, observers cannot fully determine the
occurrence of process input actions. As a consequence, both for may and for
must, the set of traces will have to be factored via the preorder induced by the

97

three laws below, whose intuition is that whenever a trace s performed by some
process is "acceptable" for the environment, then any s ~ ~ s is acceptable as
well:

- (deletion) e _ a : process inputs cannot be forced;
- (postponement) sa -~ as : observations of process inputs can be delayed;
- (annihilation) e __. aa: buffers are not observable.

The extension of the alternative characterizations to the ~r-calculus is rela-
tively straightforward and vindicates the stability of the approach. The extension
to a process description language with non-injective relabelling shows that this
operator enables external observers to get more precise information about inputs
of asynchronous systems.

The rest of the paper is organized as follows. Section 2 introduces Asyn-
chronous CCS and the testing preorders. Section 3 presents the alternative char-
acterizations based on traces and acceptance-sets, while the next section presents
those based on basic observables. The extensions to ~r-calculus and to CCS with
general relabelling are sketched in Section 5. Some concluding remarks are re-
ported in Section 6. Due to space limitations, many proofs will be omitted.

2 A s y n c h r o n o u s C C S

In this section we present syntax, and operational and testing semantics of asyn-
chronous CCS (ACCS, for short). It differs from standard CCS because only
guarded choices are used and output guards are not allowed. The absence of
output guards "forces" the asynchrony; it is not possible to have processes that
causally depends on output actions.

2.1 S y n t a x

We let Af, ranged over by a,b,. . . , be an infinite set of names and
~" = {~ [a E .M}, ranged over by ~ ,b , . . . , be the set of co-names. AZ and :N"
are disjoint and are in bijection via the complementation function (=); we define:
(~'--) = a. We let L: = Af u iV" be the set of visible actions, and let l, l~,.., range
over it. We le t / :~ = L: U {T} for a distinct action T, be the set of all actions or
labels, ranged over by #. We shall use A, B, L , . . . , to range over subsets of s M
to range over multisets of L: and s to range over L:*. We define L = {l [I E L}
and similarly for M and s. We let X, ranged over by X, Y, . . . , be a countable
set of process variables.

Def in i t i on 1. The set of ACCS terms is generated by the grammar:

E::=-~ I~'~,elgi.E~ [B i lE2 [E \ L [E{]} [X [recX.E

where gi E A f U {r}, I is finite and] : Af --~ Af, called relabelling]unction,
is injective and such that {l [f(l) ~ l} is finite. We extend f t o / : by letting

E ~ : f(~) = f(a). We let P, ranged over by P, Q, etc., denote the set of
closed and guarded terms or processes (i.e. those terms where every occurrence
of any agent variable X lies within the scope of some recX._ and ~ operators).

98

N o t a t i o n . In the sequel, ~ie{1,2} gi.Ei will be abbreviated as gl.E1 + g2.E2,
~i~r gi.Ei will be abbreviated as 0; we will also write g for g.O. IIielEi repre-
sents the parallel composition of the terms Ei. We write -{ l~/ l l , . . . , l~/ ln} for
the relabelling operator _{f} where f(1) = l~ if I = li, i 6 {1 , . . . , n}, and f(l) = l
otherwise. As usual, we write E[F/X] for the term obtained by replacing each
occurrence of X in E by F (with possibly renaming of bound process variables).

Throughout the paper, we will use the structural congruence relation over
ACCS processes, - , as defined in, e.g., [19] (the unique change with respect to
[19] is the addition of some obvious distribution laws for injective relabelling).

2.2 Opera t iona l S e m a n t i c s

The labelled transition system (P, s ~ ~), which characterizes the operational
semantics of the language, is given by the rules in Figure 1.

