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Abs t rac t .  We describe a case study where novel program analysis tech- 
nology has been used to pinpoint a subtle bug in a formally developed 
control program for an embedded system. The main technology amounts 
to first defining a process algebra (called behaviours) suited to the pro- 
gramming language used (in our case CML) and secondly to devise an 
annotated type and effect system for extracting behaviours from pro- 
grams in a such a manner that an automatic inference algorithm can be 
developed. The case study is a control program developed for the "Karls- 
ruhe Production Cell" and our analysis of the behaviours shows that one 
of the safety conditions fails to hold. 
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1 I n t r o d u c t i o n  

There are several approaches for how to close the gap between the specification of 
a system and its actual realisation as a program in some programming language. 
Different procedures for systematic design have been developed with the goal of 
reducing the likelihood of introducing errors, and concise notations have been 
introduced for documenting and reasoning about systems. 

Unfortunately, a system may have been developed using formal methods but  
still have bugs. Advanced proof techniques may have been used to show that  the 
specification fulfils certain safety and liveness properties, but  there is always the 
risk that  the formalisation does not fully correspond to the informal description 
(or even a formal description in another framework) and that  the code written 
does not fully correspond to the specification. Clearly the risk of such unfortunate 
scenarios gets smaller the more care is taken in the development of the system 
but  we believe that  it is not feasible to completely eliminate the risk. Indeed 
there always is the risk of human mistake (like using a previous incorrect version 
of the system instead of the current correct version) and of malicious behaviour 
(a subcontractor cutting corners to increase profit). 

While formal methods clearly are very useful for increasing our confidence in the 
system, it would seem that  more is needed. In this paper we demonstrate tha t  
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technology from program analysis can be invaluable in spotting some of the sub- 
tle bugs that may have survived the careful use of formal methods. Traditionally, 
program analysis has been used in optimising compilers but due to their ability to 
analyse programs automatically and systematically we claim that they also have 
an important role to play in program validation. Although the kind of properties 
of interest in program validation may differ from those of interest in optimising 
compilers, we demonstrate in this paper that recent developments have paved 
the way for adapting program analysis to the new application domain. 

Background. In [7, 8] we present an annotated type system for extracting the 
communication topology of programs written in a subset of CML [9]. We in- 
troduce a formalism of behaviours, a process algebra like CCS or CSP but 
tailored to the characteristics of CML. The traditional type system for CML 
is then extended such that it determines behaviours of expressions as well as 
their types. Both CML and the behaviours are equipped with a small-step op- 
erational semantics and a key theoretical result is a subject reduction result 
ensuring that whenever the CML program engages in a communication, then 
also the behaviour will be able to do so. This means that safety results obtained 
by analysing the behaviour also apply to the original CML program. 

In [1] we develop an algorithm for type and behaviour reconstruction. The de- 
velopment is sufficiently general that (1) the behaviours contain causality in- 
formation, (2) ML-like polymorphism is supported, and (3) the algorithm is 
sound as well as complete with respect to the annotated type system. These 
properties are crucial for the application described in the present paper. The 
causality of the various operations is often an integral part of safety conditions 
for systems; without causal behaviours one can only validate rather few prop- 
erties of interest. Polymorphism is important when analysing generic programs; 
without polymorphism (or perhaps polyvariance) one will need to merge infor- 
mation from different function calls and this may make it impossible to validate 
many interesting properties. The soundness result ensures that the behaviours 
obtained by the algorithm are correct with respect to the semantics of the pro- 
gram and the completeness result ensures that the behaviours are as precise as 
is possible according to the annotated type system; it should be obvious that 
these are crucial properties as well. 

Having established the theoretical foundations [1] we have implemented a proto- 
type for extracting behaviours from programs [2]. The present version is able to 
deal with a fairly large subset of CML and provides the basis for the experiments 
reported here. 

