
Specifying Embedded Systems
with Statecharts and Z:

An Agenda for Cyclic Software Components

Wolfgang Grieskamp 1, Marit ta Heisel 2, and Heiko DSrr 3

1 Technische Universit~t Berlin, Institut fiir Kommunikations- und Softwaretechnik,
Sekr. FR5-13, Franklinstr. 28/29, D-10587 Berlin, Germany, email: wg~cs.tu-berlin.de

2 Otto-von-Guericke-Universit~t Magdeburg, Fakult~it fiir Informatik, Institut fiir
Verteilte Systeme, D-39016 Magdeburg, Germany, email: heisel@cs.uni-magdeburg.de

3 Daimler-Benz AG, Forschung Systemtechnik, Alt-Moabit 96a, D-10569 Berlin,
Germany, emaih Heiko.Doerr@DBAG.Bln.DaimlerBenz.com

A b s t r a c t . The application of formal techniques can contribute much to
the quality of software, which is of utmost importance for safety-critical
embedded systems. These techniques, however, are not easy to apply. In
particular, methodological guidance is often unsatisfactory. We address
this problem by the concept of an agenda. An agenda is a list of activi-
ties to be performed for solving a task in software engineering. Agendas
used to support the application of formal specification techniques pro-
vide detailed guidance for specifiers, templates of the used specification
language that only need to be instantiated, and application independent
validation criteria. We apply the agenda approach to a particular class
of embedded safety-critical systems, the formal specification of which
has been investigated in the case-studies of the German ESPRESS project
during the last two years.

1 I n t r o d u c t i o n

Every software-based system potentially benefits from the application of formal
techniques. For the development of mission or even safety-critical embedded
systems, however, their use is of particular advantage, because the potential
damage operators and developers have to envisage in case of malfunction may
be much worse than the additional costs of applying formal techniques in system
development.

A major drawback of formal techniques is tha t they are not easy to apply for
the average software engineer. Besides the facts that users of formal techniques
need an appropriate education and have to deal with lots of details, they are
often left alone with a mere formalism without any guidance on how to use
it. Hence, methodological support is a key issue to bring formal techniques into
practice.

Methodological support for specification development must be abstract
enough to cover a significant range of applications, but also detailed enough

89

Fig. 1. Basic ESPaESS process model

to provide real guidance to developers. Agendas, as introduced in [9, 10], pro-
vide a concept for representing methodological process knowledge for particular
software architectures on a relatively fine-grained level of detail.

In this paper, we demonstrate the application of the concept of agendas
to a particular class of embedded safety-critical systems. The architecture we
study is that of a cyclic software component - a piece of software in a technical
system which is triggered in regular time intervals by its environment to compute
output values (usually commands to some actuators) from given input values
(usually sensor values), and an internal state. The agenda we represent for this
architecture is condensed from experiences with case studies performed in the
ESPRESS project during the last two years 1.

Figure 1 shows the basic ESPRESS process model. The agenda presented
in this paper guides the development of a requirements specification. Such a
requirements specification is further validated and serves as a basis for safety
analyses, test case generation, and software design.

Our agenda for cyclic software components elaborates on two particular as-
pects of embedded systems, motivated by the demands of the ESPRESS appli-
cation context. First, special care is taken to accurately develop the embedding
of the software in its surrounding technical system. Second, quality requirements
such as high-level or safety-related conditions which have to be guaranteed by
the software are treated systematically. The general ESPaESS methodology re~

1 The ESPRESS project is a cooperation of industry and research institutes funded by
the German ministry BMBF ("F5rderschwerpunkt Softwaretechnologie").

90

quires that - if possible - these requirements are specified as properties, which
have to be logical consequences of an explicitly constructed model of the soft-
ware. The redundancy introduced by this approach increases the potential for
checking the consistency of the formal specification.

We use the ESPRESS notation #SZ [2] to express the specifications devel-
oped with our agenda for cyclic software components. This notation provides a
semantically well-defined combination of the Statemate languages [7] (namely
statecharts and activity charts), the formal specification language Z [16], and an
extension of Z by temporal logics [4]. The Statemate languages and Z have been
chosen for ESPRESS because of their relevance in industrial contexts and their
fairly good tool support. For reasons of space, we cannot systematically explain
p~Z and its constituting languages; we only give an informal explanation of the
constructs used in this paper as they appear, and assume some familiarity of the
reader with the Z and Statemate languages.

2 A g e n d a s

An agenda gives guidance on how to perform a specific software development
activity. Agendas can be used for structuring quite different activities in dif-
ferent contexts. We have set up and used agendas that support requirements
engineering, specification acquisition, software design using architectural styles,
and developing code from specifications [8]. Agendas are especially suitable to
support the application of formal techniques in software engineering.

An agenda is a list of steps to be performed when carrying out some task in
the context of software engineering. The result of the task will be a document
expressed in a certain language. Agendas contain informal descriptions of the
steps. With each step, templates of the language in which the result of the task
is expressed are associated. The templates are instantiated when the step is
performed. The steps listed in an agenda may depend on each other. Usually,
they will have to be repeated to achieve the goal, similar to the general process
proposed by the spiral model of software engineering. Agendas are presented as
tables, see Fig. 3 on page 5. Agendas may be nested, and we call the "super-
steps" stages (see, e.g., Fig. 2 on the following page).

