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Abstract

Metacomputing systems are intended to support remote
and/or concurrent use of geographically distributed com-
putational resources. Resource management in such sys-
tems is complicated by five concerns that do not typi-
cally arise in other situations: site autonomy and het-
erogeneous substrates at the resources, and application
requirements for policy extensibility, co-allocation, and
online control. We describe a resource management ar-
chitecture that addresses these concerns. This architec-
ture distributes the resource management problem among
distinct local manager, resource broker, and resource co-
allocator components and dejines an extensible resource
specij?cation language to exchange information about re-
quirements. We describe how these techniques have been
implemented in the context of the Globus metacomputing
toolkit and used to implement a variety of z

T
nt re-

source management strategies. We report on our xperi-
ences applying our techniques in a large testbed, GUSTO,
incorporating 15 sites, 330 computers, and 3600 proces-
sors.

1 Introduction

Metacomputing systems allow applications to assemble
and use collections of computational resources on an as-
needed basis, without regard to physical location. Var-
ious groups are implementing such systems and explor-
ing applications in distributed supercomputing, high-
throughput computing, smart instruments, collaborative
environments, and data mining [10, 12, 18, 20, 22, 6, 25].

This paper is concerned with resource management for
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metacomputing: that is, with the problems of locating
and allocating computational resources, and with authen-
tication, process creation, and other activities required
to prepare a resource for use. We do not address other
issues that are traditionally associated with scheduling
(such as decomposition, assignment, and execution order-
ing of tasks) or the management of other resources such
as memory, disk,’ and networks.

The metacomputing environment introduces five chal-
lenging resource management problems: site auton-
omy, heterogeneous substrate, policy extensibility, co-
llocation, and online control.

1.

2.

3

The site autonomy problem refers to the fact that
resources are typically owned and operated by dif-
ferent organizations, in different administrative do-
mains [5]. Hence, we cannot expect to _seecommon-
ality in acceptable use policy, schedulin~ policies, se-
curity mechanisms, and the like.

The heterogeneous substrate problem derives from
the site autonomy problem and refers to the fact that
different sites may use different local resource man-
agement systems [16], such as Condor [18], NQE [1],
CODINE [11], EASY [17], LSF [28], PBS [14], and
LoadLeveler [15]. Even when the same system is used
at two sites, different configurations and local modi-
fications often lead to significant differences in func-
tionality.

The policy extensibility probl;m arises because meta-
computing applications are drawn from a wide range
of domains, each with its own requirements. A re-
source management solution must support the fre-
quent development of new domain-specific manage-
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4.

5.

ment structures, without requiring changes to code
installed at participating sites.

The co-allocation problem arises because many appli-
cations have resource requirements that can be sat-
isfied only by using resources simultaneously at sev-
eral sites. Site autonomy and the possibility of fail-
ure during allocation introduce a need for specialized
mechanisms for allocating multiple resources, initiat-
ing computation on those resources, and monitoring
and managing those computations.

The online control problem arises because substan-
tial negotiation can be required to adapt applica-
tion requirements to resource availability, particu-
larly when requirements and resource characteris-
tics change during execution. For example, a tele-
immersive application that needs to simulate a new
entity may prefer a loweh-resolution rendering, if
the alternative is that the entity not be modeled at
all. Resource managementmechanismsmust support
such negotiation.

As we explain in Section 2, no existing resource man-
agement systems addresses all five problems. Some batch
queuing systems support co-allocation, but not site au-
tonomy, policy extensibility, and online control [16]. Con-
dor supports site autonomy, but not co-allocation or on-
line control [18]. Gallop [26] addresses online control and
policy extensibility, but not the heterogeneous substrate
or co-allocation problem. Legion [12] does not address
the heterogeneous substrate problem.

In this paper, we describe a resource management ar-
chitecture that we have developed to address the five
problems. In this architecture, developed in the con-
text of the Globus project [10], we address problems of
site autonomy and heterogeneous substrate by introduc-
ing entities called resource managers to provide a well-
defined interface to diverse local resource management
tools, policies, and security mechanisms. To support on-
line control and policy extensibility, we define an exten-
sible resource specification language that supports nego-
tiation between different components of a resource man-
agement architecture, and we introduce resource brokers
to handle the mapping of high-level application requests
into requests to individual managers. We address the
problem of co-allocation by defining various co-allocation
strategies, which we encapsulate in resource co-allocators.