Accomplishments. We study a CML program for the well-known "Production 
Cell" [4] developed by FZI in Karlsruhe as a benchmark for the development 
of verified software for embedded systems. The CML program used has been 
developed using systematic design methods: its functionality has been specified 
in CSP and many of its safety conditions have been formally verified [10]. Fur- 
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thermore,  it has been combined with the FZI simulator to a working prototype 
that  has subsequently been tested. 

None the less, our program analysis reveals that  the program does not fulfil 
all of its safety conditions. Our experiments show that  the program makes cer- 
tain assumptions about  the initial configuration of the system - a bug that  has 
escaped the formal verification. Furthermore, it turns out that  the simulator 
makes similar assumptions about the initial configuration so that  this particular 
bug will never turn up during testing. We should stress that  we do not mean 
to criticise neither the formal development nor the verification methods nor the 
programmers. We merely see it as an illustration of a typical problem in the 
development of complex software systems as was alluded to above. 

We believe that  the results of our case study presents convincing arguments for 
also using novel program analysis techniques when validating safety conditions 
of embedded systems. Although we have been able to validate many of the safety 
conditions of interest, and to find one that  does not hold, there is room for ex- 
tending our techniques because some of the safety conditions require information 
not presently included in the behaviours. 

Overview. In Section 2 we give a brief introduction to the basic primitives of 
CML and we present a fragment of the program used in the case study. Then 
in Section 3 we introduce the behaviours and sketch some of the central rules 
for how to obtain behaviours from a CML program. In Section 4 we examine 
three of the safety conditions of the Production Cell and in Section 5 we discuss 
some further enhancements of our techniques. Finally, Section 6 contains the 
concluding remarks. 

2 T h e  c a s e  s t u d y  

The Product ion Cell is designed to process metal blanks in a press [4]; its various 
components are shown from above on Figure 1 which is a picture from the FZI 
simulator. The work pieces (metal blanks) enter the system on the feed belt (the 
bot tom one on Figure 1) and are then transfered one at a time to a rotating 
table; the table is then lifted and rotated such that  one of the two robot arms 
can take the work piece and place it in the press. After processing the work 
piece, the other robot arm will take it out of the press and deliver it to a deposit 
belt (the top one on Figure 1). For testing purposes a crane has been added to 
move the work pieces from the deposit belt back to the feed belt. 

We shall concentrate on just one of these entities, namely the rotating table. 
The table can be in one of two vertical positions and it can be rotated clockwise 
as well as counterclockwise. The following safety conditions have been supplied 
for the table: 

1: The table must not be moved downward if it is in its lower position, and it 
must not be moved upward if it is in its upper position. 
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Fig. 1. The Karlsruhe Production Cell. 

2: The table must not be rotated clockwise if it is in the position required for 
transferring work pieces to the robot, and it must not be rotated counter- 
clockwise if it is in the position to receive work pieces from the feed belt. 

3: There can only be one work piece at the table at any time. 

The program. CML [9] is an extension of the higher-order functional language 
SML [5] with constructs for communication. Processes and channels can be cre- 
ated dynamically using the constructs spawn and channel ;  the constructs send 
and a c c e p t  are available for synchronous communication. Functions as well as 
channels are first class values and so are events: an event is a potential com- 
munication created by one of the constructs t r a n s m i t  and r e c e i v e .  There is 
also an explicit synchronisation operation sync so the construct send (ch ,  v) is 
equivalent to sync (transmit (ch, v)) and similarly accept (ch) is equivalent to 
sync(receive (ch)). Events can be manipulated using the construct wrap; this 
corresponds to a kind of speculative post-processing of an event in that it will 
only take effect if and when the event is synchronised. Finally, we shall mention 
the construct choose which can be used to choose one of several events. 