Agendas are not only a means to guide software development activities. They
also support quality assurance because the steps of an agenda may have valida-
tion conditions associated with them. These validation conditions state necessary
conditions that the artifact must fulfill in order to serve its purpose properly.
When formal techniques are applied, some of the validation conditions can be
expressed and proven in a formal way. Since the validation conditions that can
be stated in an agenda are necessarily application independent, the developed
artifact should be further validated with respect to application dependent needs.

Working with agendas proceeds as follows: first, the software engineer selects
an appropriate agenda for the task at hand. Usually, several agendas will be
available for the same development activity, which capture different approaches
to perform the activity. This first step requires a basic understanding of the

91

problem to be solved. Once the appropriate agenda is selected, the further pro-
cedure is fixed to a large extent. Each step of the agenda must be performed, in
an order that respects the dependencies of steps. The informal description of the
step informs the software engineer about the purpose of the step. The templates
associated with the step provide the software engineer with patterns that can
just be filled in (which nevertheless requires creativity) or modified according
to the needs of the application at hand. The result of each step is a concrete
expression of the language that is used to express the artifact. If validation con-
ditions are associated with a step, they should be checked immediately to avoid
unnecessary dead ends in the development. When all steps of the agenda have
been performed, a product has been developed that can be guaranteed to fulfill
certain application-independent quality criteria. This product should then be
subject to further validation, taking the specific application into account.

Agendas cannot replace creativity, but they can tell the software engineer
what needs to be done and help avoid omissions and inconsistencies. Their ad-
vantage lies in an improvement of the quality of the developed products and in
the possibility for reusing the knowledge incorporated in an agenda.

3 A g e n d a f o r C y c l i c S o f t w a r e

I Stage

l i Context embedding
Quality requirements
Model construction

Fig. 2. Stages of the agenda for cyclic
software components

C o m p o n e n t s

The agenda for cyclic software com-
ponents consists of three stages,
which are shown in Fig. 2. Stage 1
must be performed first; Stage 2 and
3 can be performed independently of
each other. Each of the stages is per-
formed following a sub-agenda, as de-
scribed below. As a running example,

we use an intelligent cruise control system, which serves to automatically ad-
just the speed of a vehicle according to the driver's request. In addition to this
conventional cruise control functionality, our version uses a sensor to detect a
vehicle driving ahead, and adjusts the speed to maintain a certain safety dis-
tance. This example is extracted from one of the internal ESPRESS case studies,
and modified for our illustration purposes.

Stage 1: Con tex t e m b e d d i n g

Embedded software is characterized by the fact that the interfaces to the envi-
ronment are not standardized to a degree as it is nowadays common for software
running on e.g. workstations. Hence, a developer should take special care to
model the context embedding of the software. In ESPRESS, the context defini-
tion also serves as a starting point for a simulation of the software, using the
Statemate tool. The sub-agenda for context embedding is shown in Fig. 3 on the
following page.

S tep 1.1: Specify technical interfaces. The technical interfaces of an em-
bedded software component are usually determined during system design, and

92

Step Validation Conditions

1.1 Specify technical interfaces:

TechnicaIDefs
I [...1

TechnicalSensors TechnicalActuators - -
TeehnicaIDefs TechnieaIDefs
[PORT S1 I" "" PORT A1

1.2 Design and specify logical interfaces and their mapping
to technical ones:
LogicaIDefs

I .,.

LogicalSensors - - MapLS1
LogicalDe/s LogicaISensors;
I . . .PORTLS1 [B E H A V I O R

[. . LogicalActuators - - I MapLA1

' 1 .3 Derive software/context information flow and cycle
control:
Context

TechnicaISensors; TechnicaIActuators
LogicalSensors; LogicalActuators

: [eo~'.~oL }:.::'.." :

/$dI{8OF'~IL~II) /r$1(8OIr':'lmLRll

I,no, ~r" -~..~ c,:eL,,z~,,/

o ranges of values of
sensors and actua-
tors are consistent
with the technical
specifications of the
interfaces

o errors of sensors
and actuators are
taken into account

i-invariants are con-
sistent

o errors of technical
sensors are taken
into account

~-invariants are con-
sistent

I- mappings are
unique

I- mappings are total

no conditions

Fig . 8. Steps of Stage 1: context embedding

93

TeehnicaIDefs
LEVERPOS ::= none I defMore I

defLess] off l resume
PEDALPOS ::= notPressed I pressed
[TORQUE, SPEED, A CCEL]

TechnicalActuators
TechnicalDefs

PORT Adjustment
l engineControl : option TORQUE

brakeControl : option A CCEL

TechnicalSensors
TechnicalDefs PORT Lever if-- PORT Pedal I

I lever :LEVERPOS [brake : PEDALPOS

~zs
PORT Ahead PORT Movement
tAhead : option LENGTH curSpeed : SPEED

curAecel ACCEL l acceIAhead : option A CCEL
[~-d ~ r dfd accelAhead

Fig. 4. Technical interfaces of the cruise control

cannot be modified by the software developer. Since their characteristics and
capabilities may have significant influence on the further development, the first
step of context embedding is to describe the technical interfaces in the modeling
language.

