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A b s t r a c t .  The application of formal techniques can contribute much to 
the quality of software, which is of utmost importance for safety-critical 
embedded systems. These techniques, however, are not easy to apply. In 
particular, methodological guidance is often unsatisfactory. We address 
this problem by the concept of an agenda. An agenda is a list of activi- 
ties to be performed for solving a task in software engineering. Agendas 
used to support the application of formal specification techniques pro- 
vide detailed guidance for specifiers, templates of the used specification 
language that only need to be instantiated, and application independent 
validation criteria. We apply the agenda approach to a particular class 
of embedded safety-critical systems, the formal specification of which 
has been investigated in the case-studies of the German ESPRESS project 
during the last two years. 

1 I n t r o d u c t i o n  

Every software-based system potentially benefits from the application of formal 
techniques. For the development of mission or even safety-critical embedded 
systems, however, their use is of particular advantage, because the potential 
damage operators and developers have to envisage in case of malfunction may 
be much worse than the additional costs of applying formal techniques in system 
development. 

A major  drawback of formal techniques is tha t  they are not easy to apply for 
the average software engineer. Besides the facts that  users of formal techniques 
need an appropriate education and have to deal with lots of details, they are 
often left alone with a mere formalism without any guidance on how to use 
it. Hence, methodological support is a key issue to bring formal techniques into 
practice. 

Methodological support for specification development must be abstract 
enough to cover a significant range of applications, but  also detailed enough 
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Fig. 1. Basic ESPaESS process model 

to provide real guidance to developers. Agendas, as introduced in [9, 10], pro- 
vide a concept for representing methodological process knowledge for particular 
software architectures on a relatively fine-grained level of detail. 

In this paper, we demonstrate the application of the concept of agendas 
to a particular class of embedded safety-critical systems. The architecture we 
study is that of a cyclic software component - a piece of software in a technical 
system which is triggered in regular time intervals by its environment to compute 
output values (usually commands to some actuators) from given input values 
(usually sensor values), and an internal state. The agenda we represent for this 
architecture is condensed from experiences with case studies performed in the 
ESPRESS project during the last two years 1. 

Figure 1 shows the basic ESPRESS process model. The agenda presented 
in this paper guides the development of a requirements specification. Such a 
requirements specification is further validated and serves as a basis for safety 
analyses, test case generation, and software design. 

Our agenda for cyclic software components elaborates on two particular as- 
pects of embedded systems, motivated by the demands of the ESPRESS appli- 
cation context. First, special care is taken to accurately develop the embedding 
of the software in its surrounding technical system. Second, quality requirements 
such as high-level or safety-related conditions which have to be guaranteed by 
the software are treated systematically. The general ESPaESS methodology re~ 

1 The ESPRESS project is a cooperation of industry and research institutes funded by 
the German ministry BMBF ("F5rderschwerpunkt Softwaretechnologie"). 
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quires that - if possible - these requirements are specified as properties, which 
have to be logical consequences of an explicitly constructed model of the soft- 
ware. The redundancy introduced by this approach increases the potential for 
checking the consistency of the formal specification. 

We use the ESPRESS notation #SZ [2] to express the specifications devel- 
oped with our agenda for cyclic software components. This notation provides a 
semantically well-defined combination of the Statemate languages [7] (namely 
statecharts and activity charts), the formal specification language Z [16], and an 
extension of Z by temporal logics [4]. The Statemate languages and Z have been 
chosen for ESPRESS because of their relevance in industrial contexts and their 
fairly good tool support. For reasons of space, we cannot systematically explain 
p~Z and its constituting languages; we only give an informal explanation of the 
constructs used in this paper as they appear, and assume some familiarity of the 
reader with the Z and Statemate languages. 

2 A g e n d a s  

An agenda gives guidance on how to perform a specific software development 
activity. Agendas can be used for structuring quite different activities in dif- 
ferent contexts. We have set up and used agendas that support requirements 
engineering, specification acquisition, software design using architectural styles, 
and developing code from specifications [8]. Agendas are especially suitable to 
support the application of formal techniques in software engineering. 

An agenda is a list of steps to be performed when carrying out some task in 
the context of software engineering. The result of the task will be a document 
expressed in a certain language. Agendas contain informal descriptions of the 
steps. With each step, templates of the language in which the result of the task 
is expressed are associated. The templates are instantiated when the step is 
performed. The steps listed in an agenda may depend on each other. Usually, 
they will have to be repeated to achieve the goal, similar to the general process 
proposed by the spiral model of software engineering. Agendas are presented as 
tables, see Fig. 3 on page 5. Agendas may be nested, and we call the "super- 
steps" stages (see, e.g., Fig. 2 on the following page). 

Agendas are not only a means to guide software development activities. They 
also support quality assurance because the steps of an agenda may have valida- 
tion conditions associated with them. These validation conditions state necessary 
conditions that the artifact must fulfill in order to serve its purpose properly. 
When formal techniques are applied, some of the validation conditions can be 
expressed and proven in a formal way. Since the validation conditions that can 
be stated in an agenda are necessarily application independent, the developed 
artifact should be further validated with respect to application dependent needs. 