The CML program for the Production Cell consists of 7 processes. They com- 
municate with the simulator using 63 channels and they communicate internally 
using 16 channels. The part  of the program controlling the movements of the 
table is shown in Figure 2. It uses the following channels for communicating with 
the simulator: 
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(* a c t u a t o r  c h a n n e l s  *) 
v a l  t a b l e _ l e f t  = c h a n n e l ( ) :  u n i t  chart; 
v a l  t a b l e _ s t o p _ h  = c h a n n e l ( ) :  u n i t  chart; 
v a l  t a b l e _ r i g h t  = c h a n n e l ( ) :  u n i t  chun;  

v a l  t a b l e _ u p w a r d  = c h a n n e l ( ) :  u n i t  chan;  
v a l  t a b l e _ s t o p _ v  -- c h a n n e l ( ) :  u n i t  chun;  
v a l  t ab le_downward  = c h a n n e l ( ) :  u n i t  chan;  

(* s e n s o r  c h a n n e l s  *) 
v a l  t a b l e _ i s _ b o t t o m  ffi c h a n n e l ( ) :  u n i t  chan;  

val table_is_not_bottom = channel(): unit chan; 

val table_is_top -- channel(): unit chan; 

val tab!e_is_not_top -- channel(): unit chan; 

val ta~e_angle = channel(): int chan; 

val ne._table_angle -- channel(): unit than; 

Internally, the table synchronises its movements  with the feed belt and the robot  
and for this it uses the following channels: 

val beltl_transmit_ready -- channelO: unit than; 

val beltl_transmit_done = channel(): unit chan; 

val table_transmit_ready -- channel(): unit chan; 

val table_transmit_done = channel(): unit chan; 

We shall not explain the program in detail here; some of the points will natural ly 
be dealt with when we come to discussing aspects of its behaviour. 

3 B e h a v i o u r s  

The safety requirements imposed on the Product ion Cell are to a large extent 
concerned with the order in which the communications are performed. This is ex- 
actly the kind of information tha t  is available in the behaviours. The behaviours 
are te rms of a process calculus designed to match the structure of CML. The 
basic behaviours are: 

- e is the behaviour of a program tha t  does not create any channels or processes 
and tha t  is not involved in any communication; 

- t CHANr is the behaviour of a program tha t  creates a channel tha t  can be 
used to communicate  values of type t and where the channel belongs to the 
region r (a region is an indication of where in the program the channel has 
been created); 

-- FORK b is the behaviour for a program tha t  spawns a new process tha t  will 
behave as described by the behaviour b; 

- r ! t  is the behaviour of a program tha t  sends a value of type t on one of the 
channels created in the region r; and 
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fun  table 0 = 
let 

fun clockwise (a) ffi (*rotate clockwise until degree a*) 
let val x ffi accept(table_angle) 

in (send(table_right, O) ; 
while (accept(new_table_angle) ; accept(table_angle)) < a 

do 0 ;  
send(table_stop_h, O) ) 

end; 

fun counterclockwise (a) = (*rotate counterclockwise until degree a*) 
let val x = accept(table_angle) 
in (send(table_left, O) ; 

while (accept(ne._table_angle) ; accept(table_ungle)) > a 
do O ;  
s e n d ( t a b l e _ s t o p _ h ,  O )  ) 

end;  

in 

fun main () = 
( a c c e p t  ( b e l t l _ t r a n s m i t _ r e a d y )  ; a c c e p t  ( b e l t l _ t r a n s m i t _ d o n e )  ; 
clockwise (50) ; 

send(table_upward, 0 ) ; 
accept (table_is_top) ; 
s e n d ( t a b l e _ s t o p _ v ,  ( ) )  ; 
send ( t a b l e _ t r a n s m i t _ r e a d y ,  0 ) ; s e n d ( t a b l e _ t r a n s m i t _ d o n e ,  0 ) ; 
send  ( t ab le_downward ,  ( ) )  ; 
a c c e p t  ( t a b l e _ i s _ b o t t o m )  ; 
s e n d ( t a b l e _ s t o p _ v ,  0 ) ; 
c o u n t e r c l o c k w i s e  (0) ; 
main()) 

spawn(fn 0 => m a i n ( ) )  
end;  

Fig. 2. CML program for the table. 