Figure 3 on the page before gives templates for describing technical interfaces
in our modeling language ~uSZ. The structuring entities of I~SZ are process classes
(the outer boxes in the figure, e.g., TechnicalDefs), which are containers for sets
of plain Z declarations, of schema definitions, and of Statemate statecharts and
activity charts. The schema definitions inside a class may have assigned certain
roles. For example, the role of schema definitions introduced with the keyword
PORT is to describe data variables that can be shared by a process with its
environment. Interpreted standalone, PORT schemata do not differ from plain Z
schemata. However, they contribute to the semantics of an entire process class,
defining the variables belonging to the shared data state of instances of the class.

For Step 1.1, the agenda in Fig. 3 suggests to collect the technical interfaces
in process classes called TechnicalSensors and TechnicaIActuators, respectively,
which contain sets of PORT schemata. The types and constants used to define
these ports are collected in a third process class, TechnicalDefs, which is included
by the other classes. The inclusion of process classes can be interpreted as textual
expansion.

The validation conditions associated with Step 1.1 first require the developer
to carefully check whether the types defined to model the values of sensors and
actuators really capture the technical properties of the technical sensors and
actuators. The second validation condition suggests to define appropriate error
values for the types. Finally, all invariants must be satisfiable, i.e., there must
exist legal states of the system ports. Note that validation conditions marked
with "o" are informal, whereas validation conditions marked with "~-" are formal
and hence can be checked with appropriate tool support.

94

LogicalActuators
I [---- PORT NominalAccel

[nominalAccel : option ACCEL

MapNominalAccel

F
-fl LogicaIDef s

I l accel2torque :
I I Movement x ACCEL---* TORQUE

TechnicalSensors.Movement; TechnicalActuators.Adjustment
LogicalDefs; LogicaIActuators.NonimalAccel
- - BEHAVIOR Mappin9
Movement; NominalAccel; Adjustment
-, dfd nominaIAccel ~ -~ dfd engineGontrol A -, dfd brakeControl
dfd nominalAccel

(val nominalAccel > 0
-1 dfd brakeControl A engineControl =

def accel2torque(O Movement, val nominaIAccel))
A (val nominalAccel < 0 =~

-, dfd engineControl A brakeControl = nominaIAccel)

Fig. 5. Logical interfaces of the cruise control

Cruise Control. Fig. 4 on the preceding page shows how we apply Step 1.1 to the
specification of the cruise control. The port Lever describes the driver's control
lever, which can be used to turn off the cruise control, to increase or decrease the
requested speed, to turn off the cruise control, and to resume its operation. The
port Pedal models the brake pedal, the port Ahead the distance and relative
acceleration with respect to a vehicle driving ahead, and the port Movement
provides information about the current speed and acceleration of the vehicle. The
port Adjustment describes the output of the cruise control, which consists of an
engine torque and a (negative) acceleration for controlling the brake. Variables
declared as x : option A carry values of A which may be available or not; we use
dfd x to indicate whether the value of the optional variable x is available, val x
to refer to that value (if it is defined), and d e f v to construct a defined value
from v. If, e.g., the value of the sensor distAhead is not defined, then no vehicle
driving ahead is detected, and if the actuator engine Torque is not defined, then
the cruise control does not affect the engine.

For reasons of space, we cannot present the full specification of the tech-
nical interfaces of the cruise control system. Hence, we cannot check the val-
idation conditions in detail. Let us just note that the only given invariant,
dfd distAhead r dfd accelAhead, is indeed consistent, and that - for reasons
of simplicity - we assume to have perfect sensors without errors in this example.

Step 1.2: D e s i g n a n d spec i fy logical i n t e r f aces . Apart from being non-
standardized, the technical interfaces of an embedded software component may
be also on a relatively low technical level, which hinders a problem-oriented
specification. It may therefore be useful to introduce abstractions of the technical
interfazes, which is achieved by defining logical interfaces.

95

- - CruiseControIContext
TechnicalSensors; TechnicalAetuators; LogicalActuators

, ~ ~

P E I ~ &

NoM'r N~lr~'CCIL r " ' - - I 1

com~oz, IA~USTm~W

',l ,...too-j
)"

Fig. 6. Activity chart of the cruise control context

The values of sensors and actuators of a logical interface should be totally
and uniquely defined by the technical values (see validation conditions associated
with this step). In the simplest case, this mapping can be defined by a conversion
function which maps a technical sensor to a logical sensor or a logical actuator
to a technical actuator, respectively. In more complex situations, the mapping
may require an internal state, for example if a logical sensor accumulates the
values of a technical one. In any case, we define the mapping by a dedicated
process class that describes the conversion by a property schema or by a state-
chart (in the template of Fig. 3 on page 5, these classes axe called MapLS1 and
MapLA1, respectively). These process classes are instantiated as sub-processes
of the overall process modeling the system context, as will be seen in the next
step.

The first validation condition associated with Step 1.2 suggests to apply
fault tolerance techniques, e.g., consistency checks on sensor values and feedback
control to check if actuator commands have been executed appropriately.

Cruise Control. We introduce a logical actuator nominalAccel, which abstracts
from the two quite technical values engineControl and brakeControl given in the
output port Adjustment, as sketched in Fig. 5 on the preceding page. The process
class MapNominalAccel performs the mapping of the logical to the technical
actuators. A schema introduced with the role BEHAVIOR describes an invariant
which holds whenever a process is running.

