
Behaviour Analysis and Safety Conditions:
A Case Study in CML

Hanne Riis Nielson Torben Amtoft Flemming Nielson

Computer Science Department, Aarhus University, Denmark
e-marl: {hrn, taratoft , fn}gdaimi, aau. dk

Abs t rac t . We describe a case study where novel program analysis tech-
nology has been used to pinpoint a subtle bug in a formally developed
control program for an embedded system. The main technology amounts
to first defining a process algebra (called behaviours) suited to the pro-
gramming language used (in our case CML) and secondly to devise an
annotated type and effect system for extracting behaviours from pro-
grams in a such a manner that an automatic inference algorithm can be
developed. The case study is a control program developed for the "Karls-
ruhe Production Cell" and our analysis of the behaviours shows that one
of the safety conditions fails to hold.

Keywords. Embedded systems, formal program development, program
analysis.

1 I n t r o d u c t i o n

There are several approaches for how to close the gap between the specification of
a system and its actual realisation as a program in some programming language.
Different procedures for systematic design have been developed with the goal of
reducing the likelihood of introducing errors, and concise notations have been
introduced for documenting and reasoning about systems.

Unfortunately, a system may have been developed using formal methods but
still have bugs. Advanced proof techniques may have been used to show that the
specification fulfils certain safety and liveness properties, but there is always the
risk that the formalisation does not fully correspond to the informal description
(or even a formal description in another framework) and that the code written
does not fully correspond to the specification. Clearly the risk of such unfortunate
scenarios gets smaller the more care is taken in the development of the system
but we believe that it is not feasible to completely eliminate the risk. Indeed
there always is the risk of human mistake (like using a previous incorrect version
of the system instead of the current correct version) and of malicious behaviour
(a subcontractor cutting corners to increase profit).

While formal methods clearly are very useful for increasing our confidence in the
system, it would seem that more is needed. In this paper we demonstrate tha t

256

technology from program analysis can be invaluable in spotting some of the sub-
tle bugs that may have survived the careful use of formal methods. Traditionally,
program analysis has been used in optimising compilers but due to their ability to
analyse programs automatically and systematically we claim that they also have
an important role to play in program validation. Although the kind of properties
of interest in program validation may differ from those of interest in optimising
compilers, we demonstrate in this paper that recent developments have paved
the way for adapting program analysis to the new application domain.

Background. In [7, 8] we present an annotated type system for extracting the
communication topology of programs written in a subset of CML [9]. We in-
troduce a formalism of behaviours, a process algebra like CCS or CSP but
tailored to the characteristics of CML. The traditional type system for CML
is then extended such that it determines behaviours of expressions as well as
their types. Both CML and the behaviours are equipped with a small-step op-
erational semantics and a key theoretical result is a subject reduction result
ensuring that whenever the CML program engages in a communication, then
also the behaviour will be able to do so. This means that safety results obtained
by analysing the behaviour also apply to the original CML program.

In [1] we develop an algorithm for type and behaviour reconstruction. The de-
velopment is sufficiently general that (1) the behaviours contain causality in-
formation, (2) ML-like polymorphism is supported, and (3) the algorithm is
sound as well as complete with respect to the annotated type system. These
properties are crucial for the application described in the present paper. The
causality of the various operations is often an integral part of safety conditions
for systems; without causal behaviours one can only validate rather few prop-
erties of interest. Polymorphism is important when analysing generic programs;
without polymorphism (or perhaps polyvariance) one will need to merge infor-
mation from different function calls and this may make it impossible to validate
many interesting properties. The soundness result ensures that the behaviours
obtained by the algorithm are correct with respect to the semantics of the pro-
gram and the completeness result ensures that the behaviours are as precise as
is possible according to the annotated type system; it should be obvious that
these are crucial properties as well.

Having established the theoretical foundations [1] we have implemented a proto-
type for extracting behaviours from programs [2]. The present version is able to
deal with a fairly large subset of CML and provides the basis for the experiments
reported here.