- r ? t  is the behaviour of a program that receives a value of type t on one of 
the channels created in the region r. 

The basic behaviours can then be combined using sequencing (expressed by '; ') 
and choice (expressed by '+') and they can be recursively defined. 

As an example consider the following behaviours: 

Bc = {table_angle}?int ; {table_right} ! unit ; B1 ; {table_stop_h} ! unit 

B1 = {ne._table_angle}Yunit ;{table_angle}Yint ; (e + BI) 

The behaviour Bc expresses that first there will be a communication on the chan- 
nel table_angle (obtaining the current angle of the table) and next there will 
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be a communication on the channel t ab le_r igh t  (starting a clockwise rotation 
of the table). Then the behaviour of B1 will be executed and finally there will 
be a communication on the channel table_stop_h (stopping the rotation). The 
behaviour B1 is recursive: first there will be a communication over the chan- 
nel new_table_angle (indicating that the angle has changed) and subsequently 
there is a communication on the channel table_angle (to obtain the new angle). 
After that the program may exit (the angle has the required value) or it may 
repeat the behaviour of B1 (still waiting for the angle to get the required value). 

It turns out that Bc is the behaviour corresponding to the body of the function 
clockwise of Figure 2. Comparing the code for the function with the behaviour 
above shows that we have recorded which communications take place and in 
which order, but we have ignored all values and tests. So while the behaviour 
retains the overall control structure of the code, it loses those details of tests 
that determine which branch is taken in conditionals (as e.g. that the clockwise 
rotation of the table is stopped at the angle given as argument to the function). 

Construct ion o] behaviours. The behaviours are extracted from the CML pro- 
gram by an extension of the standard polymorphic type system. The idea is that 
each of the concurrency primitives when supplied with the appropriate param- 
eters gives rise to one of the basic behaviours, and the composite expressions 
will tell how these behaviours are combined into larger behaviours. A function 
may require some arguments in order to exhibit its behaviour and an event may 
need to be synchronised in order to exhibit its behaviour, and to capture this 
we shall annotate the types with behaviour information. So a function may have 
the type tl _+b t2 meaning that it takes an argument of type tl, gives a result 
of type t2 and in doing so it will perform communications as described by the 
behaviour b. Similarly, an event may have the type t event b meaning that when 
synchronised it will give rise to a value of type t and in doing so it will perform 
communications as described by b. The following specifies the annotated types 
of some of the primitive operations: 

send: (t chan r) • t _~r!t un i t  
accept :  (t chan r) _+~?t t 
t ransmi t :  ( t chart r) • t _~c u n i t  event  (rlt) 
r e c e i v e :  ( t chan r) --~ t event (r?t) 
sync: ( t event b) __~b t 
wrap: (tl event bl) • (tl _+b t2) --~ t2 event (bl;b) 
choose: ( t event b) list _r t event b 

The construction of the behaviours can be formulated as an annotated type 
system and below we illustrate the basic idea; for the details we refer to [7,1]. 

A type environment tenv gives the annotated type of a variable and just men- 
tioning a variable x (in a call-by-value language like CML) does not give rise to 
any interesting behaviour so we write this as 

t env  t- x : t & e if t e nv ( x )  = t 
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We have a similar axiom for constants: mentioning a constant (like a numeral or 
one of the primitive operators above) does not involve any computation so we 
have 

t e n v  F- c : tc & e 

where tc is (an instance of) the type of c. 

For ordinary function abstraction we take 

t e n v [ x  ~-+ tl] }- e : t2 & b 
t e n v  F- f n  x => e : tl  -4 b t2 &: 

So we guess a type tl  for the formal parameter  x and analyse the body of 
the abstraction to determine its type t2 and its behaviour b. We record the 
behaviour as part  of the overall type of the abstraction and note tha t  as far as 
communication goes nothing interesting has happened so the overall behaviour 
will again be e. The case of recursive function definition is fairly similar 

t e n v [ f  ~ t l  _+b t 2 ; x  ~ tl] F- e : t2 & b 

t e n v  F f u n  f x => e : t l  _~b t2 & e 

and here we will typically rely on b being a recursive behaviour that  can be 
unfolded as demanded by the unfolding of the recursive function call. 