One measure of success for an architecture such as this
is its usability in a practical setting. To this end, we have
implemented and deployed this architecture on GUSTO,
a large computational grid testbed comprising 15 sites,
330 computers, and 3600 processors, using LSF, NQE,
LoadLeveler, EASY, Fork, and Condor as local sched-
ulers. To date, this architecture and testbed have been

used by ourselves and others to implement numerous ap-
plications and half a dozen different higher-level resource
management strategies. This experiment represents a sig-
nificant step forward in terms of number of global nleta-
computing services implemented and number and variety
of commercial and experimental local resource manage-
ment systems employed. A more quantitative evaluation
of the approach remains as a significant challenge for fu-
ture work.

The rest of this paper is structured as follows. In the
next section, we review current distributed resource man-
agement solutions. In subsequent sections we first outline
our architecture and then examine each major function in
detail: the resource specification language, local resource
managers, resource brokers, and resource co-allocators.
We summarize the paper and discuss future work in Sec-
tion 8.

2 R,esource ‘ Management
Approaches

Previous work on resource management for metacomput-
ing systems can be broken into two broad classes:

●

●

Network batch queuing systems. These systems focus
strictly on resource management issues for a set of
networked computers. These systems do not address
policy extensibility and provide only limited support
for online control and co-allocation.

Wide-area scheduling systems. Here, resource man-
agement is performed as a component of mapping
application components to resources and scheduling
their execution. To date, these systems do not ad-
dress issues of heterogeneous substrates, site auton-
omy, and co-allocation.

In the following, we use representative examples of these
two types of system to illustrate the strengths and weak-
nesses of current approaches.

2.1 Networked Batch Queuing Systems

Networked batch queuing systems, such as NQE [1], CO-
DINE [11], LSF [28], PBS [14], and LoadLeveler [15], han-
dle user-submitted jobs by allocating resources from a
networked pool of computers. The uker characterizes ap
plication resource requirements either explicitly, by some
type of job control language, or implicitly, by selecting
the queue to which a request is submitted. Networked
batch queuing systems typically are designed for single
administrative domains, making site autonomy difficult to
achieve. Likewise, the heterogeneous substrate problem
is also an issue because these systems generally assume



that they are the only resource management system in
operation. One exception is the CODINE system, which
introduces the concept of a transfer queue to allow jobs
submitted to CODINE to be allocated by some other re-
source management system, at a reduced level of function-
ality. An alternative approach to supporting substrate
heterogeneity is being explored by the PSCHED [13] ini-
tiative. This project is attempting to define a uniform
API through which a variety of batch scheduling systems
may be controlled. The goals of PSCHED are similar in
many ways to those of the Globus Resource Allocation
Manager described in Section 5.

Batch scheduling systems provide a limited form of pol-
icy extensibility in that resource management policy is set
by either the system or the system administrator, by the
creation of scheduling policy or batch queues. However,
this capability is not available to the end users, who have
little control over how the batch scheduling system inter-
prets their resource requirements.

Finally, we observe that batch queuing systems have

limited support for on-line allocation, as these systems
are designed to support applications in which the require-
ments specifications are in the form “get X done soon”,
where X is precisely defined but ‘soon” is not. In meta-
computing applications, we have more complex, fluid con-
straints, in which we will want to make tradeoffs between
time (when) and space (physical characteristics). Such
constraints lead to a need for the resource management
system to provide capabilities such as negotiation, inquiry
interfaces, information-based control, and co-allocation,
none of which are provided in these systems.

In summary, batch scheduling systems do not provide
in themselves a complete solution to metacomputing re-
source management problems. However, clearly some
of the mechanisms developed for resource location, dis-
tributed process control, remote file access, to name a
few, can be applied to wide-area systems as well. Further-
more, we note that network batch queuing systems will
necessarily be part of the local resource management so-
lution, Hence, any metacomputing resource management
architecture must be able to interface to these systems.

2.2 Wide-Area Scheduling Systems

We now examine how resource management is addressed
within systems developed specifically to schedule meta-
computing applications. To gain a good perspective on
the range of possibilities, we discuss four different sched-
ulers, designed variously to support specific classes of ap-
plications (Gallop [26]), an extensible object-oriented sys-
tem (Legion [12]), general classes of parallel programs
(PRM [22]), and high-throughput computation (Con-
dor [18]).