Working with agendas proceeds as follows: first, the software engineer selects 
an appropriate agenda for the task at hand. Usually, several agendas will be 
available for the same development activity, which capture different approaches 
to perform the activity. This first step requires a basic understanding of the 
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problem to be solved. Once the appropriate agenda is selected, the further pro- 
cedure is fixed to a large extent. Each step of the agenda must be performed, in 
an order that respects the dependencies of steps. The informal description of the 
step informs the software engineer about the purpose of the step. The templates 
associated with the step provide the software engineer with patterns that can 
just be filled in (which nevertheless requires creativity) or modified according 
to the needs of the application at hand. The result of each step is a concrete 
expression of the language that is used to express the artifact. If validation con- 
ditions are associated with a step, they should be checked immediately to avoid 
unnecessary dead ends in the development. When all steps of the agenda have 
been performed, a product has been developed that can be guaranteed to fulfill 
certain application-independent quality criteria. This product should then be 
subject to further validation, taking the specific application into account. 

Agendas cannot replace creativity, but they can tell the software engineer 
what needs to be done and help avoid omissions and inconsistencies. Their ad- 
vantage lies in an improvement of the quality of the developed products and in 
the possibility for reusing the knowledge incorporated in an agenda. 

3 A g e n d a  f o r  C y c l i c  S o f t w a r e  

I Stage 

l i Context embedding 
Quality requirements 
Model construction 

Fig. 2. Stages of the agenda for cyclic 
software components 

C o m p o n e n t s  

The agenda for cyclic software com- 
ponents consists of three stages, 
which are shown in Fig. 2. Stage 1 
must be performed first; Stage 2 and 
3 can be performed independently of 
each other. Each of the stages is per- 
formed following a sub-agenda, as de- 
scribed below. As a running example, 

we use an intelligent cruise control system, which serves to automatically ad- 
just the speed of a vehicle according to the driver's request. In addition to this 
conventional cruise control functionality, our version uses a sensor to detect a 
vehicle driving ahead, and adjusts the speed to maintain a certain safety dis- 
tance. This example is extracted from one of the internal ESPRESS case studies, 
and modified for our illustration purposes. 

Stage 1: Con tex t  e m b e d d i n g  

Embedded software is characterized by the fact that the interfaces to the envi- 
ronment are not standardized to a degree as it is nowadays common for software 
running on e.g. workstations. Hence, a developer should take special care to 
model the context embedding of the software. In ESPRESS, the context defini- 
tion also serves as a starting point for a simulation of the software, using the 
Statemate tool. The sub-agenda for context embedding is shown in Fig. 3 on the 
following page. 

S tep  1.1: Specify  technical  interfaces.  The technical interfaces of an em- 
bedded software component are usually determined during system design, and 



92 

Step Validation Conditions 

1.1 Specify technical interfaces: 

TechnicaIDefs 
I [...1 

TechnicalSensors TechnicalActuators - -  
TeehnicaIDefs TechnieaIDefs 
[ PORT S1 I" "" PORT A1 

1.2 Design and specify logical interfaces and their mapping 
to technical ones: 
LogicaIDefs 

I .,. 

LogicalSensors - -  MapLS1 
LogicalDe/s LogicaISensors; 
I . . .PORTLS1 [ B E H A V I O R  

[ . . LogicalActuators - -  I MapLA1 

' 1 .3  Derive software/context information flow and cycle 
control: 
Context 

TechnicaISensors; TechnicaIActuators 
LogicalSensors; LogicalActuators 

: [ eo~'.~oL }:.::'.." : 

/$dI{8OF'~IL~II) /r$1(8OIr':'lmLRll 

I,no, ~r" -~..~ c,:eL,,z~,,/ 

o ranges of values of 
sensors and actua- 
tors are consistent 
with the technical 
specifications of the 
interfaces 

o errors of sensors 
and actuators are 
taken into account 

i-invariants are con- 
sistent 

o errors of technical 
sensors are taken 
into account 

~-invariants are con- 
sistent 

I- mappings are 
unique 

I- mappings are total 

no conditions 

Fig .  8. Steps of Stage 1: context embedding 
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TeehnicaIDefs 
LEVERPOS ::= none I defMore I 

defLess ] off l resume 
PEDALPOS ::= notPressed I pressed 
[ TORQUE, SPEED, A CCEL] 

TechnicalActuators 
TechnicalDefs 

PORT Adjustment 
l engineControl : option TORQUE 

brakeControl : option A CCEL 

TechnicalSensors 
TechnicalDefs PORT Lever if-- PORT Pedal I 

I lever :LEVERPOS [brake : PEDALPOS 

~zs 
PORT Ahead PORT Movement 
tAhead : option LENGTH curSpeed : SPEED 

curAecel ACCEL l acceIAhead : option A CCEL 
[~-d ~ r dfd accelAhead 

Fig. 4. Technical interfaces of the cruise control 

cannot be modified by the software developer. Since their characteristics and 
capabilities may have significant influence on the further development, the first 
step of context embedding is to describe the technical interfaces in the modeling 
language. 