Turning to the rule for function application we have 

t e n v  F- e l  : t l  __+b t2 • bl, t e n v  F e2 : t l  & b2 

t e n v  }- el e2 : t2 & (bl; b2; b) 

The idea is that  we first determine the annotated type and the behaviour of 
the operator  and the operand. CML has a call-by-value parameter  mechanism 
so operationally we will first observe the communications originating from the 
operator,  then those from the operand and finally those from the called function. 
Hence the application will have the behaviour bl; b2; b - note that  the causality 
of the communications are recorded. 

In order for this approach to work we have to be able to enlarge the behaviours. 
As an example, all the elements in the argument list to the choose primitive 
must have the same behaviour and to achieve this we shall need a subsumption 
rule like 

t e n v  1- e : t & b 
if b U b I 

t e n v  F- e : t & b ~ 

Here b U b ~ is some ordering on behaviours that  for example will express that  + 
is an upper bound operator so bl can be enlarged to bl + b2. The ordering will 
also express that  e is a left and right identity for sequencing (e; b = b = b; e) and 
this allows us to get rid of a lot of uninteresting occurrences of e. 

The full type system employs a general subtyping rule and also has rules for 
dealing with ML-like polymorphism; we shall spare the reader for these details 
as they do not seem so important  for the current discussion. Instead we refer 
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S 

Bo=  

B1 ---~ 

FOmK(Bo) 
{belt l_transmit_ready}?unit ; {belt l_transmit_doae}?aait ; 

{table_angle}?int ; {table_right} ) unit ; BI ; {table_stop_h} ) unit ; 

{table_upward} ! unit ; {t able_is_t op}Vunit; {table_stop_v} ! unit; 

(t able_transmit _ready} ! unit ; {table_transmit_done} ! unit ; 

{t able_downward} ! unit ; {table_is_bottom}Tunit ; (table_stop_v} ! unit ; 

{table_angle}?int  ; { tab le_ lef t}  ! unit  ; B1 ; {table_stop_h} ! uni t  ; 

Bo 
{new_table_angle}Tunit; { table_angle}? int  ; (e + BI) 

Fig. 3. Behaviour for the table. 

to the development in [1] for the many fine details concerning the ordering E, 
subtyping, polymorphism, constraint simplification, semantic soundness of the 
inference system, and syntactic soundness and completeness of the inference 
algorithm. 

The type and behaviour reconstruction algorithm has been implemented in 
Moscow ML and is available on the web 1. It has been used to analyse the CML 
program implementing the Production Cell. For the part  of the program corre- 
sponding to Figure 2 the algorithm will determine the type u n i t  ._.~s t h r e a d _ i d  
where B is the behaviour of Figure 3. 

Correctness issues. The language CML as well as the language of behaviours 
are equipped with a small-step operational semantics. This forms the basis for 
a correctness proof that  essentially says that  whenever the CML program per- 
forms a sequence of steps then also the associated behaviour can perform similar 
steps. To be more specific: when the semantics of the CML program performs a 
step corresponding to sending a value v of type t on some channel ch in some 
region r then the semantics of the behaviour can take a step that  will execute 
the basic behaviour r!t, and similarly for the other primitive actions. Thus the 
behaviours give a safe approximation of the communications performed by the 
CML program. 