The Gallop [26] system allocates and schedules tasks

defined by a static task graph onto a set of networked
computational resources. (A similar mechanism has been
used in Legion ~27].) Resource allocation is implemented
by a scheduling manager, which coordinates scheduling
requests, and a local manager, which manages the re-
sources at a local site, potentially interfacing to site
specific scheduling and resource allocation services. This
decomposition, which we also adopt, separates local re-
source management operations from global resource man-
agement policy and hence facilitates solutions to the prob-
lems of site autonomy, heterogeneous substrates, and pol-
icy extensibility. However, Gallop does not appear to
handle authentication to local resource management ser-
vices, thereby limiting the level of site autonomy that can
be achieved.

The use of a static task-graph model makes online
control in Gallop difficult. Resource selection is per-
formed by attempting to minimize the execution time
of task graph as predicted by a performance model for
the application and the prospective resource. How-
ever, because the minimization procedure and the cost
model is fixed, there is no support for policy extensibil-
ity. Legion [12] overcomes this limitation by leverag-
ing its object-oriented model. Two specialized objects,
an application-specific Scheduler and a resource-specific
Enactor negotiate with one another to make allocation
decisions. The Enactor can also provide co-allocation
functions.

Gallop supports co-allocation for resources maintained
within an administrative domain, but depends for this
purpose on the ability to reserve resources. Unfortu-
nately, reservation is not currently supported by most
local resource management systems. For this reason, our
architecture does not rely on reservation to perform co-
llocation, but rather uses a separate co-allocation man-
agement service to perform this function.

The Prospero Resource Manager [22] (PRM) pro-
vides resource management functions for parallel pro-
grams written by using-the PVM message-passing library..
PRM consists of three components: a system manager, a
job manager, and a node manager. The job manager
makes allocation decisions, while the system and node
manager actually allocate resources. The node manager
is solely responsible for implementing resource allocation
functions. -Thus, PRM does not address issues of site au-
tonomy or substrate heterogeneity. A variety of job man-
agers can be constructed, allowing for policy extensibility,
although there is no provision for composing job man-
agers so as to extend an existing management policy. As
in our architecture, PRM has both an information infras-
tructure (Prospero [21]) and a management API, provid-
ing the infrastructure needed to perform online control.
However, unlike our architecture, PRM does not support
co-allocation of resources.
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Condor [18] is a resource management system de-
signed to support high-throughput computations by dis-
covering idle resources on a network and allocating those
resources to application tasks. While Condor does not
interface with existing resource management systems, re-
sources controlled by Condor are deallocated as soon as
the “rightful” owner starts to use them. In this sense,
Condor supports site autonomy and heterogeneous sub-
strates. However, Condor currently does not interoperate
with local resource authentication, limiting the degree of
autonomy a site can assert. Condor provides an exten-
sible resource description language, called classified ads,
which provides limited control over resource selection to
both the application and resource. However, the match-
ing of application component to resource is performed
by a system classifier, which defines how matches-and
consequently resource management—take place, limiting
the extensibility of this selection policy. Finally, Condor
provides no support for co-allocation or online control.

In summary, our review of current resource manage-
ment approaches revealed a range of valuable services,
but no single system that provides solutions to all five
metacomputing resource management problems posed in
the introduction.

. . 3 Our Resource Management Ar-
chitecture

Our approach to the metacomputing resource manage-
ment problem is illustrated in Figure 1. In this architec-
ture, an extensible resource specification language (RSL),
discussed in Section 4 below, is used to communicate re-
quests for resources between components: from applica-
tions to resource brokers, resource co-allocators, and re-
source managers. At each stage in this process, infor-
mation about resource requirements, coded as an RSL
expression by the application, is refined by one or more
resource brokers and co-allocators; information about re-
source availability and characteristics is obtained from an
information service.

Resource brokers are responsible for taking high-level
RSL specifications and transforming them into more con-
crete specifications through a process we call specializa-
tion, As illustrated in Figure 2, multiple brokers may be
involved in servicing a single request, with application-
specific brokers translating application requirements into
more concrete resource requirements, and different re-
source brokers being used to locate available resources
that meet those requirements.

Transformations effected by resource brokers generate
a specification in which the locations of the required re-
sources are completely specified. Such a ground request
can be passed to a co-allocator, which is responsible for

coordinating the allocation and management of resources
at multiple sites. As we describe in Section 7, a vari&y of
co-allocators will be required in a metacomputing system,
providing different co-allocation semantics.

Resource co-allocators break a multirequest—that is,
a request involving resources at multiple sites—into its
constituent elements and pass each component to the ap-
propriate resource manager. As discussed in Section 5,
each resource manager in the system is responsible for
taking an RSL request and translating it into operations
in the local, sitespecific resource management system.