Figure 3 on the page before gives templates for describing technical interfaces 
in our modeling language ~uSZ. The structuring entities of I~SZ are process classes 
(the outer boxes in the figure, e.g., TechnicalDefs), which are containers for sets 
of plain Z declarations, of schema definitions, and of Statemate statecharts and 
activity charts. The schema definitions inside a class may have assigned certain 
roles. For example, the role of schema definitions introduced with the keyword 
PORT is to describe data variables that can be shared by a process with its 
environment. Interpreted standalone, PORT schemata do not differ from plain Z 
schemata. However, they contribute to the semantics of an entire process class, 
defining the variables belonging to the shared data state of instances of the class. 

For Step 1.1, the agenda in Fig. 3 suggests to collect the technical interfaces 
in process classes called TechnicalSensors and TechnicaIActuators, respectively, 
which contain sets of PORT schemata. The types and constants used to define 
these ports are collected in a third process class, TechnicalDefs, which is included 
by the other classes. The inclusion of process classes can be interpreted as textual 
expansion. 

The validation conditions associated with Step 1.1 first require the developer 
to carefully check whether the types defined to model the values of sensors and 
actuators really capture the technical properties of the technical sensors and 
actuators. The second validation condition suggests to define appropriate error 
values for the types. Finally, all invariants must be satisfiable, i.e., there must 
exist legal states of the system ports. Note that validation conditions marked 
with "o" are informal, whereas validation conditions marked with "~-" are formal 
and hence can be checked with appropriate tool support. 
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LogicalActuators 
I [---- PORT NominalAccel 

[ nominalAccel : option ACCEL 

MapNominalAccel 

F 
-fl LogicaIDef s 

I l accel2torque : 
I I Movement x ACCEL---* TORQUE 

TechnicalSensors.Movement; TechnicalActuators.Adjustment 
LogicalDefs; LogicaIActuators.NonimalAccel 
- -  BEHAVIOR Mappin9 
Movement; NominalAccel; Adjustment 
-, dfd nominaIAccel ~ -~ dfd engineGontrol A -, dfd brakeControl 
dfd nominalAccel 

(val nominalAccel > 0 
-1 dfd brakeControl A engineControl = 

def accel2torque( O Movement, val nominaIAccel) ) 
A (val nominalAccel < 0 =~ 

-, dfd engineControl A brakeControl = nominaIAccel) 

Fig. 5. Logical interfaces of the cruise control 

Cruise Control. Fig. 4 on the preceding page shows how we apply Step 1.1 to the 
specification of the cruise control. The port  Lever describes the driver's control 
lever, which can be used to turn off the cruise control, to increase or decrease the 
requested speed, to turn off the cruise control, and to resume its operation. The 
port  Pedal models the brake pedal, the port  Ahead the distance and relative 
acceleration with respect to a vehicle driving ahead, and the port  Movement 
provides information about  the current speed and acceleration of the vehicle. The 
port  Adjustment describes the output  of the cruise control, which consists of an 
engine torque and a (negative) acceleration for controlling the brake. Variables 
declared as x : option A carry values of A which may be available or not; we use 
dfd x to indicate whether the value of the optional variable x is available, val x 
to refer to that  value (if it is defined), and d e f v  to construct a defined value 
from v. If, e.g., the value of the sensor distAhead is not defined, then no vehicle 
driving ahead is detected, and if the actuator engine Torque is not defined, then 
the cruise control does not affect the engine. 

For reasons of space, we cannot present the full specification of the tech- 
nical interfaces of the cruise control system. Hence, we cannot check the val- 
idation conditions in detail. Let us just note that  the only given invariant, 
dfd distAhead r dfd accelAhead, is indeed consistent, and that  - for reasons 
of simplicity - we assume to have perfect sensors without errors in this example. 

Step 1.2: D e s i g n  a n d  spec i fy  logical  i n t e r f aces .  Apart  from being non- 
standardized, the technical interfaces of an embedded software component may 
be also on a relatively low technical level, which hinders a problem-oriented 
specification. It may therefore be useful to introduce abstractions of the technical 
interfazes, which is achieved by defining logical interfaces. 
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- -  CruiseControIContext 
TechnicalSensors; TechnicalAetuators; LogicalActuators 

, ~ ~ 

P E I ~ &  

NoM'r N~lr~'CCIL r " ' - - I  1 

com~oz, IA~USTm~W 

',l ,...too-j 
)" 

Fig. 6. Activity chart of the cruise control context 

The values of sensors and actuators of a logical interface should be totally 
and uniquely defined by the technical values (see validation conditions associated 
with this step). In the simplest case, this mapping can be defined by a conversion 
function which maps a technical sensor to a logical sensor or a logical actuator 
to a technical actuator, respectively. In more complex situations, the mapping 
may require an internal state, for example if a logical sensor accumulates the 
values of a technical one. In any case, we define the mapping by a dedicated 
process class that describes the conversion by a property schema or by a state- 
chart (in the template of Fig. 3 on page 5, these classes axe called MapLS1 and 
MapLA1, respectively). These process classes are instantiated as sub-processes 
of the overall process modeling the system context, as will be seen in the next 
step. 