ARl~-~iezgi.P~ gJ~ Pj j 6 I AR2~ - ~ 0

AR3 p ._L+ p, p _.~ p' AR4 if]z r L U
p{f} ~ p,{f} P\L --~ P'\L

AR5 p _9_+ p, AR6 P[recX.P/X] "~ P'
P I Q - '~ P' I Q recX.P --~ P'
p _ ~ p , Q i _ ~ Q

AR7
P I Q - L ~ p ' IQ'

Fig. 1. Operational semantics of ACCS (symmetric of rule AR5 omitted)

As usual, we use ==~ or :=~ to denote the reflexive and transitive closure
s St

of r~ and use ~ (resp. 2 ~) for ~ l~ ~ (resp. t~ ~) when
s = Is'. Moreover, we write P =:~ for 3P ' : P = ~ P ' (P _L~ and P r+ will
be used similarly). We will call sort of P the set sort(P) = {1 6 s] Ss 6 s :

P ~ }, input (resp. output) successors of P the set In(P) = {l 6 Af] P ~ }

(Out(P) = {l 6 ~" I P ~ }), successors of P the set S(P) = In(P) U Out(P)
and language generated by P the set L(P) = {s 6 s [P ~ }. We say that a
process P is stable if P ~ .

From now onward, we adopt the following convention: an action declared
fresh in a statement is assumed different from any other name and co-name
mentioned in the statement. Note that, since for all relabelling operators f we
have that {l I f (l) ~ l} is finite, every ACCS process has a finite sort.

The following lemma implies that behaviours do not causally depend on the
execution of output actions.

L e m m a 2. For any process P and ~ 6 ~ ' , P ~ ~ Q implies p = Q I ~.

99

2.3 Tes t ing S e m a n t i c s

We are now ready to instantiate the general framework of testing equivalences
[10, 13] on ACCS.

Def in i t i on 3. Observers are ACCS processes that can also perform a distinct
success action w. 0 denotes the set of all the ACCS observers. A computation
from a process P and an observer O is sequence of transitions

P l O = P o] O o ~>PII01 ~>P2IO2...P~IOk ~ . . .
which is either infinite or such that the last P~ I Ok is stable. The computation
is successful iff there exists some n ~ 0 such that On "~> �9

Def in i t i on 4. For every process P and observer O, we say

- P may 0 iff there exists a successful computation from P I O;
- P m u s t 0 iff each computation from P IO is successful.

Def in i t ion 5. We define the following preorders over processes:

- P ~ Q iff for every observer 0 E O, P may. 0 implies Q may 0 ;

- P ~ ~ Q iff for every observer 0 E O, P m u s t O implies Q m u s t O .
M

We will use _~ to denote the equivalence obtained as the kernel of a preorder
(i . e . ' ~= ~ N ~-1) .

3 Alternative Characterizations of Testing Semantics

The adaptation of the testing framework to an asynchronous setting discussed
in the previous section is straightforward, but, like in the synchronous case, uni-
versal quantification on observers makes it difficult to work with the operational
definitions of the two preorders. This calls for alternative characterizations that
will make it easier to reason about processes. These characterizations will be
given in terms of the traces and of the acceptance sets of processes.

3.1 A t r ace o r d e r i n g

The following ordering over sequences of actions will be used for defining the
alternative characterizations of the testing preorders.

Def in i t ion 6. Let _-< be the least preorder over s preserved under trace com-
position and satisfying the laws in Figure 2.

I TOI. e ~ a TO2 ia ~_ al TO3 e _ a~ i

Fig. 2. Trace Ordering Laws

100

The intuition behind the three laws in Figure 2 is that , whenever a process
interacts with its environment by performing a sequence of actions s, an inter-
action is possible also if the process performs any s ~ _ s. To put it differently, if
the environment offers ~, then it also offers any s ~ s.t. s ~ _ s.

More specifically, law TO 1 (deletion) says that process inputs cannot be forced
to take place. For example, we have -bc -~ a'bc: if the environment offers the
sequence -db~, then it also offers b~, as there can be no causal dependence of b~
upon the output -d. Law T02 (postponement) says that observations of process
inputs can be delayed. For example, we have that bac -~ abc. Indeed, if the
environment offers -db~ then it also offers b~ . Finally, law T03 (annihilation)
allows the environment to internally consume pairs of complementary actions,
e.g. b _ a ~ . Indeed, if the environment offers "dab it can internally consume
and a and offer b.

D e f i n i t i o n T. Given s E Z:*, we let ~] s D denote the multiset of actions
occurring in s, and ~ s D~ (resp. ~] s Do) denote the multiset of input
(resp. output) actions in s. We let s @ s ~ denote the multiset of input actions
(~] s Di\~] s' D~)\(t] s Do \ ~] s' Do), where \ denotes difference between multisets.

Intuitively, if s ~ ___ s then s O s ~ is the multiset of input actions of s which
have actually been deleted (law T01), and not annihilated (law T03), in s ~. For
instance, if s = ab-~c and s ~ = b then s @ s ~ = ~] c D.