The information service is responsible for providing ef-
ficient and pervasive access to information about the cur-
rent availability and capability of resources. This infor-
mation is used to locate resources with particular charac-
teristics, to identify the resource manager associated with
a resource, to determine properties of that resource, and
for numerous other purposes as high-level resource specifi-
cations are translated into requests to specific managers.
We use the Globus system’s Metacomputing Directory
Service (MDS) [8] as our information service. MDS uses
the data representation and application programming in-
terface (API) defined on the Lightweight Directory Access
Protocol (LDAP) to meet requirements for uniformity,
extensibility, and distributed maintenance. It defines a
data model suitable for distributed computing applica-
tions, able to represent computers and networks of inter-
est, and provides tools for populating this data model.
LDAP defines a hierarchical, tree-structured name space
called a directory information tree (DIT). Fields within
the namespace are identified by a unique distinguished
name (DN). LDAP supports both distribution and repli-
cation. Hence, the local service associated with MDS is
exactly an LDAP server (or a gateway to another LDAP
server, if multiple sites share a server), plus the utilities
used to populate this server with up-to-date information
about the structure and state of the resources within that
site. The global MDS service is simply the ensemble of all
these servers. An advantage of using MDS as our infor-
mation service is that resource management information
can be used by other tools, as illustrated in Figure 3.

4 Resource Specification
Language

We now discuss the resource specification language itself.
The syntax of an RSL specification, summarized in Fig-
ure 4, is based on the syntax for filter specifications in
the Lightweight Directory Access Protocol and MDS. An
RSL specification is constructed by combining simple pa-
rameter specifications and conditions with the operators
&; to specify conjunction of parameter specifications, I; to
express the disjunction of parameter specifications, +; or

. .,.,-.-.,<.. .-. .:.. —. —..-. ... ..,.,
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to combine two or more requests into a single compound
request, or multirequest.

The set of paramet er-nsme terminal symbols is exten-
sible: resource brokers, co-allocators, and resource man-
agers can each define a set of parameter names that they
will recognize. For example, a resource broker that is
specialized for tele-immersive applications might accept
as input a specification containing a frames-per-second
parameter and might generate as output a specifica-
tion containing an mflops-per-second parameter, to be
passed to a broker that deals with computational re-
sources. Resource managers, the system components that
actually talk to local scheduling systems, recognize two
types of parameter-name terminal symbols:

● MDS attribute names, used to express constraints on
resources: for example, memory>=64 or network=atm.
In this case, the parameter name refers to a field de-
fined in the MDS entry for the resource being allo-
cated. The truth of the parameter specification is
determined by comparing the value provided with
the specification with the current value associated
with the corresponding field in the MDS. Arbitrary
MDS fields can be specified by providing their full
distinguished name.

● Scheduler parameters, used to communicate infor-
mation regarding the job, such as count (number

.!,,

of nodes required), max-t ime (maximum time re-
quired), executable, arguments, directory, and
environment (environment variables). Schedule pa-
rameters are interpreted directly by the resource
manager.

For example, the specification

&(executable=myprog)

( I (%(count=5) (mermy>=64) )
(&(count=lO) (memory>=32) ) )

requests 5 nodes with at least 64 MB memory, or 10
nodes with at least 32 MB. In this request, executable
and count are scheduler attribute names, while memory
is an MDS attribute name.

Our current RSL parser and resource manager disam-
biguate these two parameter types on the basis of the
parameter name. That is, the resource manager knows
which fields it will accept as schedr.der parameters and as-
sumes all others are MDS attribute names. Name clashes
can be disambiguated by using the complete distinguished
name for the MDS field in question.

The ability to include constraints on MDS attribute
values in RSL specifications is important. As we discuss
in Section 5, the state of resource managers is stored in
MDS. Hence, resource specifications can refer to resource
characteristics such as queue-length, expected wait time,

,, .-— .. .. _
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specification
request
multirequest
conjunction
disjunction
request-list
parameter
Op
value

:= request
.—.— multirequest I conjunction I disjunction I parameter
:= i- request-list
:= & request-list
:= I request-list
:= ( request ) request-list I ( request )
:= parameter-name op value
:==1>1<1>=1 <=1!=
:= ([a..Z][O..9][J+

Figure 4: BNF ‘grammar describing the syntax of an RSL request
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and number of processors available. This technique pro-
vides a powerful mechanism for controlling how an RSL
specification is interpreted.