The first validation condition associated with Step 1.2 suggests to apply 
fault tolerance techniques, e.g., consistency checks on sensor values and feedback 
control to check if actuator commands have been executed appropriately. 

Cruise Control. We introduce a logical actuator nominalAccel, which abstracts 
from the two quite technical values engineControl and brakeControl given in the 
output port Adjustment, as sketched in Fig. 5 on the preceding page. The process 
class MapNominalAccel performs the mapping of the logical to the technical 
actuators. A schema introduced with the role BEHAVIOR describes an invariant 
which holds whenever a process is running. 

Proving the last two validation conditions amounts to proving that the func- 
tion accel2torque defined in the class LogicalDefs is indeed a total function. 

Step 1.3: Derive so f tware /con tex t  in format ion  flow. The description of 
the technical interfaces, the logical interfaces, and their mapping induces an ac- 
tivity chart, which is derived from the template given for Step 1.3 in Fig. 3 on 
page 5. The activity charts of Statemate used in #SZ combine the descriptions 
of information flow, of instantiation of sub-processes from process classes (rect- 
angular boxes), and of behavior described by statecharts (rounded boxes). In 
Fig. 3, the overall description of the system's behavior aggregates a sub-process 
Software, as well as sub-processes for mapping technical to logical interfaces. The 
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Step Validation Conditions 
2.1 Collect relevant quality requirements o requirements are 

realizable 

2.2 Specify model properties: 

- -  Software 
[ O b s l - -  I ' " O b s 2 - -  

PROPERTY D YN f 

[ [Ob811~[Obn1... 

o observations form 
a problem-oriented 
classification of 
possible situations 

~-properties axe con- 
sistent 

Fig. 7. Steps of Stage 2: quality requirements 

information flows between these processes are labeled with ports, and semanti- 
cally describe visibility of shared variables between processes. The aggregation of 
the statechart Control and the dotted lines are only for documentation purposes; 
they indicate that Control schedules the activity of the sub-process Software. 

The scheduler defined by Control applies to any cyclic software component 
developed using this agenda, and is quite simple. It assumes that the software, 
once running, reads the sensors, computes the actuators, and then suspends it- 
self. The scheduler thus periodically resumes the software in intervals of a certain 
cycle time. Notationally, Statemate's mechanism for suspending and resuming 
processes (processes are also called activities in Statemate) is used. The Statem- 
ate action sd ! (SOFTWARE) stands for suspending a process, r s  ! (SOFTWARE) 
for resuming, and the condition hg(SOFTWARE) tests whether a process is "hang- 
ing", that is suspended. The event tm(en (RUN), CYCLETIME) appears cycle Time 
time units after the state RUN has been entered, where en stands for "entered", 
and tm stands for "timeout". Because the result of Step 1.3 can be derived 
schematically from the parts of the specification defined in Steps 1.1 and 1.2, 
there axe no validation conditions associated with this step. 

Cruise Control. Fig. 6 on the preceding page shows the result of Step 1.3. We 
only need to draw the activity chart (where the information flows are already 
induced by Steps 1.1 and 1.2); the statechart Control can be taken as is from 
the template in Fig. 3 on page 5. Only Software is renamed to CruiseControl. 

Stage 2: Quality requirements 
The systems we study have to fulfill certain quality requirements. Typical exam- 
ples are safety requirements, but also high-level requirements from earlier devel- 
opment phases may be transferred to the software development phase. A common 
characteristic of quality requirements is that they only address certain selected 
aspects to be realized by the software - these aspects are important enough to 
be emphasized explicitly in the specification. Technically, quality requirements 
are formulated as model properties, which have to be logical consequences of the 
model of the software as it is constructed in Stage 3. With model properties, re- 
dundancy is deliberately introduced in the specification. This contributes to the 
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potential for checking consistency by deduction, model checking, and systematic 
testing. Figure 7 on the preceding page describes the agenda for treating quality 
requirements. 

Step 2.1: Collect relevant  qual i ty  requi rements .  The quality requirements 
are usually defined during system design. In this step, the ones that are relevant 
for the software component under development are collected and documented. 

Cruise Control. A few of the quality requirements are the following: 
- Activity. The cruise control is allowed to adjust speed only if the driver has 

activated it through the control lever, and did not deactivate it since then. 
- Asymptotic String Stability. If several vehicles using the cruise control drive 

in a queue, a sudden change of the speed of one of them must lead to changes 
of speed of the the following vehicles which fade away along the queue. 

Because cruise control systems are already on the market, these requirements 
are well understood and known to be realizable with our technical interfaces. 
Hence, the validation condition associated with this step is fulfilled. 