Accomplishments. We study a CML program for the well-known "Production
Cell" [4] developed by FZI in Karlsruhe as a benchmark for the development
of verified software for embedded systems. The CML program used has been
developed using systematic design methods: its functionality has been specified
in CSP and many of its safety conditions have been formally verified [10]. Fur-

257

thermore, it has been combined with the FZI simulator to a working prototype
that has subsequently been tested.

None the less, our program analysis reveals that the program does not fulfil
all of its safety conditions. Our experiments show that the program makes cer-
tain assumptions about the initial configuration of the system - a bug that has
escaped the formal verification. Furthermore, it turns out that the simulator
makes similar assumptions about the initial configuration so that this particular
bug will never turn up during testing. We should stress that we do not mean
to criticise neither the formal development nor the verification methods nor the
programmers. We merely see it as an illustration of a typical problem in the
development of complex software systems as was alluded to above.

We believe that the results of our case study presents convincing arguments for
also using novel program analysis techniques when validating safety conditions
of embedded systems. Although we have been able to validate many of the safety
conditions of interest, and to find one that does not hold, there is room for ex-
tending our techniques because some of the safety conditions require information
not presently included in the behaviours.

Overview. In Section 2 we give a brief introduction to the basic primitives of
CML and we present a fragment of the program used in the case study. Then
in Section 3 we introduce the behaviours and sketch some of the central rules
for how to obtain behaviours from a CML program. In Section 4 we examine
three of the safety conditions of the Production Cell and in Section 5 we discuss
some further enhancements of our techniques. Finally, Section 6 contains the
concluding remarks.

2 T h e c a s e s t u d y

The Product ion Cell is designed to process metal blanks in a press [4]; its various
components are shown from above on Figure 1 which is a picture from the FZI
simulator. The work pieces (metal blanks) enter the system on the feed belt (the
bot tom one on Figure 1) and are then transfered one at a time to a rotating
table; the table is then lifted and rotated such that one of the two robot arms
can take the work piece and place it in the press. After processing the work
piece, the other robot arm will take it out of the press and deliver it to a deposit
belt (the top one on Figure 1). For testing purposes a crane has been added to
move the work pieces from the deposit belt back to the feed belt.

We shall concentrate on just one of these entities, namely the rotating table.
The table can be in one of two vertical positions and it can be rotated clockwise
as well as counterclockwise. The following safety conditions have been supplied
for the table:

1: The table must not be moved downward if it is in its lower position, and it
must not be moved upward if it is in its upper position.

258

Fig. 1. The Karlsruhe Production Cell.

2: The table must not be rotated clockwise if it is in the position required for
transferring work pieces to the robot, and it must not be rotated counter-
clockwise if it is in the position to receive work pieces from the feed belt.

3: There can only be one work piece at the table at any time.

The program. CML [9] is an extension of the higher-order functional language
SML [5] with constructs for communication. Processes and channels can be cre-
ated dynamically using the constructs spawn and channel ; the constructs send
and a c c e p t are available for synchronous communication. Functions as well as
channels are first class values and so are events: an event is a potential com-
munication created by one of the constructs t r a n s m i t and r e c e i v e . There is
also an explicit synchronisation operation sync so the construct send (ch , v) is
equivalent to sync (transmit (ch, v)) and similarly accept (ch) is equivalent to
sync(receive (ch)). Events can be manipulated using the construct wrap; this
corresponds to a kind of speculative post-processing of an event in that it will
only take effect if and when the event is synchronised. Finally, we shall mention
the construct choose which can be used to choose one of several events.