The following example of a multirequest is derived from
the example shown in Figure 2.

-i-(&(count= 80) (memory>=64M)
(executable=sf_express)
(resourcemanager=ico16 .mcs. anl. gov :8711) )

(&(count=256)(network=atm)
(executable=sf-express)
(resourcemanager=
neptune.cacr. caltech.edu:755) )

(&(count=300) (ntemory>=64M)
(executable=sf-express)
(resourcemanager=modi4 .ncsa. edu:4000) )

Thisisagroundrequest: everycomponent ofthemultire-
quest specifiesa resource inanager. Aco-allocatorcan use
the resourcemanager parametersspecified inthisrequest
to determineto which resource manager each component
ofthe multirequest should resubmitted.

Notations intended for similar purposes include the
Condor “classified ad” [18] and Chapin’s %skdescrip
tion vector” [5]. Our work is novel in three respects:
the tight integration with a directory service, the use of
specification rewriting to express broker operations (as
described below), and the fact that the language and as-
sociated tools have been implemented and demonstrated
effective when layered on top of numerous different low-
level schedulers.

We conclude this section by noting that it is the combi-
nation of resource brokers, information service, and RSL
that makes online control possible in our architecture.
Together, these services make it possible to construct r~
quests dynamically, based on current system state and
negotiation between the application and the underlying
resources.

5 Local Resource Management

We now describe the lowest level of our resource manage-
ment architecture: the local resource managers, imple-
mented in our architecture as Globus Resource Allocation
Managers (GRAMs). A GRAM is responsible for

1.

2.

3.

.- .—

processing RSL specifications representing resource
requests, by either denying the request or by creat-
ing one or more processes (a ‘~ob” ) that satisfy that
request;

enabling remote monitoring and management of jobs
created in response to a resource request; and

periodically updating the MDS information service
with information about the current availability and
capabilities of the resources that it manages.

.4 GR.4M serves as the interface between a wide area
metacomputing environment and an autonomous entity
able to create processes, such as a parallel computer
scheduler or a Condor pool. Hence, a resource manager
need not correspond to a single host or a specific com-
puter, but rather to a service that acts on behalf of one or
more computational resources. This use of local scheduler
interfaces was first explored in the software environment
for the I-WAY networking experiment [9], but is extended
and generalized here significantly to provide a richer and
more flexible interface.

A resource specification passed to a GRAM is assumed
to be ground: that is, to be sufficiently concrete that the
GRAM can identify local resources that meet the speci-
fication without further interaction with the entity that
generated the request. A particular GRAM implementa-
tion may achieve this goal by scheduling resources itself
or, more commonly, by mapping the resource specification
into a request to some local resource allocation mecha-
nisms. (To date, we have interfaced GRAMs to six dif-
ferent schedulers or resource allocators: Condor, EASY,
Fork, LoadLeveler, LSF, and NQE.) Hence, the GRAM
API plays for resource management a similar role to that
played by 1P for communication: it can c~exist with local
mechanisms, just as 1P rides-on-top of ethernet, FDDI,
or ATM networking technology.

The GRAM API provides functions for submitting and
for canceling a job request and for asking when a job (sub-
mitted or not) is expected to run. An implementation of
the latter function may use queue time estimation tech-
niques [24]. When a job is submitted, a globally unique
job handle is returned that can then be used to moni-
tor and control the progress of the job. In addition, a
job submission call can request that the progress of the
requested job be signaled asynchronously to a supplied
callback URL. Job handles can be passed to other pr~
cesses, and callbacks do not have to be directed to the
process that submitted the job request. These features
of the GRAM design fa~ilitate the implementation of di-
verse higher-level scheduling strategies. For example, a
high-level broker or co-allocator can make a request on
behalf of an application, while the application monitor
the progress of the request.

5.1 GRAM Scheduling Model

We discuss briefly the scheduling model defined by
GRAXl because this is relevantto subsequent discussion
of co-allocation. This model is illustrated in Figure 5,
which shows the state transitions that may be experi-
enced by a GRAM job.

When submitted, the job is initially pending, indi-
cating that resourceshave not yet been allocated to the
job. At some point, the job is allocated the requested
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Figure 5: State transitiondiagram for resource allocation requests submitted to the GRAM resource management
API

resources, and the application starts running. The job
then transitions to the active state. At any point prior
to entering the done state, the job can be terminated,
causing it to enter the failed state. A job can fail be-
cause of explicit termination, an error in the format of
the request, a failure in the underlying resource manage-
ment system, or a denial of access to the resource. The
source of the failure is provided as part of the notification
of state transition. When all of the processes in the job
have terminated and resources have been deallocated, the
job enters the done state.