N o t a t i o n . If M is a multiset of actions, we will write I I M for denoting J-llEMl,

the parallel composition of all actions in M. We shall write "P ==~ P " if
P ==% P~ for some sequentialization s of the actions in M. When M is a
multiset of input actions, with a slight abuse of notation, we will sometimes
denote by M also the trace obtained by arbitrarily ordering the elements of M
(remember that we work modulo law T02). We shall write " P =:~ P~/- f ree" if

there exists a sequence of transitions P = Po ul~ PI ~2> . . . u.> Pn = P~ such

that Pi 7 ~ for 0 < i < n and s is obtained from #1 " " # n by erasing the T'S.

The following is the crucial lemma for the preorder _ . Its proof relies on
Lemma 2 and proceeds by induction on the number of times the laws in Figure
2 are used.

L e m m a 8 . Let P be a process and l an action and assume s ~ _ s. If P 5 , . pe

/-free then there exists P " such that P = ~ P " / - f r e e and P " -- P~ I / - /s O s~. 2

3.2 T h e m a y c a s e

By relying on the trace ordering _, we can now define a new preorder that will
be proved to be an alternative characterization of the may preorder ~ .

m

2 We remind the reader that _~ denotes structural congruence.

101

Defini t ion 9. For processes P and Q, we write P <<,, Q iff whenever P = ~

then there exists s' such that s' ~ s and Q ~ .

The difference with respect to the synchronous case (see, e.g., [10, 13]) is
that we require a weaker condition than trace inclusion by taking advantage of
a preorder over single traces. We define below a special class of observers.

Defini t ion 10. Let s E s The observers t(s) are defined inductively as follows:
t({~) de~---f W, t(as ') d ef a.t(s') and t(as') de-----f a] t(8').

The following property can be easily proved relying on Lemma 8.

P ropos i t ion 11. For every process P and s E s Pmay t(s) iff there exists
s' E L(P) such that s' ~ s.

T h e o r e m 12. For all processes P and Q, P ~ Q iff P <<,, Q.
r n

PROOF: 'Only if' part. Suppose that P ~ Q and that s E L(P). We must show
r n

that there exists s' E L(Q) such that s' ~ s. The hypothesis s E L(P) implies
that Pmayt(s) . Since P ~ Q, we infer that Q mayt(s). The thesis follows from

~ n

Proposition 11.
'If' part. Suppose that P <<,, Q and that P may 0 for an observer O.

Then there exists a successful computation with an initial sequence of transitions
P I 0 ==~ P' I O' where O' ~). This sequence of transitions may be unzipped

into two sequences P = ~ P ' and O ~ O'. The hypothesis P <<,, Q implies
8' Qr. that there exist s' and Q' such that s' ~ s and Q) By Lemma 8, there

"'" 0 " 0 " O' [H s (9 s'. Now, O' w) exists an observer 0" such that O ~ and ~_
implies O" - ~ . Hence, the sequence of transitions Q I O ==~ Q' I O" can be
extended to a successful computation and the thesis is proved. []

By relying on the alternative characterization <<~ one can easily prove that
E is a pre-congruence.
~ m

Examples . We show some examples of pairs of processes related by the pre-
order. All of the relationships can be proven by using the alternative character-
ization of the preorder <<,,.

- Since L(P) C_ L(Q) implies P ~ Q, all of the relationships for the syn-

chronous may preorder do hold inour setting.
- Since e E LiP) for each process P, from T01 and T03 in Figure 2, we get

a ~,~ 0 a n d a . a _~,, 0. In particular, f roma ~m 0 w e g e t a ~,~ band
a.b ~_~ b.a which imply that all processes containing only input actions are
equivalent to 0.

- An interesting law is the a.(~lb) ~_,, b. More generally, we have a.(-~lG) ~ G,
where G is an input guarded summation ~,ieI ai.P~ (in fact, a.a ~,, O is
just a consequence of this law). Guardedness of G is essential: b ~ a . (a lb)

does not hold (consider the observer b.w).

102

3 . 3 T h e m u s t c a s e

D e f i n i t i o n 1 3 .

