Abstract
A fully polynomial approximation scheme (FPTAS) is presented for the classical 0-1 knapsack problem. The new approach considerably improves the necessary space requirements. The two best previously known approaches need O(n + 1/ɛ3) and O(n·l/ɛ) space, respectively. Our new approximation scheme requires only O(n + 1/ɛ2) space while also reducing the running time.
Preview
Unable to display preview. Download preview PDF.
References
A. Caprara, H. Kellerer, U. Pferschy, D. Pisinger, “Approximation algorithms for knapsack problems with cardinality constraints”, Technical Report 01/1998, Faculty of Economics, University Graz, submitted.
H. Kellerer, R. Mansini, U. Pferschy, M.G. Speranza, “An efficient fully polynomial approximation scheme for the subset-sum problem”, Technical Report 14/1997, Fac. of Economics, Univ. Graz, submitted, see also Proceedings of the 8th ISAAC Symposium, Springer Lecture Notes in Computer Science 1350, 394–403, 1997.
E. Lawler, “Fast approximation algorithms for knapsack problems”, Mathematics of Operations Research 4, 339–356, 1979.
M.J. Magazine, O. Oguz, “A fully polynomial approximation algorithm for the 0-1 knapsack problem”, European Journal of Operational Research, 8, 270–273, 1981.
S. Martello, P. Toth, Knapsack Problems, J. Wiley & Sons, 1990.
D. Pisinger, P. Toth, “Knapsack Problems”, in D.Z. Du, P. Pardalos (eds.) Handbook of Combinatorial Optimization, Kluwer, Norwell, 1–89, 1997.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kellerer, H., Pferschy, U. (1998). A new fully polynomial approximation scheme for the knapsack problem. In: Jansen, K., Rolim, J. (eds) Approximation Algorithms for Combinatiorial Optimization. APPROX 1998. Lecture Notes in Computer Science, vol 1444. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0053969
Download citation
DOI: https://doi.org/10.1007/BFb0053969
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64736-2
Online ISBN: 978-3-540-69067-2
eBook Packages: Springer Book Archive