The behaviour may be able to perform more actions than are possible by the 
CML program, for example because it will always be able to take both branches 
of a conditional. However, in the case where the behaviour only can perform 
one action then the CML will eventually have to perform a matching action - 
unless it is deadlocked or is looping. To illustrate this, consider a behaviour tha t  
contains the sequence 

{table_is_not_top}?unit ; {table_upward}?unit 

1 http://~rww, daimi, aau. dk/- bra8130/TBAcml/TBA_CML, html 
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and assume the behaviour of the process of interest only has those two occur- 
rences of communications on the channels t a b l e _ i s _ n o t _ t o p  and table_upward.  
Then the correctness result will tell us two things. First, if the CML program 
engages in a communication on tab le_upward  then it will already have commu- 
nicated on t ab l e_ / s _no t _ t op .  Second, after having engaged in a communica- 
tion on t a b l e _ i s _ n o t _ t o p  then it will eventually perform a communication on 
t ab le_upward  - unless it enters a looping computat ion or a deadlock between 
the two communications. 

4 S a f e t y  c o n d i t i o n s  

Most safety conditions of the Product ion Cell [4] are concerned about  the inter- 
play between communications of only a few channels. Much of this information 
is directly available in the behaviours and we can easily a t t empt  validating the 
three conditions mentioned in Section 2 based on the behaviours given in Fig- 
ure 3. However, it is convenient to be able to ignore those channels tha t  are 
not relevant for validating the condition at hand, i.e. to abst ract  away from 
communications on those channels. 

As an example, suppose tha t  we want to validate the following safety condition: 

The engine starting the vertical movement of the table is always turned 
off before it is turned on (assuming that it is initially turned off). 

We shall rely on some assumptions about  the environment: The engine can only 
be turned on using one of the two channels t ab le_upward  and table_downward 
and it can only be turned off using the channel t ab le_s top_v .  We shall therefore 
replace all communications mentioned in Figure 3 tha t  do not involve any of 
these three channels with ellipses and then we shall apply some straightforward 
simplifications in order to obtain: 

B0 = �9 �9 �9 ; {table_upward} ! uni t  ; �9 -. ; {table_stop_v} ! uni t  ; 

�9 �9 �9 ; { t a b l e _ d o m l w a r d }  ! u n i t  ; �9 �9 �9 ; { t a b l e _ s t o p _ v }  ! u n i t  ; 

�9 " ; B 0  

This simplified behaviour clearly shows tha t  the engine is turned on and off in 
the manner  described by the safety condition. 

Jus t  as our prototype is responsible for producing the behaviour of Figure 3 it 
can also be  used to produce the above simplified behaviours. The theoretical 
foundations for the simplified behaviours are established in [1]. 

We shall now go through the three safety conditions of the rotat ing table men- 
tioned in Section 2 and discuss to what extent they can be validated using the 
behaviours. Based on the informal description of the condition and some overall 
assumptions about  the environment we shall decide which channels are of rele- 
vance for the condition and extract  tha t  par t  of the behaviour. I t  turns out tha t  
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this will be a fairly simple behaviour so we can immediately judge whether  or 
not the safety condition is fulfilled; clearly a more formal approach is possible 
as well. 

C o n d i t i o n  1. 

The table must not be moved downward if it is in its lower position, and 
it must not be moved upward if it is in its upper position. 

Validation of this condition relies on some assumptions about  the environment: 
The vertical movement  of the table can only be initiated by communicating 
on the two channels t ab le_upward  and table_do~raward. Information about  
the vertical position of the table can only be obtained from the four channels 
table_is_bottom, table_is_not_bottom, table_is_top and table_is_not_top. 

We therefore select these six channels and obtain the following simplified be- 
haviour from Figure 3: 

Bo .... ; {table_upward} ! unit ; {table_is_top}?unit ; 

�9 �9 �9 ; {t able_do~rnward} ! unit ; {table_is_bottom}?unit ; 

�9 .. ;B0 

Thus we see tha t  all communications on table_downward are preceeded by a 
communication on t a b l e _ i s _ t o p .  By unfolding the behaviour is is also easy to 
see that ,  except for the initial case, all communications on t ab le_upward  are 
preceeded by a communication on t ab l e_ i s_bo t tom.  