- Let P be a process and s E s We write P 4, and say that P con-
verges, if and only if there is no infinite sequence of internal transitions
p r~ P1 T~ P2 T~ . . . s t a r t i n g f r o m P . We write P S s, and say that P

I

converges along s if and only if whenever s' is a prefix of s and P - ~ P '
then P ' converges. We write P 1" s, and say that P diverges along s if it is
not the case that P $ s.

- Let P be a process and s E s The set of processes P after s is defined by:

P a l t e r s d-----ef {(P ' I H ~) : s' _ s and P = ~ P ' } .

- Let X be a set of processes and L C_fin ~ ' . We write X must L if and only

if for each P E X there exists ~ E L s.t. P u ~ .

In the sequel, given a set of traces T C/ :* , we will let P $ T stand for P $ s

for each s E T. Furthermore, we define ~. d___ef {s' : s' -~ s}.

D e f i n i t i o n 14. We set P <<M Q iff for each s E s s.t. P $ ~" it holds that:

- Q$~' , and
- for each L C_fin ~': (P af ter s) must L implies (Q after s) must L.

Note that the above definition is formally similar to that for the synchronous
case [10, 13]. The difference lies in the definition of the set P a l t e r s: the lat ter
can be seen as the set of possible states that P can reach after an interaction trig-
gered by the environment offering ~. In an asynchronous setting, output actions
can be freely performed by the environment, without any involvement of the pro-
cess under consideration. In the definition of P after s, these particular output
actions represent the "difference" between the behaviour of the environment, ~,
and the actual behaviour of the process, s I, that i s , / / s • # .

L e m m a l h . Let P be any process.

1. If P is stable then In(P) n Out(P) = 0.
2. If P is stable then there exist P~ and a unique multiset M C_fin ~ ' s.t.

P =_ P ' I H M and Out(P') = 0.

3. If P ~ P ' then S(P') U {~} C_ S(P).

When P is stable, we will use O(P) to denote the unique mnltiset M implicitly
defined by part 2 of the above lemma.

T h e o r e m 16. If P <<M Q then P ~M Q"

PROOF: Let O be any observer and suppose that Q rri/ustO: we show that
P infest 0 as well. We make a case analysis on why Q infest O. All cases can be
easily reduced to the case of a finite unsuccessful computation, i.e. a sequence

103

of t rans i t ionsQIO ==~ Q ' i O ~ s u c h t h a t , f o r s o m e s : Q ~ Q~,O = ~ O ~
w-free and Q~] O ~ is stable. Furthermore, we suppose that P $ ~" and Q ~ ~'.

From the fact that Q~]O ~ is stable and from Lemma 15(1), we deduce that:

(i) Out(Q') n In(O') = 0
(ii) In (Q ') n Out(O') = r

(iii) In (O ') O Out(O') = O �9

We show now how to build an unsuccessful computation for P] O. Let us define

the set of output actions L de~ in(O~) and the multiset of input actions M de f
0 (0 ') (note that, since O ~ is stable, this multiset is well defined in virtue of
Lemma 15(2)). First, we show that

(Q a f t e r s M) mf~st L . (1)

Indeed, since s -~ s M and Q = ~ Q~, we have that Q~I11 - ~ E (Q a f t e r s M) ;

furthermore, we have that Q'III -M r/) (from (ii) and Q~--~), that O u t (Q ') n L =
0 (from (i)) and that M n L = 0 (from (iii)). From these facts, it follows that
Out(Q'] / / M) n L = 0. This proves (1).

Now, from (1) and definition of <<M it follows that (P a f t e r s M) mlhstL,
which means that there are P~ and s ~ ~_ s M such that:

8' p ,
P ~ and Out(P ' 111 s M @ s i) n L = 0 (2)

Now, since O ~ is stable, from Lemma 15(2), it follows that there exists O"

such that O ~ - O" I11 ~ and Out(O") = 0. Hence O ~ M) ~ O" and therefore

O ~ =- O" w-free. Since s ~ ~ sM , from Lemma 8 it then follows that there is

O1 such that O = ~ O1 ~ O" I T / s M @ s ~ w-free. Combining these transitions

of O with P ~ P' in (2), we get:
P] 0 ==v P' I 01 - P ' I O '111 s M G s ~ w-free. (3)

To prove that (3) leads to an unsuccessful computation, it suffices to show that
Pt I O"] 11 s M @ s t ~ . The latter is a consequence of the following three facts:

1. Out (P ' [II s M G s i)NIn (O ") = 0. This derives from (2) and from In (O") C_

In(O') = -L (Lemma 15(3) applied to O' _M~ = O");
2. Out (O") = O;

3. O ' : ~ (Lemma 15(3) applied to O' M ~ Or,)" []

For proving the converse of the above theorem, we will use two families of
observers: the first can be used to test for convergence along sequences of a given
set ~', and the second to test that a given pair (s, L) is an "acceptance" pair.