5.2 GRAM Implementation

The GRAM implementations that we have constructed
have the structure shown in Figure 6. The principal com-
ponents are the GRAM client library, the gatekeeper, the
RSL parsing library, the job manager, and the GRAM re-
porter. The Globus secu~ty infrastructure (GSI) is used
for authentication and for authorization.

The GRAM client library is used by an application or
a co-allocator acting on behalf of an application. It inter-
acts with the GRAM gatekeeper at a remote site to per-
form mutual authentication and transfer a request, which
includes a resource specification and a callback (described
below).

The gatekeeper is an extremely simple component that
responds to a request by doing three tasks: performing
mutual authentication of user and resource, determining
a local user name for the remote user, and starting a
job manager which executes as that local user and actu-
ally handles the request. The first two security-related
tasks are performed by calls to the Globus security in-
frastructure (GSI), which handles issues of site autonomy
and substrate heterogeneity in the security domain. To
start the job manager, the gatekeeper must run as a privi-
leged program: on Unix systems, this is achieved via suid
or inetd. However, because the interface to the GSI is
small and well defined, it is easy for organizations to ap-
prove (and port) the gatekeeper code. In fact, the gate-
keeper code has successfully undergone security reviews
at a number of large supercomputer centers. The map

ping of remote user to locally recognized user name min-
imizes the amount of code that must run as a privileged
program; it also allows us to delegate most authorization
issues to the local system.

The job, manager is responsible for creating the ac-
tual processes requested by the user. This task typically
involves submitting a resource allocation request to the
underlying resource management system, although if no
such system exists on a particular resource, a simple f ork
may be performed. Once processes are created, the job
manager is also responsible for monitoring the state of
the created processes, notifying the callback contact of
any state transitions, and implementing control opera-
tions such as process termination. The job manager ter-
minates once the job for which it is responsible has ter-
minated.

The GRAM reporter is responsible for storing into
MDS various information about scheduler structure (e.g.,
whether the scheduler supports reservation and the num-
ber of queues) and state (e.g., total number of nodes,
number of nodes currently available, currently active jobs,
and expected wait time in a queue). An advantage of im-
plementing the GRAM reporter as a distinct component
is that MDS reports can continue even when no gate-
keeper or job manager is running: for example, when the
gatekeeper is run from inetd.

As noted above, G@4M implementations have been
constructed for six local schedulers to date: Condor, LSF,
NQE, Fork, EASY, and LoadLeveler. Much of the GRAM
code is independent of the local scheduler, and so only a
relatively small amount of scheduler-specific code needed
to be written in each case. In most cases, this code com-
prises shell scripts that use the local scheduler’s user-level
API. State transitions are handled mostly by polling, be-
cause this proved to be more reliable than monitoring
job processes by using mechanisms provided by the local
schedulers.

6 Resource Brokers

As noted above, we use the term resource broker to denote
an entity in our architecture that translatesabstract r+
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Figure 6: Major components of the GRAM implementation. Those represented by thick-lined ovals are long-lived
processes, while the thin-lined ovals are short-lived processes created in response to a request.

source specifications into more concrete specifications. As
illustrated in Figure 2, this definition is broad enough to
encompass a variety of behaviors, including application-
level schedulers [3] that encapsulate information about
the types of resource required to meet a particular per-
formance requirement, resource locators that maintain in-
formation about the availability of various types of re-
source, and (ultimately) traders that create markets for
resources. In each case, the broker uses information main-
tained locally, obtained from MDS, or contained in the
specification to specialize the specification, mapping it
into a new specification that contain more detail. Re-
quests can be passed to several brokers, effectively com-
posing the behaviors of those brokers, until eventually the
specification is specialized to the point that it identifies
a specific resource manager. This specification can then
be passed to the appropriate GRAM or, in the case of a
multirequest, to a resource co-allocator.

We claim that our architecture makes it straightfor-
ward to develop a variety of higher-level schedulers. In
support of this claim, we note that following the defini-
tion and implementationof GRAM services, a variety of
people, including people not directly involved in GRAM
definition, were able to construct half a dozen resource
brokersquite quickly. We describe three of these here.