Proving the last two validation conditions amounts to proving that the func-
tion accel2torque defined in the class LogicalDefs is indeed a total function.

Step 1.3: Derive so f tware /con tex t in format ion flow. The description of
the technical interfaces, the logical interfaces, and their mapping induces an ac-
tivity chart, which is derived from the template given for Step 1.3 in Fig. 3 on
page 5. The activity charts of Statemate used in #SZ combine the descriptions
of information flow, of instantiation of sub-processes from process classes (rect-
angular boxes), and of behavior described by statecharts (rounded boxes). In
Fig. 3, the overall description of the system's behavior aggregates a sub-process
Software, as well as sub-processes for mapping technical to logical interfaces. The

96

Step Validation Conditions
2.1 Collect relevant quality requirements o requirements are

realizable

2.2 Specify model properties:

- - Software
[O b s l - - I ' " O b s 2 - -

PROPERTY D YN f

[[Ob811~[Obn1...

o observations form
a problem-oriented
classification of
possible situations

~-properties axe con-
sistent

Fig. 7. Steps of Stage 2: quality requirements

information flows between these processes are labeled with ports, and semanti-
cally describe visibility of shared variables between processes. The aggregation of
the statechart Control and the dotted lines are only for documentation purposes;
they indicate that Control schedules the activity of the sub-process Software.

The scheduler defined by Control applies to any cyclic software component
developed using this agenda, and is quite simple. It assumes that the software,
once running, reads the sensors, computes the actuators, and then suspends it-
self. The scheduler thus periodically resumes the software in intervals of a certain
cycle time. Notationally, Statemate's mechanism for suspending and resuming
processes (processes are also called activities in Statemate) is used. The Statem-
ate action sd ! (SOFTWARE) stands for suspending a process, r s ! (SOFTWARE)
for resuming, and the condition hg(SOFTWARE) tests whether a process is "hang-
ing", that is suspended. The event tm(en (RUN), CYCLETIME) appears cycle Time
time units after the state RUN has been entered, where en stands for "entered",
and tm stands for "timeout". Because the result of Step 1.3 can be derived
schematically from the parts of the specification defined in Steps 1.1 and 1.2,
there axe no validation conditions associated with this step.

Cruise Control. Fig. 6 on the preceding page shows the result of Step 1.3. We
only need to draw the activity chart (where the information flows are already
induced by Steps 1.1 and 1.2); the statechart Control can be taken as is from
the template in Fig. 3 on page 5. Only Software is renamed to CruiseControl.

Stage 2: Quality requirements
The systems we study have to fulfill certain quality requirements. Typical exam-
ples are safety requirements, but also high-level requirements from earlier devel-
opment phases may be transferred to the software development phase. A common
characteristic of quality requirements is that they only address certain selected
aspects to be realized by the software - these aspects are important enough to
be emphasized explicitly in the specification. Technically, quality requirements
are formulated as model properties, which have to be logical consequences of the
model of the software as it is constructed in Stage 3. With model properties, re-
dundancy is deliberately introduced in the specification. This contributes to the

97

potential for checking consistency by deduction, model checking, and systematic
testing. Figure 7 on the preceding page describes the agenda for treating quality
requirements.

Step 2.1: Collect relevant qual i ty requi rements . The quality requirements
are usually defined during system design. In this step, the ones that are relevant
for the software component under development are collected and documented.

Cruise Control. A few of the quality requirements are the following:
- Activity. The cruise control is allowed to adjust speed only if the driver has

activated it through the control lever, and did not deactivate it since then.
- Asymptotic String Stability. If several vehicles using the cruise control drive

in a queue, a sudden change of the speed of one of them must lead to changes
of speed of the the following vehicles which fade away along the queue.

Because cruise control systems are already on the market, these requirements
are well understood and known to be realizable with our technical interfaces.
Hence, the validation condition associated with this step is fulfilled.

Step 2.2: Specify mode l propert ies . It is not realistic to demand that all
quality requirements be specified formally as model properties. For example, the
property of string stability cannot be expressed easily, because it would require
to formalize aspects of the mathematics of control theory 2. However, where it is
possible, the quality requirements should be expressed as model properties, to
be treated automatically in a review stage later on.

Our modeling language allows us to formalize properties as temporal obser-
vations of the sensors and actuators of the technical and logical interfaces. The
logic used for this purpose is based on discrete temporal interval logic, including
real-time constraints [4]. The modifier DYN in a schema declaration (possibly in
conjunction with roles such as PORT or PROPERTY) signals that the schema
uses temporal logic.

A useful guideline for specifying the model properties is to first introduce
abstractions of common situations observable on the interfaces. In the template
of Fig. 7 on the page before, these are introduced by the schemata Obsl, Obs2,
and applied in the temporal formula of the dynamic property box.

The first (informal) validation condition suggests that the model properties
be oriented on a classification of the relevant situations of the observable behavior
of the system, whereas the second validation condition is an obvious consistency
requirement.