Defini t ion 17. Let s E /:* and L C_fin ~'. The observers e(s) and a(s, L) are
defined by induction on s as follows:

c(s): c(e) = T.W a(s ,L) : a (e , i) = _ ~ e L a.w
c(bs') = b I c(s') a(bs', L) = b I a(s', L)
e(-bs') = T.w+b.e(s') a(-bs', L) = T.w+b.a(s', L) .

104

L e m m a l 8 . Let P be a process, s E s and L C_fin ~ . We have:
I. Pmustc(s) if and only if P ~ ~'.
2. Suppose that P $ ~. Then Pmusta(s ,L) if and only if (Palters) must L.

PROOF: An easy application of Lemma 8. []

T h e o r e m 19. P ~M Q implies P <<M Q.

PROOF: An easy consequence of Lemma 18.

By relying on <<M, it is stralghtforwaxd to show that
congruence.

[]

E M i s a pre-

E x a m p l e s . We give below some meaningful examples of processes that are
related (or unrelated) according to the preorder. All the examples are checked
relying on the alternative characterization provided by <<M �9 In the examples,
we shall also refer to the asynchronous bisimilarity 3 of [2].

- The process 0 represents the top element for the family of terms built using
only input actions: a ~M 0, but 0 ~M a; thus a+b ~ a, but a ~;M a+b.

- Input prefixes can be distributed over summation, i .e.a.(b+c) ~--M a.b+a.c.
This is in sharp contrast with the asynchronous bisimilarity.

- Sequences of inputs can absorb their own prefixes, as in a.b+a ~-M a.b This
law was also present in [9], but is not valid for asynchronous bisimilarity.

- Like in [2], we have a.~ ~M 0. This is an instance of the more general law
a.(-51G)+G ~--M G, where G is any guarded summation ~-~iEI gi.Pi. Unlike
[2], however, the law does not hold for infinite behaviours: recX.(a.(~[X))
:~M 0. This is due to the sensitivity of must to divergence: when put in
parallel with ~, recX.(a.('51X)) diverges, while 0 does not.

As shown in the examples above, must equivalence and asynchronous bisim-
ilarity are in general incomparable, due to the sensitivity of must to divergence.
They are comparable if we consider only strongly convergent processes, i.e. those
processes P such that P $ s for each s. The crux is given by the following
characterization of ~:

P r o p o s i t i o n 20. P ~ Q if and only if whenever P = ~ P~ then there is s ~ _ s
s

s.t. Q ~ Q~ and P ' ,~ Q~ I / / s @ s ~, and vice-versa for Q and P.

Co ro l l a ry 21. Let P and Q be strongly convergent processes. Then P ~ Q
implies P ~M Q"

We remind the reader that asynchronous bisimilaxity is defined as the maximal equiv-
alence relation ~ s.t. whenever P ~ Q and P t, ~ p, then:

(a) if/z = ~- then there is Q' such that Q ~ Q' and P' ,,~ Q',
(b) if # -- ~ then there is Q~ such that Q ~ Q' and P' ~ Q', and
(c) if tt = a then there is Q' such that either (i) Q ~ Q' and P' ~ Q', or (ii)

Q ~ Q'andP'~Q'['5.

105

4 B a s i c O b s e r v a b l e s f o r A s y n c h r o n o u s P r o c e s s e s

Following [5], we introduce a characterization of the asynchronous may and must
preorders in terms of the pre-congruence induced by basic observables. The dif-
ference with the synchronous case is that here only output actions are important.

D e f i n i t i o n 22. A context is a term C with one free occurrence of a process
variable, usually denoted by _. We write C[P] instead of C[P/_].

The context closure 7~ c of a given binary relation T~ over processes, is de-
fined as: P T~ c Q iff for each context C, C[P] ~ C[Q]. M e enjoys two important
properties: (a) (Rc) c = ~c , and (b) T~ C_ R ' implies T~ c C 7~ 'c. In the following,
we will write T~ for the complement of ~ .