The CML program for the Production Cell consists of 7 processes. They com-
municate with the simulator using 63 channels and they communicate internally
using 16 channels. The part of the program controlling the movements of the
table is shown in Figure 2. It uses the following channels for communicating with
the simulator:

259

(* a c t u a t o r c h a n n e l s *)
v a l t a b l e _ l e f t = c h a n n e l () : u n i t chart;
v a l t a b l e _ s t o p _ h = c h a n n e l () : u n i t chart;
v a l t a b l e _ r i g h t = c h a n n e l () : u n i t chun;

v a l t a b l e _ u p w a r d = c h a n n e l () : u n i t chan;
v a l t a b l e _ s t o p _ v -- c h a n n e l () : u n i t chun;
v a l t ab le_downward = c h a n n e l () : u n i t chan;

(* s e n s o r c h a n n e l s *)
v a l t a b l e _ i s _ b o t t o m ffi c h a n n e l () : u n i t chan;

val table_is_not_bottom = channel(): unit chan;

val table_is_top -- channel(): unit chan;

val tab!e_is_not_top -- channel(): unit chan;

val ta~e_angle = channel(): int chan;

val ne._table_angle -- channel(): unit than;

Internally, the table synchronises its movements with the feed belt and the robot
and for this it uses the following channels:

val beltl_transmit_ready -- channelO: unit than;

val beltl_transmit_done = channel(): unit chan;

val table_transmit_ready -- channel(): unit chan;

val table_transmit_done = channel(): unit chan;

We shall not explain the program in detail here; some of the points will natural ly
be dealt with when we come to discussing aspects of its behaviour.

3 B e h a v i o u r s

The safety requirements imposed on the Product ion Cell are to a large extent
concerned with the order in which the communications are performed. This is ex-
actly the kind of information tha t is available in the behaviours. The behaviours
are te rms of a process calculus designed to match the structure of CML. The
basic behaviours are:

- e is the behaviour of a program tha t does not create any channels or processes
and tha t is not involved in any communication;

- t CHANr is the behaviour of a program tha t creates a channel tha t can be
used to communicate values of type t and where the channel belongs to the
region r (a region is an indication of where in the program the channel has
been created);

-- FORK b is the behaviour for a program tha t spawns a new process tha t will
behave as described by the behaviour b;

- r ! t is the behaviour of a program tha t sends a value of type t on one of the
channels created in the region r; and

260

fun table 0 =
let

fun clockwise (a) ffi (*rotate clockwise until degree a*)
let val x ffi accept(table_angle)

in (send(table_right, O) ;
while (accept(new_table_angle) ; accept(table_angle)) < a

do 0 ;
send(table_stop_h, O))

end;

fun counterclockwise (a) = (*rotate counterclockwise until degree a*)
let val x = accept(table_angle)
in (send(table_left, O) ;

while (accept(ne._table_angle) ; accept(table_ungle)) > a
do O ;
s e n d (t a b l e _ s t o p _ h , O))

end;

in

fun main () =
(a c c e p t (b e l t l _ t r a n s m i t _ r e a d y) ; a c c e p t (b e l t l _ t r a n s m i t _ d o n e) ;
clockwise (50) ;

send(table_upward, 0) ;
accept (table_is_top) ;
s e n d (t a b l e _ s t o p _ v , ()) ;
send (t a b l e _ t r a n s m i t _ r e a d y , 0) ; s e n d (t a b l e _ t r a n s m i t _ d o n e , 0) ;
send (t ab le_downward , ()) ;
a c c e p t (t a b l e _ i s _ b o t t o m) ;
s e n d (t a b l e _ s t o p _ v , 0) ;
c o u n t e r c l o c k w i s e (0) ;
main())

spawn(fn 0 => m a i n ())
end;

Fig. 2. CML program for the table.

- r ? t is the behaviour of a program that receives a value of type t on one of
the channels created in the region r.

The basic behaviours can then be combined using sequencing (expressed by '; ')
and choice (expressed by '+') and they can be recursively defined.