Cruise Control. In Fig. 8 on the following page, we define schemata for ob-
serving the situations where the driver activates and deactivates the cruise con-
trol, and where the cruise control produces an output value to adjust speed.
These schemata are used to formalize one of the quality requirements, namely
the safety-condition "Activity". Intuitively, the temporal formula given in the
property-box Activity can be interpreted as a kind of regular expression: the

In fact, notions of control theory could be expressed in Z, but ESPRESS does not aim
at these goals.

98

Cruise Control
TechnicalSensors; LogicalActuators

Activating Deactivating - - m Adjusting
Lever Lever; Brake I NominalAccel

lever = defMore lever = off I dfd nominaIAccel
V lever = defLess V brake = pressed

P R O P E R T Y D YN Activity
er; Brake; NominalAccel

eat ([-~ Adjusting ~ ^ [Activating A -~ Adjusting ~ ~ [--, Deactivating])

Fig. 8. Model properties of the cruise control

admissible traces of the behavior of the cruise control repeatedly consists of an
interval where adjustment of speed is not performed, followed by an interval
where the driver activates the cruise control (adjustment of speed still does not
take place), followed by an interval where the driver continuously does not de-
activate the cruise control. Thereby, the temporal predicate r P] holds for those
finite or infinite intervals where the predicate p holds in each state. Note that
we do not say anything about whether the cruise control actually ever adjusts
speed; we just say when it should not do so. This is typical for specifying model
properties, where we are only interested in selected aspects of the software.

Stage 3: Mode l construct ion

In this stage, we construct a model for the cyclic software component under con-
sideration. There are several strategies for doing so, which depend on the prob-
lem to solve. Here we consider two variants: model construction by functional
decomposition, and model construction by partitioning behavior into operational
modes.

Variant 3a: Model cons t ruc t ion by funct ional decompos i t ion The prob-
lem to solve by the cyclic software component might be more adequately solved
by decomposing it into subproblems, instead of giving a monolithic solution. The
reasons for this may be that the problem is to large to be tackled in a mono-
lithical way, that a decomposition follows naturally from the structure of the
problem, or that existing components should be integrated into the design.

For a cyclic software component which computes output values from input
values and internal state, a decomposition is naturally achieved in a funct ional
style, based on information flow between the subcomponents (Fig. 9 on the next
page). This is also the approach the Statemate tool supports best.

Step 3a.1: Design funct ional decomposi t ion using an act ivi ty chart .
Guidelines on how to perform a functional decomposition depend on the ap-
plication. A useful approach is data-oriented, and considers intermediate values
to be computed by the subcomponents. If we reuse existing components, these
intermediate values are naturally their output interfaces. However, in general,
decomposition is a problem that requires creativity. Hence our agenda suggests

99

Step Validation Conditions
3a.1 Design functional decomposition:

- - Bo~ware
Internallnterfaces

' - CONTROL i
E3 IrsI(SUBI) ~hg(SUBI)]

I- information flow is free
of cycles

t-all sensors are used
and all actuators are
served

i
~hg(SUB2)]/
~mdJ(SOFTW~)

2' /",' i '~2)

3a.2 Specify the internal interfaces:

- - Internallnterfaces
PORT I1

I,~

~- invariants of ports are :
consistent

3a.3 For each subcomponent obtained in 3a.1, apply no conditions
Stage 3 again.

Fig. 9. Steps of Stage 3, Variant a: model construction by functional decomposition

to first design the principle information flow between subcomponents by draw-
ing an activity chart. The precise specification of the intermediate interfaces
themselves is postponed unitl the next step 3.

Once a information flow between the subcomponents has been defined, the
data dependencies canonically induce a scheduling as described by the statechart
Control of the template for Step 3a.1 in Fig. 9. Each subcomponent is t reated
similarly to a cyclic-software component: once it is resumed, it is expected to
compute its output values and then to suspend itself. The scheduler activates
the subcomponents one after the other in the order induced by the information
flow.

The validation conditions associated with this step ensure that the compo-
nent eventually produces an output if the subcomponents do so, and that all
sensors and actuators are actually used by the system.

Cruise Control. We assume that we can reuse an existing component tha t im-
plements a speed adjustment: it calculates a nominal acceleration from a given

3 This differs from the order used in Stage 1, where we first specified the interfaces,
and then the information flow; but there the exact definition of the interfaces had
been given by the environment.

100

GruiseControl

: f sP..o lo.i
LEVER �9 NOMINALS PEED 8_

i " ~

. . . . ,

~zL

* . , . . t

Fig. 10. Functional decomposition of cruise control

nominal speed and the vehicle movement. What is left to do is to introduce a
subcomponent which controls activation and deactivation of the cruise control,
and which decides to use the speed requested by the driver or a speed lower than
the nominal speed to keep a certain safety distance. The decomposition leads to
the activity chart given in Fig. 10, where NominalSpeed is a newly introduced
internal interface, ModeControl is the subcomponent controlling the activation
of the cruise control, and SpeedControl is the reused component.

Step 3a.2: Specify the in ternal interfaces. In this step, we specify the
internal interfaces as they have been introduced in the last step. This step is
similar to the introduction of interfaces in Stage 1; therefore, details are omitted
here.

Step 3a.3: Recurs ively apply Stage 3. For subcomponents yielded by the
decomposition and which are not reused, we apply Stage 3 again. For the cruise
control, this applies to the subcomponent ModeControl, which we specify using
a different sub-agenda, shown in Fig. 11 on the following page.