6.1 Nimrod-G

David Abramson and Jonathan Giddy are using GRAM
mechanisms to develop Nimrod-G, a wide-area version
of the Nimrod [2] tool. Nimrod automates the creation
and management of large parametric experiments. It
allows a user to run a single application under a wide
range of input conditions and then to aggregate the re-
sults of these different runs for interpretation. In effect,
Nimrod transforms file-based programs into interactive
“rneta-applications” that invoke user programs much as
we might call subroutines.

When a user first requests that a computational exper-
iment be performed, Nimrod/G queries MDS to locate
suitable resources. It uses information in MDS entries
to identify sufficient nodes to perform the experiment.
The initial Nimrod-G prototype operates by generating
a number of independent jobs, which are then allocated
to computational nodes using GRAM. This module hides
the nature of the execution mechanism on the underly-
ing platform from Nimrod, hence making it possible to
schedule work using a variety of different queue managers
without modification to the Nimrod scripts. As a result,
a reasonably complex cluster computing system could be
retargeted for wide-area execution with relatively little
effort.

In the future, the Nimrod-G developers plan to pro-
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vicle a higher level broker that allows the user to spec-
ify time and cost constraints. These constraints will be
used to se!ect computational nodes that can meet user
requirements for time and cost or, if constraints cannot
be met, to explain the nature of the cost/time tradeoffs.
As part of this work, a dynamic resource allocation mod-
ule is planned that will monitor the state of each system
and relocate work when necessary in order to meet the
deadlines.

6.2 AppLeS ‘

Rich Wolski has used GRAM mechanisms to construct
an application-level scheduler (AppLeS) [3] for a large,
loosely coupled problem from computational mathemat-
ics. As in Nimrod-G, the goal was to map a large num-
ber of independent tasks to a dynamically varying pool of
available computers. GRAM mechanisms were used to lo-
cate resources (including parallel computers) and to initi-
ate and manage computation on those resources. AppLeS
itself provided fault tolerance, so that errors reported by
GRAM would result in a task being resubmitted else-
where.

6.3 A Graphical Resource Selector

The graphical resource selector (GRS) illustrated in Fig-
ure 7 is an example of an interactive resource selector
constructed with our services. This Java application al-
lows the user to build up a network representing the re-
sources required for an application; another network can
be constructed to monitor the status of candidate phys-
ical resources. A combination of automatic and manual
techniques is then used to guide resource selection, even-
tually generating an RSL specification for the resources
in question. MDS services are used to obtain the infor-
mation used for resource monitoring and selection, and
resource co-allocator services are used to generate the
GRAM requests required to execute a program once a
resource selection is made.

7 Resource Co-allocation

Through the actions of one or more resource brokers, the
requirements of an application are refined into a ground
RSL expression. If the expression consists of a single re-
source request, it can be submitted directly to the man-
ager that controls that resource. However, as discussed
above, a metacomputing application often requires that
several resources—such as two or more computers and
intervening networks—be allocated simultaneously. In
these cases, a resource broker produces a multirequest,
and co-allocation is required. Ttie challenge inlesponding

to a co-allocation request is to allocate the requested re-
sources in a distributed environment, across two or more
resource managers, where global state, such as availability
of a set of resources, is difficult to determine.

Within our resource management architecture, multi-
requests are handled by an entity called a resource c-
allocator. In brief, the role of a co-allocator is to split a r~
quest into its constituent components, submit each com-
ponent to the appropriate resource manager, and then
provide a means for manipulating the resulting set of re-
sources as a whole: for example, for monitoring job sta-
tus or terminating the job. Within these general guide-
lines, a range of different co-allocation services can be
constructed. For example, we can imagine allocators that

● mirror current GRAM semantics: that is, require all
resources to be available before the job is allowed
to proceed, and fail globally if failure occurs at any
resource;

● allocate at least N out of M ~equested resources and
then return; or

● return immediately, but gradually return more r+
sources as they become available.

Each of these services is useful to a class of applications.
To date, we have had the most experience with a co-
allocator that takes the first of these approaches: that
is, extends GRAM semantics to provide for simultaneous
allocation of a collection of resources, enabling the dis-
tributed collection of processes to be treated as a unit.
We discuss this co-allocator in more detail.

Fundamental to a GRAM-style concurrent allocation
algorithm is the ability to determine whether the desired
set of resources is available at some time in the future. If
the underlying local schedulers support reservation, this
question can be easily answered by obtaining a list of
available time slots from each participating resource man-
ager, and choosing a suitable timeslot [23]. Ideally, this
scheme would use transaction-based reservations across a
set of resource managers, as provided by Gallop [26]. In
the absence of transactions, the ability either to make a
tentative reservation or to retract an existing reservation
in needed. However, in general, a reservation-based strat-
egy is limited because currently deployed local resource
management solutions do not support reservation.