As an example consider the following behaviours:

Bc = {table_angle}?int ; {table_right} ! unit ; B1 ; {table_stop_h} ! unit

B1 = {ne._table_angle}Yunit ;{table_angle}Yint ; (e + BI)

The behaviour Bc expresses that first there will be a communication on the chan-
nel table_angle (obtaining the current angle of the table) and next there will

261

be a communication on the channel t ab le_r igh t (starting a clockwise rotation
of the table). Then the behaviour of B1 will be executed and finally there will
be a communication on the channel table_stop_h (stopping the rotation). The
behaviour B1 is recursive: first there will be a communication over the chan-
nel new_table_angle (indicating that the angle has changed) and subsequently
there is a communication on the channel table_angle (to obtain the new angle).
After that the program may exit (the angle has the required value) or it may
repeat the behaviour of B1 (still waiting for the angle to get the required value).

It turns out that Bc is the behaviour corresponding to the body of the function
clockwise of Figure 2. Comparing the code for the function with the behaviour
above shows that we have recorded which communications take place and in
which order, but we have ignored all values and tests. So while the behaviour
retains the overall control structure of the code, it loses those details of tests
that determine which branch is taken in conditionals (as e.g. that the clockwise
rotation of the table is stopped at the angle given as argument to the function).

Construct ion o] behaviours. The behaviours are extracted from the CML pro-
gram by an extension of the standard polymorphic type system. The idea is that
each of the concurrency primitives when supplied with the appropriate param-
eters gives rise to one of the basic behaviours, and the composite expressions
will tell how these behaviours are combined into larger behaviours. A function
may require some arguments in order to exhibit its behaviour and an event may
need to be synchronised in order to exhibit its behaviour, and to capture this
we shall annotate the types with behaviour information. So a function may have
the type tl _+b t2 meaning that it takes an argument of type tl, gives a result
of type t2 and in doing so it will perform communications as described by the
behaviour b. Similarly, an event may have the type t event b meaning that when
synchronised it will give rise to a value of type t and in doing so it will perform
communications as described by b. The following specifies the annotated types
of some of the primitive operations:

send: (t chan r) • t _~r!t un i t
accept : (t chan r) _+~?t t
t ransmi t : (t chart r) • t _~c u n i t event (rlt)
r e c e i v e : (t chan r) --~ t event (r?t)
sync: (t event b) __~b t
wrap: (tl event bl) • (tl _+b t2) --~ t2 event (bl;b)
choose: (t event b) list _r t event b

The construction of the behaviours can be formulated as an annotated type
system and below we illustrate the basic idea; for the details we refer to [7,1].

A type environment tenv gives the annotated type of a variable and just men-
tioning a variable x (in a call-by-value language like CML) does not give rise to
any interesting behaviour so we write this as

t env t- x : t & e if t e nv (x) = t

262

We have a similar axiom for constants: mentioning a constant (like a numeral or
one of the primitive operators above) does not involve any computation so we
have

t e n v F- c : tc & e

where tc is (an instance of) the type of c.

For ordinary function abstraction we take

t e n v [x ~-+ tl] }- e : t2 & b
t e n v F- f n x => e : tl -4 b t2 &:

So we guess a type tl for the formal parameter x and analyse the body of
the abstraction to determine its type t2 and its behaviour b. We record the
behaviour as part of the overall type of the abstraction and note tha t as far as
communication goes nothing interesting has happened so the overall behaviour
will again be e. The case of recursive function definition is fairly similar

t e n v [f ~ t l _+b t 2 ; x ~ tl] F- e : t2 & b

t e n v F f u n f x => e : t l _~b t2 & e

and here we will typically rely on b being a recursive behaviour that can be
unfolded as demanded by the unfolding of the recursive function call.

Turning to the rule for function application we have

t e n v F- e l : t l __+b t2 • bl, t e n v F e2 : t l & b2

t e n v }- el e2 : t2 & (bl; b2; b)

The idea is that we first determine the annotated type and the behaviour of
the operator and the operand. CML has a call-by-value parameter mechanism
so operationally we will first observe the communications originating from the
operator, then those from the operand and finally those from the called function.
Hence the application will have the behaviour bl; b2; b - note that the causality
of the communications are recorded.