Variant 3b: Mode l cons t ruc t ion by mode-based design The problem to
solve by the software component might be adequately modeled by introducing
operational modes for the software component (such as passive, active, emer-
gency, etc.). A cyclic computation then triggers transitions between the opera-
tional modes. The agenda in Fig. 11 on the next page describes how to proceed
for this modeling technique.

Step 3b. l : Define modes by init ial s ta techar t . In this step we introduce
the different operational modes of the software component. Technically, this
is done by defining an initial statechart (without transitions), where states or
combinations of parallel states represent modes. We introduce this chart before
the internal data (next step), because we might want to specify invariants on
the data that depend on the current operational mode.

The initial statechart contains a so-called static reaction (ca(M1) or
en(M2)/sd! (SOFTWARE)) which suspends the software whenever a mode is en-
tered, signaling to the environment that the computation of the current cycle
has been finished. A static reaction in Statemate is syntactically similar to a
transition label guard/ac t ion; semantically, its action is executed whenever the
guard becomes true.

101

[Step Validation Conditions

3b.1 Define modes by initial statechart:

- - Software

[| |
e (M1) e (M2)/sd!(S0FTWA)

3b.2 Define internal data state:

- - Software

3b.3 Define transitions:

- - Software

~ G 2]/OP2

. . G U A R D G1 - - .. O P Opl

no conditions

~-invariants of data schemata
are consistent

}- initial data state exists

o for each mode, expected
inputs are systematically
treated

~-for each two transitions leav-
ing a state, guards are exclu-
sive

~- all states are reachable
F-from each mode, all possible

(transitive) transitions reach
another mode with a finite
number of steps

Fig. 11. Steps of Stage 3, Variant b: model construction by mode-based design

MOde Control
D A T A Request

questedSpeed : option S P E E D
I N I T

Request

-~ dfd requestedSpeed

Fig. 12. Internal data of the ModeControl subcomponent of the cruise control

Crui se Control . The complete statechart with transitions as it is obtained in
Step 3b.3 is given in Fig. 13 on page 16, and will be explained there.

S t e p 3b.2: D e f i n e i n t e r n a l d a t a s t a t e . Internal da ta is introduced in # S Z by
a schema with the D A T A role, its initialization by a schema with the I N I T role.
The validation conditions associated with this step stem from the recommended
Z methodology [17].

Cruise Control . In Fig. 12, the internal data of the subcomponent M o d e C o n t r o l

is defined. I t declares a variable requestedSpeed, whose value (if defined) describes
the nominal speed which the last t ime has been requested by the driver�9 Initially,
requestedSpeed is undefined�9

102

Step 3b.3: Def ine trans i t ions b e t w e e n states o f s tatechart . In this step,
we refine the statechart developed in Step 3b.1 by transitions and possibly by
intermediate states. Transitions are labeled systematically as [G]/0p, where G
and Op are Z schemata introduced with the roles GUARD and OP, respectively.

Due to the static reactions introduced in Step 3b.1, the software is suspended
whenever a transition reaches a state corresponding to an operational mode.
Intermediate states do not necessarily lead to a suspension, as it is the case, e.g.,
for the internal state S in the template for Step 3b.3 in Fig. 11. The validation
conditions associated with this step require the developer to check if all inputs
are treated appropriately, and to show that the system behaves deterministically.
Moreover, useless states that cannot be reached are not allowed. An important
condition to check is whether mode transitions terminate, that is starting from
any mode, for all possible inputs another mode is reached in a finite number of
steps. The template state-chart given for Step 3b.3 in Fig. 11 shows that this
condition is not trivial if intermediate states are used (it is possible that the
process hangs in state S).

Cruise Control. Applying Step 3b.3 to the subcomponent ModeControl
leads to the statechart, guards and operations given in Fig. 13 on the
following page. The statechart does not contain intermediate states. The
cartesian product of the state sets (ACTIVATED, DEACTIVATED) and
(REQUESTED, CALCULATED} makes up the set of operational modes. In
addition to the declared objects, we use the following Z constants: stepSpeed :
SPEED is the offset how to increase or decrease the requested speed, and
maxSpeed : SPEED is the maximum requested speed the cruise control is al-
lowed to manage. The function safeDistanee : SPEED --~ LENGTH yields the
safe distance to a vehicle ahead in dependency of a driving speed. The func-
tion distanceRegulator : Movement x Ahead ---+ SPEED represents an algorithm
calculating a nominal speed from the movement of the vehicle and information
about a vehicle ahead.