Step 2.2: Specify mode l  propert ies .  It is not realistic to demand that all 
quality requirements be specified formally as model properties. For example, the 
property of string stability cannot be expressed easily, because it would require 
to formalize aspects of the mathematics of control theory 2. However, where it is 
possible, the quality requirements should be expressed as model properties, to 
be treated automatically in a review stage later on. 

Our modeling language allows us to formalize properties as temporal obser- 
vations of the sensors and actuators of the technical and logical interfaces. The 
logic used for this purpose is based on discrete temporal interval logic, including 
real-time constraints [4]. The modifier DYN in a schema declaration (possibly in 
conjunction with roles such as PORT or PROPERTY) signals that the schema 
uses temporal logic. 

A useful guideline for specifying the model properties is to first introduce 
abstractions of common situations observable on the interfaces. In the template 
of Fig. 7 on the page before, these are introduced by the schemata Obsl, Obs2, 
and applied in the temporal formula of the dynamic property box. 

The first (informal) validation condition suggests that the model properties 
be oriented on a classification of the relevant situations of the observable behavior 
of the system, whereas the second validation condition is an obvious consistency 
requirement. 

Cruise Control. In Fig. 8 on the following page, we define schemata for ob- 
serving the situations where the driver activates and deactivates the cruise con- 
trol, and where the cruise control produces an output value to adjust speed. 
These schemata are used to formalize one of the quality requirements, namely 
the safety-condition "Activity". Intuitively, the temporal formula given in the 
property-box Activity can be interpreted as a kind of regular expression: the 

In fact, notions of control theory could be expressed in Z, but ESPRESS does not aim 
at these goals. 
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Cruise Control 
TechnicalSensors; LogicalActuators 

Activating Deactivating - -  m Adjusting 
Lever Lever; Brake I NominalAccel 

lever = defMore lever = off I dfd nominaIAccel 
V lever = defLess V brake = pressed 

P R O P E R T Y  D YN Activity 
er; Brake; NominalAccel 

eat ([-~ Adjusting ~ ^ [ Activating A -~ Adjusting ~ ~ [--, Deactivating ]) 

Fig. 8. Model properties of the cruise control 

admissible traces of the behavior of the cruise control repeatedly consists of an 
interval where adjustment of speed is not performed, followed by an interval 
where the driver activates the cruise control (adjustment of speed still does not 
take place), followed by an interval where the driver continuously does not de- 
activate the cruise control. Thereby, the temporal predicate r P ] holds for those 
finite or infinite intervals where the predicate p holds in each state. Note that 
we do not say anything about whether the cruise control actually ever adjusts 
speed; we just say when it should not  do so. This is typical for specifying model 
properties, where we are only interested in selected aspects of the software. 

Stage 3: Mode l  construct ion 

In this stage, we construct a model for the cyclic software component under con- 
sideration. There are several strategies for doing so, which depend on the prob- 
lem to solve. Here we consider two variants: model construction by functional 
decomposition, and model construction by partitioning behavior into operational 
modes. 

Variant  3a: Model  cons t ruc t ion  by funct ional  decompos i t ion  The prob- 
lem to solve by the cyclic software component might be more adequately solved 
by decomposing it into subproblems, instead of giving a monolithic solution. The 
reasons for this may be that the problem is to large to be tackled in a mono- 
lithical way, that a decomposition follows naturally from the structure of the 
problem, or that existing components should be integrated into the design. 

For a cyclic software component which computes output values from input 
values and internal state, a decomposition is naturally achieved in a funct ional  
style, based on information flow between the subcomponents (Fig. 9 on the next 
page). This is also the approach the Statemate tool supports best. 

Step 3a.1: Design funct ional  decomposi t ion  using an act ivi ty  chart .  
Guidelines on how to perform a functional decomposition depend on the ap- 
plication. A useful approach is data-oriented, and considers intermediate values 
to be computed by the subcomponents. If we reuse existing components, these 
intermediate values are naturally their output interfaces. However, in general, 
decomposition is a problem that requires creativity. Hence our agenda suggests 
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Step Validation Conditions 
3a.1 Design functional decomposition: 

- -  Bo~ware 
Internallnterfaces 

' -  CONTROL i 
E3 IrsI(SUBI) ~hg(SUBI)] 

I- information flow is free 
of cycles 

t-all sensors are used 
and all actuators are 
served 

i 
~hg(SUB2)]/ 
~mdJ(SOFTW~) 

2'  /",' i '~2) 

3a.2 Specify the internal interfaces: 

- -  Internallnterfaces 
PORT I1 

I,~ 

~- invariants of ports are : 
consistent 

3a.3 For each subcomponent obtained in 3a.1, apply no conditions 
Stage 3 again. 

Fig. 9. Steps of Stage 3, Variant a: model construction by functional decomposition 

to first design the principle information flow between subcomponents by draw- 
ing an activity chart. The precise specification of the intermediate interfaces 
themselves is postponed unitl the next step 3. 