In order for this approach to work we have to be able to enlarge the behaviours.
As an example, all the elements in the argument list to the choose primitive
must have the same behaviour and to achieve this we shall need a subsumption
rule like

t e n v 1- e : t & b
if b U b I

t e n v F- e : t & b ~

Here b U b ~ is some ordering on behaviours that for example will express that +
is an upper bound operator so bl can be enlarged to bl + b2. The ordering will
also express that e is a left and right identity for sequencing (e; b = b = b; e) and
this allows us to get rid of a lot of uninteresting occurrences of e.

The full type system employs a general subtyping rule and also has rules for
dealing with ML-like polymorphism; we shall spare the reader for these details
as they do not seem so important for the current discussion. Instead we refer

263

S

Bo=

B1 ---~

FOmK(Bo)
{belt l_transmit_ready}?unit ; {belt l_transmit_doae}?aait ;

{table_angle}?int ; {table_right}) unit ; BI ; {table_stop_h}) unit ;

{table_upward} ! unit ; {t able_is_t op}Vunit; {table_stop_v} ! unit;

(t able_transmit _ready} ! unit ; {table_transmit_done} ! unit ;

{t able_downward} ! unit ; {table_is_bottom}Tunit ; (table_stop_v} ! unit ;

{table_angle}?int ; { tab le_ lef t} ! unit ; B1 ; {table_stop_h} ! uni t ;

Bo
{new_table_angle}Tunit; { table_angle}? int ; (e + BI)

Fig. 3. Behaviour for the table.

to the development in [1] for the many fine details concerning the ordering E,
subtyping, polymorphism, constraint simplification, semantic soundness of the
inference system, and syntactic soundness and completeness of the inference
algorithm.

The type and behaviour reconstruction algorithm has been implemented in
Moscow ML and is available on the web 1. It has been used to analyse the CML
program implementing the Production Cell. For the part of the program corre-
sponding to Figure 2 the algorithm will determine the type u n i t ._.~s t h r e a d _ i d
where B is the behaviour of Figure 3.

Correctness issues. The language CML as well as the language of behaviours
are equipped with a small-step operational semantics. This forms the basis for
a correctness proof that essentially says that whenever the CML program per-
forms a sequence of steps then also the associated behaviour can perform similar
steps. To be more specific: when the semantics of the CML program performs a
step corresponding to sending a value v of type t on some channel ch in some
region r then the semantics of the behaviour can take a step that will execute
the basic behaviour r!t, and similarly for the other primitive actions. Thus the
behaviours give a safe approximation of the communications performed by the
CML program.

The behaviour may be able to perform more actions than are possible by the
CML program, for example because it will always be able to take both branches
of a conditional. However, in the case where the behaviour only can perform
one action then the CML will eventually have to perform a matching action -
unless it is deadlocked or is looping. To illustrate this, consider a behaviour tha t
contains the sequence

{table_is_not_top}?unit ; {table_upward}?unit

1 http://~rww, daimi, aau. dk/- bra8130/TBAcml/TBA_CML, html

264

and assume the behaviour of the process of interest only has those two occur-
rences of communications on the channels t a b l e _ i s _ n o t _ t o p and table_upward.
Then the correctness result will tell us two things. First, if the CML program
engages in a communication on tab le_upward then it will already have commu-
nicated on t ab l e_ / s _no t _ t op . Second, after having engaged in a communica-
tion on t a b l e _ i s _ n o t _ t o p then it will eventually perform a communication on
t ab le_upward - unless it enters a looping computat ion or a deadlock between
the two communications.

4 S a f e t y c o n d i t i o n s

Most safety conditions of the Product ion Cell [4] are concerned about the inter-
play between communications of only a few channels. Much of this information
is directly available in the behaviours and we can easily a t t empt validating the
three conditions mentioned in Section 2 based on the behaviours given in Fig-
ure 3. However, it is convenient to be able to ignore those channels tha t are
not relevant for validating the condition at hand, i.e. to abst ract away from
communications on those channels.

As an example, suppose tha t we want to validate the following safety condition:

The engine starting the vertical movement of the table is always turned
off before it is turned on (assuming that it is initially turned off).