However, this is not the case for the initial communication on tab le_upward .  
The  behaviour will never allow a communication on any of the four channels 
giving information about  the vertical position of the table before the initial 
communication on the channel table_upward.  I t  follows tha t  the CML program 
will never be able to do tha t  either. Hence the analysis has shown tha t  the CML 
program does not fulfil Condition 1! 

C o n d i t i o n  2. 

The table must not be rotated clockwise if it is in the position required ]or 
trans]erring work pieces to the robot, and it must not be rotated coun- 
terclockwise if it is in the position to receive work pieces from the feed 
belt. 

Again we have to rely on some assumptions about  the environment. The rotat ion 
of the table can only be initiated by communication on one of the two channels 
t a b l e _ r i g h t  and t a b l e . l e f t  and it is s topped by communication on the channel 
t ab le_s top_h .  The  horizontal position of the table can be obtained from the 
channel table_angle. 
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We therefore extract the behaviour involving the four channels mentioned above 
and get: 

B o  . . . .  ; { t  a b l e _ a n g l e } ? i n t  ; { t a b l e _ r i g h t }  ! u n i t  ; B1 ; { t a b l e _ s t o p _ h }  ! u n i t  ; 

�9 �9 �9 ; { t a b l e _ a n g l e } ? i n t  ; { t a b l e _ l e f t }  ! u n i t  ; B1 ; { t a b l e _ s t o p _ h }  ! u n i t  ; 

Bo 
B1 = ' - ' ; { t a b l e  a n g l e } ? i n t ; ( e  + B 1 )  

From this it is easy to see that we have validated the following version of the 
safety condition: 

The table is alternating between being rotated clockwise and counterclock- 
wise. 

However there is no information in the behaviours ensuring that the clockwise 
rotation stops when the angle is 50 (as required for the robot) or that the coun- 
terclockwise rotation stops when the angle is 0 (as required for the feed belt)�9 
More powerful analysis techniques will be needed to capture this kind of infor- 
mation; we shall return to this in Section 5. 

C o n d i t i o n  3. 

There can only be one work piece at the table at any time. 

This condition is concerned about the synchronisation between the individ- 
ual processes of the system and hence its validation will depend on proper- 
ties of the other processes, in particular those for the feed belt and the robot. 
The table is the passive part in both of these synchronisations. The channels 
beltl_transmit_ready and b e l t  l_transmit_done are used to synchronise with 
the feed belt; between these two communications it is the responsibility of the 
feed belt to place a work piece on the table. The channels table_transmit_ready 
and table_transmit_done are used to synchronise with the robot; between these 
two communications it is the responsibility of the robot to remove a work piece 
from the table. 

The analysis of the table will therefore need to make some assumptions about 
the feed belt and the robot. These assumptions will later have to be validated by 
analysing the behaviour of the program fragments for the respective processes. 
The assumptions are: 

(a) Whenever the feed belt leaves the critical region specified by the two channels 
beltl_transmit_ready and beltl_transmit_done it will have moved one 
(and only one) work piece to the table. 

(b) Whenever the robot leaves the critical region specified by the two channels 
table_transmit_ready and table_transmit_done it will have emptied the 
table. 
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Under these assumptions we can now validate Condition 3. 

We shall concentrate on the four channels specifying the critical regions and we 
obtain the following simplified behaviour for the table: 

Bo = { b e l t l _ t r a n s m i t _ r e a d y } ? u n i t  ; { b e l t l _ t r a n s m i t _ d o n e } ? u n i t  ; - - -  ; 

{ t a b l e _ t r a n s m i t _ r e a d y }  t u n i t  ; { t a b l e _ t r a n s m i t _ d o n e }  ! u n i t  ; �9 �9 �9 ; 

Bo 

Clearly this shows that the two pairs of communications alternate. Also it shows 
that ' the  synchronisation with the feed belt happens first and by assumption 
(a) a work piece is placed on the table. The simplified behaviour shows that 
subsequently there will be a synchronisation with the robot and by assumption 
(b) the work piece will be removed from the table. Hence Condition 3 has been 
validated with respect to the assumptions. 