Once a information flow between the subcomponents has been defined, the 
data  dependencies canonically induce a scheduling as described by the statechart  
Control of the template for Step 3a.1 in Fig. 9. Each subcomponent is t reated 
similarly to a cyclic-software component: once it is resumed, it is expected to 
compute its output  values and then to suspend itself. The scheduler activates 
the subcomponents one after the other in the order induced by the information 
flow. 

The validation conditions associated with this step ensure that  the compo- 
nent eventually produces an output  if the subcomponents do so, and that  all 
sensors and actuators are actually used by the system. 

Cruise Control. We assume that  we can reuse an existing component tha t  im- 
plements a speed adjustment: it calculates a nominal acceleration from a given 

3 This differs from the order used in Stage 1, where we first specified the interfaces, 
and then the information flow; but there the exact definition of the interfaces had 
been given by the environment. 
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GruiseControl 

: . . . .  f  sP..o lo.i  
LEVER �9 NOMINALS PEED 8_ 

i . . . . . . .  " ~  

. . . .  , 

~zL 

* . , . . t  

Fig. 10. Functional decomposition of cruise control 

nominal speed and the vehicle movement. What is left to do is to introduce a 
subcomponent which controls activation and deactivation of the cruise control, 
and which decides to use the speed requested by the driver or a speed lower than 
the nominal speed to keep a certain safety distance. The decomposition leads to 
the activity chart given in Fig. 10, where NominalSpeed is a newly introduced 
internal interface, ModeControl is the subcomponent controlling the activation 
of the cruise control, and SpeedControl is the reused component. 

Step 3a.2: Specify the  in ternal  interfaces. In this step, we specify the 
internal interfaces as they have been introduced in the last step. This step is 
similar to the introduction of interfaces in Stage 1; therefore, details are omitted 
here. 

Step 3a.3: Recurs ively  apply Stage 3. For subcomponents yielded by the 
decomposition and which are not reused, we apply Stage 3 again. For the cruise 
control, this applies to the subcomponent ModeControl, which we specify using 
a different sub-agenda, shown in Fig. 11 on the following page. 

Variant  3b: Mode l  cons t ruc t ion  by mode-based  design The problem to 
solve by the software component might be adequately modeled by introducing 
operational modes for the software component (such as passive, active, emer- 
gency, etc.). A cyclic computation then triggers transitions between the opera- 
tional modes. The agenda in Fig. 11 on the next page describes how to proceed 
for this modeling technique. 

Step 3b. l :  Define modes  by init ial  s ta techar t .  In this step we introduce 
the different operational modes of the software component. Technically, this 
is done by defining an initial statechart (without transitions), where states or 
combinations of parallel states represent modes. We introduce this chart before 
the internal data (next step), because we might want to specify invariants on 
the data that depend on the current operational mode. 

The initial statechart contains a so-called static reaction (ca(M1) or 
en(M2)/sd! (SOFTWARE)) which suspends the software whenever a mode is en- 
tered, signaling to the environment that the computation of the current cycle 
has been finished. A static reaction in Statemate is syntactically similar to a 
transition label guard/ac t ion;  semantically, its action is executed whenever the 
guard becomes true. 
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[ Step Validation Conditions 

3b.1 Define modes by initial statechart: 

- -  Software 

[ | | 
e (M1) e (M2)/sd!(S0FTWA ) 

3b.2 Define internal data state: 

- -  Software 

3b.3 Define transitions: 

- -  Software 

~ G 2  ]/OP2 

. .  G U A R D  G1 - -  .. O P  Opl  

no conditions 

~-invariants of data schemata 
are consistent 

}- initial data state exists 

o for each mode, expected 
inputs are systematically 
treated 

~-for each two transitions leav- 
ing a state, guards are exclu- 
sive 

~- all states are reachable 
F-from each mode, all possible 

(transitive) transitions reach 
another mode with a finite 
number of steps 

Fig. 11. Steps of Stage 3, Variant b: model construction by mode-based design 

MOde Control 
D A T A  Request 

questedSpeed : option S P E E D  
I N I T  

Request 

-~ dfd requestedSpeed 

Fig. 12. Internal data of the ModeControl subcomponent of the cruise control 

Crui se  Control .  The complete statechart  with transitions as it is obtained in 
Step 3b.3 is given in Fig. 13 on page 16, and will be explained there. 

S t e p  3b.2:  D e f i n e  i n t e r n a l  d a t a  s t a t e .  Internal da ta  is introduced in # S Z  by 
a schema with the D A T A  role, its initialization by a schema with the I N I T  role. 
The validation conditions associated with this step stem from the recommended 
Z methodology [17]. 

Cruise  Control .  In Fig. 12, the internal data  of the subcomponent  M o d e C o n t r o l  

is defined. I t  declares a variable requestedSpeed, whose value (if defined) describes 
the nominal speed which the last t ime has been requested by the driver�9 Initially, 
requestedSpeed is undefined�9 
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Step  3b.3: Def ine  trans i t ions  b e t w e e n  states  o f  s tatechart .  In this step, 
we refine the statechart developed in Step 3b.1 by transitions and possibly by 
intermediate states. Transitions are labeled systematically as [G]/0p, where G 
and Op are Z schemata introduced with the roles GUARD and OP, respectively. 