We shall rely on some assumptions about the environment: The engine can only
be turned on using one of the two channels t ab le_upward and table_downward
and it can only be turned off using the channel t ab le_s top_v . We shall therefore
replace all communications mentioned in Figure 3 tha t do not involve any of
these three channels with ellipses and then we shall apply some straightforward
simplifications in order to obtain:

B0 = �9 �9 �9 ; {table_upward} ! uni t ; �9 -. ; {table_stop_v} ! uni t ;

�9 �9 �9 ; { t a b l e _ d o m l w a r d } ! u n i t ; �9 �9 �9 ; { t a b l e _ s t o p _ v } ! u n i t ;

�9 " ; B 0

This simplified behaviour clearly shows tha t the engine is turned on and off in
the manner described by the safety condition.

Jus t as our prototype is responsible for producing the behaviour of Figure 3 it
can also be used to produce the above simplified behaviours. The theoretical
foundations for the simplified behaviours are established in [1].

We shall now go through the three safety conditions of the rotat ing table men-
tioned in Section 2 and discuss to what extent they can be validated using the
behaviours. Based on the informal description of the condition and some overall
assumptions about the environment we shall decide which channels are of rele-
vance for the condition and extract tha t par t of the behaviour. I t turns out tha t

265

this will be a fairly simple behaviour so we can immediately judge whether or
not the safety condition is fulfilled; clearly a more formal approach is possible
as well.

C o n d i t i o n 1.

The table must not be moved downward if it is in its lower position, and
it must not be moved upward if it is in its upper position.

Validation of this condition relies on some assumptions about the environment:
The vertical movement of the table can only be initiated by communicating
on the two channels t ab le_upward and table_do~raward. Information about
the vertical position of the table can only be obtained from the four channels
table_is_bottom, table_is_not_bottom, table_is_top and table_is_not_top.

We therefore select these six channels and obtain the following simplified be-
haviour from Figure 3:

Bo ; {table_upward} ! unit ; {table_is_top}?unit ;

�9 �9 �9 ; {t able_do~rnward} ! unit ; {table_is_bottom}?unit ;

�9 .. ;B0

Thus we see tha t all communications on table_downward are preceeded by a
communication on t a b l e _ i s _ t o p . By unfolding the behaviour is is also easy to
see that , except for the initial case, all communications on t ab le_upward are
preceeded by a communication on t ab l e_ i s_bo t tom.

However, this is not the case for the initial communication on tab le_upward .
The behaviour will never allow a communication on any of the four channels
giving information about the vertical position of the table before the initial
communication on the channel table_upward. I t follows tha t the CML program
will never be able to do tha t either. Hence the analysis has shown tha t the CML
program does not fulfil Condition 1!

C o n d i t i o n 2.

The table must not be rotated clockwise if it is in the position required]or
trans]erring work pieces to the robot, and it must not be rotated coun-
terclockwise if it is in the position to receive work pieces from the feed
belt.

Again we have to rely on some assumptions about the environment. The rotat ion
of the table can only be initiated by communication on one of the two channels
t a b l e _ r i g h t and t a b l e . l e f t and it is s topped by communication on the channel
t ab le_s top_h . The horizontal position of the table can be obtained from the
channel table_angle.

266

We therefore extract the behaviour involving the four channels mentioned above
and get:

B o ; { t a b l e _ a n g l e } ? i n t ; { t a b l e _ r i g h t } ! u n i t ; B1 ; { t a b l e _ s t o p _ h } ! u n i t ;

�9 �9 �9 ; { t a b l e _ a n g l e } ? i n t ; { t a b l e _ l e f t } ! u n i t ; B1 ; { t a b l e _ s t o p _ h } ! u n i t ;

Bo
B1 = ' - ' ; { t a b l e a n g l e } ? i n t ; (e + B 1)

From this it is easy to see that we have validated the following version of the
safety condition:

The table is alternating between being rotated clockwise and counterclock-
wise.