4.1 T h e m a y case

D e f i n i t i o n 23. Let P be a process and -5 E ~' . We define the following obser-
vation predicate over processes: Px/-5 (P offers -5) iff P = ~ .

The observation preorder induced by ~/ is defined as follows: P __.,/Q iff for

each -5 E ~' : P V ~ implies Qv/-5.

Of course, the observation preorder is very coarse; a more refined relation
can be obtained by closing it under all ACCS contexts. The contextual preorder
of ~ / is just its context closure .~c _ / ; the latter is another characterization of
E

m

T h e o r e m 24. For all processes P and Q, P ~ Q iff P -~r Q.

PROOF: We use the alternative characterization <<m of [-
~ t n

'Only if' part. From the definition, it is easily seen that <<m is contained in
__.~/ (note that for each ~ E ~ , s _ ~ implies s = -5). From this fact, by closing
under contexts and recalling that .~c is a pre-congruence the thesis follows.

'If ' part. Here, we show that -~r is contained in <<,, From this fact and
recalling that .~c is a pre-congruence the thesis will follow. Assume that P ___~/Q --~/

and that s E L(P), for some s E s We have to show that there exists s ~ E L(Q)
such that s ~ ~ s. Now, let tl(s) be the process defined like the observer t(s) in
Definition 10, but with a fresh, standard action U in place of w. The following
fact, where R is any process where neither c nor ~ occur, is straightforward to
prove by relying on Lemma 8: (t'(s) I R)~/-5 iff there exists s' E L(R) such that
s ~ ~ s. The thesis is an immediate consequence of this fact. []

106

4.2 The must case

We introduce below the guarantee predicate, P!l; informally, this predicate
checks whether P will always be able to offer a communication on l; however,
differently from [5], we here only consider output actions.

Definit ion 25. Let P be a process and a E ~'. We write P ! -d (P guarantees "~)
if and only if whenever P ~ P~ then P~ ~ .

The observation preorder induced by $ and ! is defined as: P,___! Q if and
only if for each a: (P $ and P ! ~) implies (Q $ and Q ! ~).

Theorem 26. P ~M Q if and only if P ,_C Q.

PROOF: We use the characterization of the must preorder in terms of ((M "

'If' part. First, note that P ! ~ if and only if (Paf ter e) must {~}. Hence,
by definition, <<~r is included in ,-<!. The thesis then follows by closing under
contexts and recalling that ~M is a pre-congruence.

'Only if' part. Fix any s and L and suppose that' P $ ~ and
(Pal ters) must L. We have to show that Q $ ~" and (Qafters) must L.
Now, let d(s) and a'(s, L) be the observers defined like in Definition 17, but
with a fresh, statldard action E in place of w. The following two facts, where R
is any process where neither c nor E occur, are straightforward to prove relying
on Lemma 8:

- R $ ~ if and only if R [c'(s) $.
- Suppose that R $ ~. Then R [a'(s, L) $ and furthermore (R after s) must L

if and only if R [a'(s, L) ! ~.

Then Q $ ~ and (Q after s) must L follow from the definition of ,_c and from
the above two facts. []

5 D e a l i n g w i t h R i c h e r L a n g u a g e s

In this section we discuss the extensions of our theory to the asynchronous variant
of 7r-calculus [15, 6, 12, 2] and to a version of asynchronous CCS of Section 2
with possibly non-injective relabelling.

5.1 1r-calculus

For the sake of simplicity, we confine ourselves to the may preorder. The must
preorder requires a more complex notational machinery but also leads to results
similar to those for ACCS.

A countable set Af of names is ranged over by a, b,. . . . Processes are ranged
over by P, Q and R. The syntax of asynchronous r-calculus contains the oper-
ators for output action, input-guarded summation, restriction, parallel compo-
sition, matching and replication:

107

P : : - - a b I ~ie ia i (b) .P i I y a P I P I l P 2 I [a=b]P I !P.

Free names and bound names of a process P, written fn(P) and bn(P) respec-
tively, arise as expected; the names of P, written n(P) are fn(P) U bn(P). Due
to lack of space, we omit the definition of operational semantics (see, e.g., [2]).
Recall that transition labels (actions), ranged over by #, can be of four forms:
T (interaction), ab (input), ~b (output) or ~(b) (bound output). Functions bn(.),
fn(.) and n(.) are extended to actions as expected: in particular, bn(#) = b if
= ~(b) and bn(#) = 0 otherwise.