Due to the static reactions introduced in Step 3b.1, the software is suspended 
whenever a transition reaches a state corresponding to an operational mode. 
Intermediate states do not necessarily lead to a suspension, as it is the case, e.g., 
for the internal state S in the template for Step 3b.3 in Fig. 11. The validation 
conditions associated with this step require the developer to check if all inputs 
are treated appropriately, and to show that the system behaves deterministically. 
Moreover, useless states that cannot be reached are not allowed. An important 
condition to check is whether mode transitions terminate, that is starting from 
any mode, for all possible inputs another mode is reached in a finite number of 
steps. The template state-chart given for Step 3b.3 in Fig. 11 shows that this 
condition is not trivial if intermediate states are used (it is possible that the 
process hangs in state S). 

Cruise Control. Applying Step 3b.3 to the subcomponent ModeControl 
leads to the statechart, guards and operations given in Fig. 13 on the 
following page. The statechart does not contain intermediate states. The 
cartesian product of the state sets (ACTIVATED, DEACTIVATED) and 
(REQUESTED, CALCULATED} makes up the set of operational modes. In 
addition to the declared objects, we use the following Z constants: stepSpeed : 
SPEED is the offset how to increase or decrease the requested speed, and 
maxSpeed : SPEED is the maximum requested speed the cruise control is al- 
lowed to manage. The function safeDistanee : SPEED --~ LENGTH yields the 
safe distance to a vehicle ahead in dependency of a driving speed. The func- 
tion distanceRegulator : Movement x Ahead ---+ SPEED represents an algorithm 
calculating a nominal speed from the movement of the vehicle and information 
about a vehicle ahead. 

4 C o n c l u s i o n s  

We have demonstrated that the agenda approach supports the systematic de- 
velopment of requirement specifications for high quality embedded systems on 
a non-trivial level of detail which gives substantial guidance to developers. As 
already noted, agendas are not intended to replace creativity and do not aim 
at completely automating development processes. Hence, in the first steps of 
an agenda, high-level decisions have to be taken. The validation conditions as- 
sociated with the early steps of an agenda are mostly informal, encouraging 
developers to carefully re-consider their decisions, see e.g. Step 1.1 of the agenda 
of Fig. 3. Later steps in an agenda, on the other hand, often have validation 
conditions associated with them that can be formally expressed and proven. 
The reason is that in the later steps consistency conditions between the various 
parts of the specification that are already developed can be stated. Step 1.2 of 
the agenda shown in Fig. 3 is an example. Finally, some steps of an agenda 
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, ModeControl 

1 
[ DECREASZNGI / 

DECREASE 

[RECOGNIZZNG] 

en(DEACTIVATED) or 

en(ACTIVATED) or 

en(CALCULATED) or 

en(REQUESTED) 
/ sd!(MODECONTROL) 

�9 GUARD Defining 
Lever; Pedal 

lever e { defMore, defLess} 
brake = notPressed 

OP Define 
Movement; A Request 

requestedSpeed' = def currSpeed 

.... GUARD Increasing 
Lever; Pedal 

lever = defMore A brake = notPressed 

.. OP Increase 
A Request 

requestedSpeed' = 
def min{val requestedSpeed + stepSpeed, 

maxSpeed} 

GUARD Decreasing 
Lever; Pedal 

lever = de/Less ^ brake = notPressed 

OP Decrease 
IiRequest 

GUARD Resuming - -  - -  
Lever; Pedal 

dfd requestedSpeed 
lever = resume 
brake = notPressed 

GUARD Deactivating 
Lever; Pedal 

lever = off 
V brake = pressed f 

- -  GUARD Recognizing - 

Ahead; Movement 

dfd distAhead 
val distAhead < 
safeDistance( currSpeed) 

L BEHAVIOR 
Movement; Ahead; Request; NominalSpeed; CONTROL 

instate DEACTIVATED =~ -~ dfd nominaISpeed 
instate ACTIVATED A instate REQUESTED ~ nominaISpeed = requestedSpeed 
instate ACTIVATED A instate CALCULATED 

nominaISpeed = def min{ distanceRegulator( O Movement, O Ahead), 
val requestedSpeed} ) 

Fig .  13. Modes and transitions of the ModeControl subcomponent of the cruise control 
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(usually the last steps) can be performed in an entirely schematic way, because 
they merely consist in an appropriate combination of parts of the specification 
developed in earlier steps, see e.g. Step 1.3 of the agenda of Fig. 3. 

Agendas are language-independent to a large extent. Changing the language 
in which the developed specification is expressed consists mostly in replacing the 
templates of the various steps, and effects the steps themselves very little, see 
the agenda presented in [10]. 