5 D i s c u s s i o n  a n d  f u r t h e r  w o r k  

The results obtained from the analysis depend to a large extent on the pro- 
gramming style. As an example, an alternative program for the Production 
Cell uses the following function instead of the two functions clockwise and 
counterclockwise: 

fun turn_to(a) = 

let val x = accept(table_angle) in 

if x < a then 

( s e n d ( t a b l e _ r i g h t ,  0 ) ; 
while (accept(new_table_angle) ; accept(table_angle)) < a 

do O; 
send(table_stop_h, O) ) 

else if x > a then 

(send(table_left, 0 ) ; 
while (accept(new_table_angle) ; accept(table_angle)) > a 

do O; 
send(table_stop_h, O )  ) 

else () 

end; 

In the setting provided by Condition 2 we now get the following simplified be- 
haviour for the program: 

B0 . . . .  ;B1;"""  ;B1;Bo 

B1 = { t a b l e _ a n g l e } ? i n t  ; 

(~ + { t a b l e _ l e f t }  ! u n i t  ; B2 ; { t a b l e _ s t o p _ h }  ! u n i t  

+ { t a b l e _ r i g h t }  ! u n i t  ; B2 ; { t a b l e _ s t o p _ h }  ! u n i t )  

B2 . . . .  ; { t a b l e _ a n g l e } ? i n t ;  (e + B2)  
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As expected we cannot validate Condition 2 from this. But  even worse, we cannot 
even validate tha t  the table is alternating between being rotated clockwise and 
counterclockwise; only that  it is rotated an even number of times. The reason for 
the latter is that  the current version of our technology does not incorporate any 
information about  values of variables and the entities communicated and there- 
fore we cannot prune the behaviour for t u rn_ to  to take the branch of interest 
for a given value of the parameter.  We expect that  techniques from Control Flow 
Analysis [3, 6] will prove useful when further developing the technology. 

The CML program for the Production Cell is basically a first-order program and 
hence it does not exploit the higher-order constructs of CML. Our technique has 
no problems handing higher-order functions nor communication of channels. To 
illustrate a simple version of this, consider the following generic function 

f u n  move s t a r t  d o l t  s t o p  = ( s e n d ( s t a r t , ( ) ) ;  d o l t ( ) ;  s e n d ( s t o p ,  O ) )  

that  takes a channel, a function and yet another channel as arguments. Let us 
rewrite the program to use this function: 

fun table 0 = 

let 
fun clockwise (a) = 

let val x = accept(table_anEle); 

in move table_right 

(fn 0 --> while (accept(new_table_angle); 
accept(table_anEle)) < a do ()) 

table_stop_h 

end; 

fun counterclockwise (a) -- 

let val x -- accept(table_angle) 

in move table_left 

(fn () => while (accept(new_table_anEle); 

accept(table_angle)) > a do ()) 

table_stop_h 

end; 

fun main 0 = 
(accept (beltl_transmit_ready) ; accept (beltl_transmit_done) ; 

clockwise (50) ; 

move table_upward (fn 0 --> accept(table_is_top)) table_stop_v; 

send(table_transmit_ready, O) ; send(table_transmit_done, ()) ; 

move table_downward (fn () => accept(table_is_bottom)) table_stop_~ 

counterclockwise (0) ; 

main()) 
in 

spawn(fn 

end; 

0 => main()) 
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The behaviour of this version of the program is exactly as in Table 3; in par- 
ticular the techniques easily distinguish between the different sets of parameters 
supplied to the four calls of the move function. 

6 C o n c l u s i o n  

We have argued that  even the careful use of formal program development tech- 
niques may in practice produce bugs that  go undetected. To increase the avail- 
able techniques for validating embedded systems we have argued that  the use 
of novel program analysis technology is likely to be indispensable and we have 
substantiated this claim by the development of a prototype. 
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