In the sequel, we will write P a(bl P' if P ab) p, and b ~ fn(P). The new
kind of action a(b) is called bound input; we extend bn(.) to bound inputs by
letting bn(a(b)) = {b}. Below, we shall use s to denote the set of all visible
r-calculus actions, including bound inputs, and let 8 range over it. Given a trace
s 6 s we say that s is normal if, whenever s = s'.8.s" (the dot . stands for
trace composition), for some s', 8 and s", then bn(8) does not occur in s' and
bn(8) is different from any other bound name occurring in s' and s". The set of
normal traces over s is denoted by T and ranged over by s. From now on, we
shall work with normal traces only. Functions bn(.) and fn(.) are extended to T

as expected. A complementation function on T is defined by setting a(b) de f a (b) ,
a'--b de.._f ab, ~b d_~_ef ab and ~(b)" de_f a(b); please notice that ~ = s.

P1 e _ ~
P2 s.~ ~ O.s
P3 e _---g 8.~b
P4 ~c.(s{C/b}) _ "5(b).s

if 0 is an input action
if ~ is an input action and bn(~) s bn(s) = 0
if 8 = ab or 8 = a(b)

Fig. 3. Rules for the preorder _ over T

The definition of <<m remains formally unchanged, but the relation _ is
now the least preorder over T closed under composition and generated by the
rules in Figure 3. Rules P1, P2, P3 are the natural extensions to asynchronous
v-calculus of the rules for ACCS. Here, some extra attention has to be paid
to bound names: in the environment, an output declaring a new name (bound
output) cannot be postponed after those actions which use the new name (side
condition of P2). For an example, consider actions ~(b) and b(c) of v b (~b] b(c).P).
Rule P4 is specific to v-calculus; it is due to the impossibility for observers to
fully discriminate between free and bound outputs. Informally, rule P4 states that
if ~(c).s is "acceptable" for an observer (i.e. leads to success), then "Sb.(s{b/y})
would be acceptable as well. Rule P4 would not hold if we extended the language
with the mismatching operator [a i~ b]P, considered e.g. in [4]. It is worthwhile
to note that ruling out matching from the language would not change the dis-
criminating power of observers. The effect of the test [a = b]O can be simulated
by the parallel composition a l b.O.

108

5.2 ACCS wi th General RelabeUing

A consequence of the presence of non-injective relabelling functions, is that
observers and contexts become more discriminating. For instance, they lead to
a.a /Z~M 0 and a.~ ~ 0. These can be proved by considering the observer

(-bl a.w){a/b}. We also have 0 ~M a.a, that can be proved by considering the

observer (bl (T.w+a))(a/b}. Therefore, the general laws a.(al G1) ~-., G1, where
G1 = ~']4eI ai.Pi, and a.(al G2) + G2 ~M G2, where G2 = ~'~eigi.Pi, are not
sound anymore. By means of general relabelling, observers are able to distinguish
between the messages they emit and those emitted by the observed processes.

The trace preorder is now defined as the least preorder over L:* closed under
trace composition and satisfying the laws T01 and T02 in Figure 2. Notice that
if s' ~ s then ~] s Do = ~] s' [}o, therefore now we have s e s' = ~ s ~ \ ~] s' ~i.
The definition of <<,, remains formally unchanged.

Let us now consider the must preorder. In the following we shall write s ~ ,,~ s
iffs' ~ s and ~] s' ~ = ~ s ~, and for M finite multiset of Z: and L C_fin s we shall
write M \ L for the multiset ~ I E M I l • L ~. The alternative characterization
of the ~ preorder is now the following.

M

Defini t ion 27. We set P <<M Q iff for each s E s s.t. P $ ~" it holds that:

a) Q $ ~', and
b) for each s ~ e ~, for each L C fi, ~':

(P a f ter s' (s 0 s')) must L implies (Q af ter s' (s 0 s')) must L,

where for any process R, s E/:* and M multiset of Af, we define R af ter s M as
t

8 �9 {P ' : R ~ P', s' "~ sM, s' ,~ s(s' @ s), In(P ') n (M \ (s' @ s)) = 0}.