The validation conditions are a very important aspect of agendas. Clearly, the 
errors revealed by failing to demonstrate validations conditions of an agenda can 
only be of an application-independent nature. Checking the validation conditions 
cannot guarantee, e.g., that a system is adequately modeled by a developed 
specification. Nevertheless, many common errors can be discovered. As reported 
by Heitmeyer et al. [11], in the certification of the Darlington plant (which cost $ 
40M), "the reviewers spent too much of their time and energy checking for simple, 
application-independent properties." To improve this situation, Heitmeyer et al. 
have implemented a tool that performs consistency checks. Since this tool is not 
tailored for any application domain, it can only check very general consistency 
conditions. In comparison, the validation conditions provided by agendas are 
much more to the point (see e.g. the validation conditions of Step 3.b.3 of the 
agenda shown in Fig. 11), such that more specific tool support for checking 
validation conditions generated by agendas is conceivable. But even if no specific 
support tools for agendas are available, agendas allow developers to use existing 
tools, e.g., Statemate to check the specification by simulation, or type checkers 
and theorem provers for Z to check some of the formal validation conditions. 

Besides providing guidance for developers and ensuring some application in- 
dependent quality aspects of the developed product, agendas offer the following 
advantages: 

- Agendas make software processes explicit, comprehensible, and assessable. 
Giving concrete steps to perform an activity and defining the dependencies 
between the steps make processes explicit. The process becomes comprehen- 
sible for third parties because the purpose of the various steps is described 
informally in the agenda. Thus, agendas may be subject to evaluation. 

- Agendas standardize processes and products of software development. Agen- 
das structure development processes. The development of an artifact follow- 
ing an agenda always proceeds in a way consistent with the steps of the 
agenda and their dependencies. Thus, processes supported by agendas are 
standardized. The same holds for the products: since applying an agenda 
results in instantiating the templates given in the agenda, all products de- 
veloped with an agenda have a similar structure. 

- Agendas support maintenance and evolution of the developed artifacts. Un- 
derstanding a document developed by another person is less difficult when 
the document was developed following an agenda than without such infor- 
mation. Each part of the document can be traced back to a step in the 
agenda, which reveals its purpose. To change the document, the agenda can 
be "replayed". The agenda helps focus attention on the parts that actually 
are subject to change. 
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- Agendas are a promising starting point for sophisticated machine support. 
They can form the basis of a process-centered software engineering envi- 
ronment (PSEE) [6]. Such a tool would lead its users through the process 
described by the agenda. 

For these reasons, agendas play a central role in the ESPRESS methodology. 

Re la t ed  Work.  Recently, efforts have been made to support re-use of special 
kinds of software development knowledge: Design patterns [5] have had much 
success in object-oriented software construction. They represent frequently used 
ways to combine classes or associate objects to achieve a certain purpose. Fur- 
thermore, in the field of software architecture [14], architectural styles have been 
defined that capture frequently used design principles for software systems. In 
contrast to these, the general concept of an agenda is not specialized to a pro- 
gramming paradigm such as object-orientedness or an activity such as software 
design, as is the case for design patterns and architectural styles. Apart from 
the fact that these concepts are more specialized in their application than agen- 
das, the main difference is that design patterns and architectural styles do not 
describe processes but products. 

Agendas have much in common with approaches to software process modeling 
[12]. The difference is that software process modeling techniques cover a wider 
range of activities, e.g., management activities, whereas with agendas we always 
develop a document, and we do not take roles of developers etc. into account. 
Agendas concentrate more on technical activities in software engineering. On 
the other hand, software process modeling does not place so much emphasis on 
validation issues as agendas do. 

Related to our aim to provide methodological support for applying formal 
techniques is the work of Souqui~res and L~vy [15]. They support specification 
acquisition with development operators that reduce tasks to subtasks. However, 
development operators do not provide means for validation conditions. 

Astesiano and Reggio [1] also emphasize the importance of method when 
using formal techniques. In the "method pattern" they set up for formal speci- 
fication, agendas correspond to guidelines. 

Fu tu re  Work.  In ESPRESS, we are currently working an agendas supporting 
further activities of the general development process as shown in Fig. i on page 2. 
We already have a first version of an agenda for the activity of safety analyses, 
which is based on common techniques such as FTA (failure-tree analysis) and 
SHARD (software hazard analysis and resolution design). We are working on an 
agenda for the verification and validation analyses, which captures the process 
how to check model properties. Verification is based on deduction techniques 
being developed in ESPRESS [13, 4], and on an adaption of existing model check- 
ing techniques. How the testing process is described by an agenda is a topic 
of ongoing research. Another important task is to support software design with 
agendas, where the starting point is a requirements specification as developed 
in this paper. 

Cyclic software components, though important in practice, are indeed a 
rather simple software architecture. We are currently working on an extension 
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of our agenda for this architecture to certain kinds of event-triggered software 
components,  which are also studied in the case studies of ESPRESS [3]. We ex- 
pect to reuse significant parts  of the given agenda, in particular from Stage 1, 
context embedding, and Stage 2, quality requirements. 

A c k n o w l e d g m e n t s .  Many results and ideas presented in this paper  s tem from 
the broader  context of the ESPRESS project and the work of its many  collabo- 
rators  in Berlin. We would especially like to thank Mirco Conrad and Eckard 
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