In the absence of reservation, we are forced to use in-
direct methods to achieve concurrent allocation. These
methods optimistically allocate resources in the hope that
the desired set will be available at some “reasonable” time
in the future. Guided by sources of information, such as
the current availability of resources (provided by MDS) or
queue-time estimation [24, 7], a resource broker can con-
struct an RSL request that is likely, but not guaranteed,
to succeed. If for some reason the allocation eventually
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Figure 7: A screen shot of the Graphical Resource Selector. This network shows three candidate resources and
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msec and Mb/s, respectively) allows the user to select appropriate resources for a particular experiment.



fails, all of the started jobs must be terminated. This
approach has several drawbacks:

● It is inefficient in that computational resource are
wasted while waiting for all of the requested to be-
come available.

● We need to ensure that application components do
not start to execute before the co-allocator can de-
termine whether the request will succeed. Therefore,
the application must perform a barrier operation
to synchronize startup across components, meaning
that the application must be altered beyond what is
required for GRAM.

● Detecting failure of a request can be difficult if
some of the request components are directed to re-
source managers that interface to queue-based local
resource management systems. In these situations, a
timeout must be used to detect failure.

However, in spite of all of these drawbacks, co-allocation
can frequently be achieved in practice as long as the re-
source requirements are not large compared with the ca-
pacity of the metacomputing system.

We have implemented a GRAM-compatible co-
allocator that implements a job abstraction in which mul-
tiple GRAM subjobs are collected into a single distributed
job entity. State information for the distributed job is
synthesized from the individual states of each subjob,
and job control (e.g., cancellation) is automatically propa-
gated to the resource managers at each subjob site. Sub-
jobs are started independently and as discussed above
must perform a runtime check-in operation. With the
exception of this check-in operation, the co-allocator in-
terface is a drop-in replacement for GRAM.

We have used this co-allocator to manage resources
for SF-Express [19, 4], a large-scale distributed interac-
tive simulation application. Using our co-allocator and
the GUSTO testbed, we were able to simultaneously ob-
tain 852 compute nodes on three different architectures
located at six different computer centers, controlled by
three different local resource managers. The use of a co-
llocation service significantly simplified the process of
resource allocation and application startup.

Running SF-Express “at scale” on a realistic testbed
allowed us to study the scalability of our co-allocation
strategy. One clear lesson learned is that the strict “all
or nothing” semantics of the distributed job abstraction
severely limits scalability. Even if each individual paral-
lel computer is reasonably reliable and well understood,
the probability of subjob failure due to improper con-
figuration, ,network error, authorization difficulties, and
the like. increases rapidly as the number of subjobs in-
creases. Yet many such failure modes resulted simply

from a failure to allocate a specific instance of a comm-
odity resource, for which an equivalent resource could
easily have been substituted. Because such failures fre-
quently occur after a large number of subjobs have been
successfully allocated, it would be desirable to make the
substitution dynamically, rather than to cancel all the
allocations and start over.

We plan to extend the current co-allocation structure
to support such dynamic job structure modification. By
passing information about the nature of the subjob fail-
ure out of the co-allocator, a resource broker can edit the’
specification, effectively implementing a backtracking al-
gorithm for distributed resource allocation. Note that we
can encode the necessary information about failure in a
modified version of the original RSL request, which can
be returned to the component that originally requested
the co-allocation services: In this way, we can iterate
through the resource-broker/co-allocation components of
the resource management architecture until an acceptable
collection of resources has been acquired on behalf of the
application.

8 Conclusions

We have described a resource management architecture
for metacomputing “systems that addresses requirements
of site autonomy, heterogeneous substrates, policy exten-
sibility, co-allocation, and online control. This architec-
ture has been deployed and applied successfully in a large
testbed comprising 15 sites, 330 computers, and 3600 pro-
cessors, within which LSF, NQE, LoadLeveler, EASY,
Fork, and Condor were used as local schedulers.

The primary focus of our future work in this area will be
on the development of more sophisticated resource broker
and resource co-allocator services within our architecture,
and on the extension of our resource management archi-
tecture to encompass other resources such as disk and
network. We are also interested in the question of how
policy information can be encoded so as to facilitate au-
tomatic negotiation of policy requirements by resources,
users, and processes such as brokers acting as intermedi-
aries.
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