6 C o n c l u s i o n s

We have examined the impact of the testing framework as proposed in [10, 13]
on asynchronous CCS. In particular, we have given three equivalent characteri-
zations of asynchronous testing observational semantics. The first one is given in
terms of observers and successful computations, the second relies on sets of traces
and acceptances, the third one is defined in terms of basic observables and con-
text closures. We have discussed generalizations of the results to asynchronous
~r-calculus and to ACCS with non-injective relabelling.

The above mentioned characterizations provide a good starting point for un-
derstanding asynchronous semantics and for relating testing semantics to other
approaches. The picture would have been more complete with an equational
characterization of our semantics; this will be the topic of a forthcoming paper.

Acknowledgments . Three anonymous referees provided valuable suggestions.
We are grateful to the Dipartimento di Scienze dell'Informazione of Universit~
di Roma "La Sapienza" and to Istituto di Elaborazione deU'Informazione in Pisa
for making our collaboration possible.

109

References

1. G.Agha. Actors: a model of concurrent computation in Distributed Systems. Mit-
Press, Boston, 1986.

2. R.M. Amadio, I. Castellani, D. Sangiorgi. On Bisimulations for the Asynchronous
1r-calculus. CONCUR'96, LNCS 1119, pp.147-162, Springer, 1996.

3. J. Bergstra, J.W. Klop. Process Algebra for Synchronous Communication. Infor-
mation and Control, 60:109-137, 1984.

4. M. Boreale, R. De Nicola. Testing Equivalence for Mobile Systems. Information
and Computation, 120: 279-303, 1995.

5. M. Boreale, R. De Nicola, R. Pugliese. Basic Observables for Processes. ICALP'97,
LNCS 1256, pp.482-492, Springer, 1997.

6. G. Boudol. Asynchrony in the r-calculus (note). Rapport de Recherche 1702, IN-
RIA Sophia-Antipolis, 1992.

7. S.D. Brookes, C.A.R. Hoare, A.W. Roscoe. A theory of communicating sequential
processes. Journal of the ACM, 31(3):560-599, 1984.

8. N. Busi, R. Gorrieri, G-L. Zavattaro. A process algebraic view of Linda coordina-
tion primitives. Technical Report UBLCS-97-05, University of Bologna, 1997.

9. F.S. de Boer, J.W. Klop, C. Palamidessi. Asynchronous Communication in Process
Algebra. LICS'gP, IEEE Computer Society Press, pp. 137-147, 1992.

10. R. De Nicola, M.C.B. Hennessy. Testing Equivalence for Processes. Theoretical
Computers Science, 34:83-133, 1984.

11. R. De Nicola, R. Pugliese. A Process Algebra based on Linda. COORDINA-
TION'96, LNCS 1061, pp.160-178, Springer, 1996.

12. M. Hansen, H. Huttel, J. Kleist. Bisimulations for Asynchronous Mobile Processes.
In Proc. of the Tblisi Symposium on Language, Logic, and Computation, 1995.

13. M.C.B. Hennessy. Algebraic Theory of Processes. The MIT Press, 1988.
14. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall Int., 1985.
15. K. Honda, M. Tokoro. An Object Calculus for Asynchronous Communication.

ECOOP'91, LNCS 512, pp.133-147, Springer, 1991.
16. H. Jifeng, M.B. Josephs, C.A.R. Hoare. A Theory of Synchrony and Asynchrony.

Proc. of the IFIP Working Conf. on Programming Concepts and Methods, pp.446-
465, 1990.

17. N.A. Lynch, M.R. Tuttle. Hierarchical correctness proofs for distributed algo-
rithms. In 6 th ACM Symposium on Principles of Distributed Computing, pp.137-
151, 1987.

18. R. Milner. Communication and Concurrency. Prentice Hall International, 1989.
19. R. Milner. The Polyadic r-calculus: A Tutorial. Technical Report, University of

Edinburgh, 1991.
20. R. Milner, J. Parrow, D. Walker. A calculus of mobile processes, (Part I and II).

Information and Computation, 100:1-77, 1992.
21. R. Pugliese. A Process Calculus with Asynchronous Communications. 5th Ital-

ian Conference on Theoretical Computer Science, (A. De Santis, ed.), pp.295-310,
World Scientific, 1996.

22. J. Tretmans. A formal approach to conformance testing. Ph.D. Thesis, University
of Twente, 1992.