4 C o n c l u s i o n s

We have demonstrated that the agenda approach supports the systematic de-
velopment of requirement specifications for high quality embedded systems on
a non-trivial level of detail which gives substantial guidance to developers. As
already noted, agendas are not intended to replace creativity and do not aim
at completely automating development processes. Hence, in the first steps of
an agenda, high-level decisions have to be taken. The validation conditions as-
sociated with the early steps of an agenda are mostly informal, encouraging
developers to carefully re-consider their decisions, see e.g. Step 1.1 of the agenda
of Fig. 3. Later steps in an agenda, on the other hand, often have validation
conditions associated with them that can be formally expressed and proven.
The reason is that in the later steps consistency conditions between the various
parts of the specification that are already developed can be stated. Step 1.2 of
the agenda shown in Fig. 3 is an example. Finally, some steps of an agenda

103

, ModeControl

1
[DECREASZNGI /

DECREASE

[RECOGNIZZNG]

en(DEACTIVATED) or

en(ACTIVATED) or

en(CALCULATED) or

en(REQUESTED)
/ sd!(MODECONTROL)

�9 GUARD Defining
Lever; Pedal

lever e { defMore, defLess}
brake = notPressed

OP Define
Movement; A Request

requestedSpeed' = def currSpeed

.... GUARD Increasing
Lever; Pedal

lever = defMore A brake = notPressed

.. OP Increase
A Request

requestedSpeed' =
def min{val requestedSpeed + stepSpeed,

maxSpeed}

GUARD Decreasing
Lever; Pedal

lever = de/Less ^ brake = notPressed

OP Decrease
IiRequest

GUARD Resuming - - - -
Lever; Pedal

dfd requestedSpeed
lever = resume
brake = notPressed

GUARD Deactivating
Lever; Pedal

lever = off
V brake = pressed f

- - GUARD Recognizing -

Ahead; Movement

dfd distAhead
val distAhead <
safeDistance(currSpeed)

L BEHAVIOR
Movement; Ahead; Request; NominalSpeed; CONTROL

instate DEACTIVATED =~ -~ dfd nominaISpeed
instate ACTIVATED A instate REQUESTED ~ nominaISpeed = requestedSpeed
instate ACTIVATED A instate CALCULATED

nominaISpeed = def min{ distanceRegulator(O Movement, O Ahead),
val requestedSpeed})

Fig . 13. Modes and transitions of the ModeControl subcomponent of the cruise control

104

(usually the last steps) can be performed in an entirely schematic way, because
they merely consist in an appropriate combination of parts of the specification
developed in earlier steps, see e.g. Step 1.3 of the agenda of Fig. 3.

Agendas are language-independent to a large extent. Changing the language
in which the developed specification is expressed consists mostly in replacing the
templates of the various steps, and effects the steps themselves very little, see
the agenda presented in [10].

The validation conditions are a very important aspect of agendas. Clearly, the
errors revealed by failing to demonstrate validations conditions of an agenda can
only be of an application-independent nature. Checking the validation conditions
cannot guarantee, e.g., that a system is adequately modeled by a developed
specification. Nevertheless, many common errors can be discovered. As reported
by Heitmeyer et al. [11], in the certification of the Darlington plant (which cost $
40M), "the reviewers spent too much of their time and energy checking for simple,
application-independent properties." To improve this situation, Heitmeyer et al.
have implemented a tool that performs consistency checks. Since this tool is not
tailored for any application domain, it can only check very general consistency
conditions. In comparison, the validation conditions provided by agendas are
much more to the point (see e.g. the validation conditions of Step 3.b.3 of the
agenda shown in Fig. 11), such that more specific tool support for checking
validation conditions generated by agendas is conceivable. But even if no specific
support tools for agendas are available, agendas allow developers to use existing
tools, e.g., Statemate to check the specification by simulation, or type checkers
and theorem provers for Z to check some of the formal validation conditions.

Besides providing guidance for developers and ensuring some application in-
dependent quality aspects of the developed product, agendas offer the following
advantages:

- Agendas make software processes explicit, comprehensible, and assessable.
Giving concrete steps to perform an activity and defining the dependencies
between the steps make processes explicit. The process becomes comprehen-
sible for third parties because the purpose of the various steps is described
informally in the agenda. Thus, agendas may be subject to evaluation.

- Agendas standardize processes and products of software development. Agen-
das structure development processes. The development of an artifact follow-
ing an agenda always proceeds in a way consistent with the steps of the
agenda and their dependencies. Thus, processes supported by agendas are
standardized. The same holds for the products: since applying an agenda
results in instantiating the templates given in the agenda, all products de-
veloped with an agenda have a similar structure.

- Agendas support maintenance and evolution of the developed artifacts. Un-
derstanding a document developed by another person is less difficult when
the document was developed following an agenda than without such infor-
mation. Each part of the document can be traced back to a step in the
agenda, which reveals its purpose. To change the document, the agenda can
be "replayed". The agenda helps focus attention on the parts that actually
are subject to change.

105

- Agendas are a promising starting point for sophisticated machine support.
They can form the basis of a process-centered software engineering envi-
ronment (PSEE) [6]. Such a tool would lead its users through the process
described by the agenda.

For these reasons, agendas play a central role in the ESPRESS methodology.

Re la t ed Work. Recently, efforts have been made to support re-use of special
kinds of software development knowledge: Design patterns [5] have had much
success in object-oriented software construction. They represent frequently used
ways to combine classes or associate objects to achieve a certain purpose. Fur-
thermore, in the field of software architecture [14], architectural styles have been
defined that capture frequently used design principles for software systems. In
contrast to these, the general concept of an agenda is not specialized to a pro-
gramming paradigm such as object-orientedness or an activity such as software
design, as is the case for design patterns and architectural styles. Apart from
the fact that these concepts are more specialized in their application than agen-
das, the main difference is that design patterns and architectural styles do not
describe processes but products.