However there is no information in the behaviours ensuring that the clockwise
rotation stops when the angle is 50 (as required for the robot) or that the coun-
terclockwise rotation stops when the angle is 0 (as required for the feed belt)�9
More powerful analysis techniques will be needed to capture this kind of infor-
mation; we shall return to this in Section 5.

C o n d i t i o n 3.

There can only be one work piece at the table at any time.

This condition is concerned about the synchronisation between the individ-
ual processes of the system and hence its validation will depend on proper-
ties of the other processes, in particular those for the feed belt and the robot.
The table is the passive part in both of these synchronisations. The channels
beltl_transmit_ready and b e l t l_transmit_done are used to synchronise with
the feed belt; between these two communications it is the responsibility of the
feed belt to place a work piece on the table. The channels table_transmit_ready
and table_transmit_done are used to synchronise with the robot; between these
two communications it is the responsibility of the robot to remove a work piece
from the table.

The analysis of the table will therefore need to make some assumptions about
the feed belt and the robot. These assumptions will later have to be validated by
analysing the behaviour of the program fragments for the respective processes.
The assumptions are:

(a) Whenever the feed belt leaves the critical region specified by the two channels
beltl_transmit_ready and beltl_transmit_done it will have moved one
(and only one) work piece to the table.

(b) Whenever the robot leaves the critical region specified by the two channels
table_transmit_ready and table_transmit_done it will have emptied the
table.

267

Under these assumptions we can now validate Condition 3.

We shall concentrate on the four channels specifying the critical regions and we
obtain the following simplified behaviour for the table:

Bo = { b e l t l _ t r a n s m i t _ r e a d y } ? u n i t ; { b e l t l _ t r a n s m i t _ d o n e } ? u n i t ; - - - ;

{ t a b l e _ t r a n s m i t _ r e a d y } t u n i t ; { t a b l e _ t r a n s m i t _ d o n e } ! u n i t ; �9 �9 �9 ;

Bo

Clearly this shows that the two pairs of communications alternate. Also it shows
that ' the synchronisation with the feed belt happens first and by assumption
(a) a work piece is placed on the table. The simplified behaviour shows that
subsequently there will be a synchronisation with the robot and by assumption
(b) the work piece will be removed from the table. Hence Condition 3 has been
validated with respect to the assumptions.

5 D i s c u s s i o n a n d f u r t h e r w o r k

The results obtained from the analysis depend to a large extent on the pro-
gramming style. As an example, an alternative program for the Production
Cell uses the following function instead of the two functions clockwise and
counterclockwise:

fun turn_to(a) =

let val x = accept(table_angle) in

if x < a then

(s e n d (t a b l e _ r i g h t , 0) ;
while (accept(new_table_angle) ; accept(table_angle)) < a

do O;
send(table_stop_h, O))

else if x > a then

(send(table_left, 0) ;
while (accept(new_table_angle) ; accept(table_angle)) > a

do O;
send(table_stop_h, O))

else ()

end;

In the setting provided by Condition 2 we now get the following simplified be-
haviour for the program:

B0 ;B1;""" ;B1;Bo

B1 = { t a b l e _ a n g l e } ? i n t ;

(~ + { t a b l e _ l e f t } ! u n i t ; B2 ; { t a b l e _ s t o p _ h } ! u n i t

+ { t a b l e _ r i g h t } ! u n i t ; B2 ; { t a b l e _ s t o p _ h } ! u n i t)

B2 ; { t a b l e _ a n g l e } ? i n t ; (e + B2)

268

As expected we cannot validate Condition 2 from this. But even worse, we cannot
even validate tha t the table is alternating between being rotated clockwise and
counterclockwise; only that it is rotated an even number of times. The reason for
the latter is that the current version of our technology does not incorporate any
information about values of variables and the entities communicated and there-
fore we cannot prune the behaviour for t u rn_ to to take the branch of interest
for a given value of the parameter. We expect that techniques from Control Flow
Analysis [3, 6] will prove useful when further developing the technology.

The CML program for the Production Cell is basically a first-order program and
hence it does not exploit the higher-order constructs of CML. Our technique has
no problems handing higher-order functions nor communication of channels. To
illustrate a simple version of this, consider the following generic function

f u n move s t a r t d o l t s t o p = (s e n d (s t a r t , ()) ; d o l t () ; s e n d (s t o p , O))

that takes a channel, a function and yet another channel as arguments. Let us
rewrite the program to use this function:

fun table 0 =

let
fun clockwise (a) =

let val x = accept(table_anEle);

in move table_right

(fn 0 --> while (accept(new_table_angle);
accept(table_anEle)) < a do ())

table_stop_h

end;

fun counterclockwise (a) --

let val x -- accept(table_angle)

in move table_left

(fn () => while (accept(new_table_anEle);

accept(table_angle)) > a do ())

table_stop_h

end;

fun main 0 =
(accept (beltl_transmit_ready) ; accept (beltl_transmit_done) ;

clockwise (50) ;

move table_upward (fn 0 --> accept(table_is_top)) table_stop_v;

send(table_transmit_ready, O) ; send(table_transmit_done, ()) ;

move table_downward (fn () => accept(table_is_bottom)) table_stop_~

counterclockwise (0) ;

main())
in

spawn(fn

end;

0 => main())

269

The behaviour of this version of the program is exactly as in Table 3; in par-
ticular the techniques easily distinguish between the different sets of parameters
supplied to the four calls of the move function.

6 C o n c l u s i o n

We have argued that even the careful use of formal program development tech-
niques may in practice produce bugs that go undetected. To increase the avail-
able techniques for validating embedded systems we have argued that the use
of novel program analysis technology is likely to be indispensable and we have
substantiated this claim by the development of a prototype.

Acknowledgements. We should like to thank H. Rischel for providing us with the
simulator for Production Cell as well as the CML program for controlling the
Product ion Cell, and also A. P. Ravn for general discussions about the analysis of
embedded systems. This work has been supported in part by the DART project
funded by the Danish Science Research Council and also builds on theories and
tools developed during the LOMAPS project funded by ESPRIT BRA.

R e f e r e n c e s

1. T. Amtoft, F. Nielson, and H. R. Nielson. Polymorphic subtyping for side effects.
Book manuscript, DAIMI PB-529, Aarhus Univesity, 1997.

2. T. Amtoft, H. R. Nielson, and F. Nielson. Behaviour analysis for validating com-
munication patterns. DAIMI PB-527, Aarhus University, 1997.

3. K. L. S. Gasser, F. Nielson, and H. R. Nielson. Systematic realisation of control
flow analyses for CML. In Proceedings of ICFP'97, pages 38-51. ACM Press, 1997.

4. C. Lewerentz and T. Lindner. Formal Development of Reactive Systems, Case
Study "Production Cell". SLNCS vol 891, Springer Verlag, 1995.

5. R. Milner, M. Tofte, and R. Harper. The definition of Standard ML. MIT Press,
1990.

6. F. Nielson, H. R. Nielson, and C. L. Hankin. Principles of Program Analysis: Flows
and Effects. To appear, 1999.

7. H. R. Nielson and F. Nielson. Higher-Order Concurrent Programs with Finite
Communication Topology. In Proc. POPL '9~, 1994.

8. H. R. Nielson and F. Nielson. Communication analysis for Concurrent ML. In ML
with Concurrency, Monographs in Computer Science. Springer-Verlag, 1997.

9. J.H. Reppy. Concurrent ML: Design, application and semantics. In Proc. Func-
tional programming, Concurrency, Simulation and Automated Reasoning, SLNCS
693, pages 165-19, 1993.

10. H. Rischel and H. Sun. Design and prototyping of real-time systems using CSP and
CML. In Proc. 9th Euromicro Workshop on Real-Time Systems, pages 121-127.
IEEE Computer Society Press, 1997.