Agendas have much in common with approaches to software process modeling
[12]. The difference is that software process modeling techniques cover a wider
range of activities, e.g., management activities, whereas with agendas we always
develop a document, and we do not take roles of developers etc. into account.
Agendas concentrate more on technical activities in software engineering. On
the other hand, software process modeling does not place so much emphasis on
validation issues as agendas do.

Related to our aim to provide methodological support for applying formal
techniques is the work of Souqui~res and L~vy [15]. They support specification
acquisition with development operators that reduce tasks to subtasks. However,
development operators do not provide means for validation conditions.

Astesiano and Reggio [1] also emphasize the importance of method when
using formal techniques. In the "method pattern" they set up for formal speci-
fication, agendas correspond to guidelines.

Fu tu re Work. In ESPRESS, we are currently working an agendas supporting
further activities of the general development process as shown in Fig. i on page 2.
We already have a first version of an agenda for the activity of safety analyses,
which is based on common techniques such as FTA (failure-tree analysis) and
SHARD (software hazard analysis and resolution design). We are working on an
agenda for the verification and validation analyses, which captures the process
how to check model properties. Verification is based on deduction techniques
being developed in ESPRESS [13, 4], and on an adaption of existing model check-
ing techniques. How the testing process is described by an agenda is a topic
of ongoing research. Another important task is to support software design with
agendas, where the starting point is a requirements specification as developed
in this paper.

Cyclic software components, though important in practice, are indeed a
rather simple software architecture. We are currently working on an extension

106

of our agenda for this architecture to certain kinds of event-triggered software
components, which are also studied in the case studies of ESPRESS [3]. We ex-
pect to reuse significant parts of the given agenda, in particular from Stage 1,
context embedding, and Stage 2, quality requirements.

A c k n o w l e d g m e n t s . Many results and ideas presented in this paper s tem from
the broader context of the ESPRESS project and the work of its many collabo-
rators in Berlin. We would especially like to thank Mirco Conrad and Eckard
Lehmann for their work on the cruise control case study, and Thomas Santen
for his comments on a draft of this paper.

References
1. E. Astesiano and G. Reggio. Formalism and Method. In M. Bidoit and M. Dauchet,

editors, Proc. TAPSOFT'97, LNCS 1214, pages 93-114. Springer-Verlag, 1997.
2. R. Biissow, H. DSrr, R. Geisler, W. Grieskamp, and M. Klar./~SZ - ein Ansatz zur

systematischen Verbindung von Z und Statecharts. Technical Report TR 96-32,
Technische Universit~it Berlin, 1996.

3. R. Biissow, R. Geisler, and M. Klar. Specifying safety-critical embedded systems
with statecharts and Z: a case study, this volume, 1997.

4. Robert Biissow and Wolfgang Grieskamp. Combinig Z and temporal interval logics
for the formalization of properties and behaviors of embedded systems. In R. K.
Shyamasundar and K. Ueda, editors, Advances in Computing Science - Asian '97,
volume 1345 of LNCS, pages 46-56. Springer-Verlag, 1997.

5. E. Gamma, R. Helm, R. Johnson, and Vlissides. J. Design Patterns - Elements of
Reusable Object-Oriented Software. Addison Wesley, Reading, 1995.

6. P. Garg and M. Jazayeri. Process-centered software engineering environments: A
grand tour. In A. Fuggetta and A. Wolf, editors, Software Process, number 4 in
Trends in Software, chapter 2, pages 25-52. Wiley, 1996.

7. D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, A. Shtull-
Trauring, and M. Trakhtenbrot. Statemate: A working environment for the devel-
opment of complex reactive systems. IEEE TSE, 16 No. 4, April 1990.

8. M. Heisel. Methodology and Machine Support for the Application of Formal Tech-
niques in Software Engineering. Habilitation Thesis, TU Berlin, 1997.

9. M. Heisel and C. Siihl. Methodological support for formally specifying safety-
critical software. In P. Daniel, editor, Proceedings 16th International Conference on
Computer Safety, Reliability and Security (SAFECOMP), pages 295-308. Springer-
Verlag London, 1997.

10. Maritta Heisel. Agendas - a concept to guide software development activites. In
Proc. Systems Implementation 2000, 1998. to appear.

11. C. Heitmeyer, R. Jeffords, and B. Lebaw. Automated consistency checking of
requirements specifications. ACM Transactions on Software Engineering and
Methodology, 5(3):231-261, July 1996.

12. K. Huff. Software process modelling. In A. Fuggetta and A. Wolf, editors, Software
Process, number 4 in Trends in Software, chapter 2, pages 1-24. Wiley, 1996.

13. Kolyang, T. Santen, and B. Wolff. A structure preserving encoding of Z in Is-
abelle/HOL. In J. yon Wright, J. Grundy, and J. Harrison, editors, Theorem
Proving in Higher-Order Logics, LNCS 1125. Springer-Verlag, 1996.

14. M. Shaw and D. Garlan. Software Architecture. IEEE Computer Society Press,
Los Alamitos, 1996.

15. Jeanine Souqui~res and Nicole L~vy. Description of specification developments. In
Proc. of Requirements Engineering '93, pages 216-223, 1993.

16. J.M. Spivey. The Z Notation - A Reference Manual. Prentice Hall, 1992.
17. J. B. Wordsworth. Software Development with Z. Addison-Wesley, 1992.

