
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre de livre 1998                                     Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

Flexible Alias Protection

Noble, James; Vitek, Jan; Potter, John

How to cite

NOBLE, James, VITEK, Jan, POTTER, John. Flexible Alias Protection. In: Electronic commerce objects 

= Objets de commerce électronique. Genève : Centre universitaire d’informatique, 1998. p. 77–103.

This publication URL: https://archive-ouverte.unige.ch//unige:155933

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY) 

https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:155933
https://creativecommons.org/licenses/by/4.0


Flexible Alias Protection 
James Noble 

Jan Vitek 
John Potter 

Abstract 
Aliasing is endemic in object oriented programming. Because an object can be modified via 
any alias, object oriented programs are hard to understand, maintain, and analyse. Flexible 
alias protection is a conceptual model of inter-object relationships which limits the visi-
bility of changes via aliases, allowing objects to be aliased but mitigating the undesirable 
effects of aliasing. Flexible alias protection can be checked statically using programmer 
supplied aliasing modes and imposes no run-time overhead. Using flexible alias protection, 
programs can incorporate mutable objects, immutable values, and updatable collections of 
shared objects, in a natural object oriented programming style, while avoiding the problems 
caused by aliasing. 

1 Introduction 
I am who I am; I will be who I will be. 

Object identity is the foundation of object oriented programming. Objects are useful for mod-
elling application domain abstractions precisely because an object's identity always remains 
the same during the execution of a program - even if an object's state or behaviour changes, 
the object is always the same object, so it always represents the same phenomenon in the appli-
cation domain [30]. 

Object identity causes practical problems for object oriented programming. In general, 
these problems all reduce to the presence of aliasing- that a particular object can be referred 
to by any number of other objects [20]. Problems arise because objects' state can change, while 
their identity remains the same. A change to an object can therefore affect any number of other 
objects which refer to it, even though the changed object itself may have no information about 
the other objects. 

Aliasing has a large impact on the process of developing object oriented software systems. 
In the presence of aliases, understanding what a program does becomes more complex, as 
runtime information about topology of the system is required to understand the effects of state 
changes. Debugging and maintaining programs with aliasing is even more difficult, because a 
change to one part of a program can affect a seemingly independent part via aliased objects. 

In this paper, we present flexible alias protection, a novel conceptual model for enforcing 
alias encapsulation and managing the effects of aliasing. Flexible alias protection rests on the 
observation that the problems caused by aliasing are not the result of either aliasing or muta-
ble state in isolation; rather, problems result from the interaction between them, that is, when 

•To appear in Proceedings of 12th European Object Oriented Conference, ECOOP'98, Brussels, Belgium, 
Springer-Verlag, July, 1998. 

77 



78 Flexible Alias Protection 

aliases make state changes visible. We propose a prescriptive technique for enforcing flexi-
ble alias protection based on programmer-supplied aliasing mode declarations which relies on 
static mode checking to verify the aliasing properties of an object's implementation. The mode 
checking is modular, allowing implementations to be checked separately, and is performed en-
tirely at compile-time, with no additional run-time cost. 

Flexible alias protection is closely related to the work of Hogg [19] and Almeida [2]. Our 
proposal differs from these in two main respects. Most importantly, flexible alias protection 
allows objects to play a number of different roles, which reflect the ways in which objects are 
used in common object oriented programming styles. For example, a container's representa-
tion objects may be read and written, but must not be exposed outsi4e their enclosing container, 
while a container's argument objects may be aliased freely, but a container may not depend 
upon their mutable state. Flexible alias protection does not require the complex abstract in-
terpretation of Almeida's Balloon types, and is thus more intuitive for programmers and less 
sensitive to small changes in the implementations of the protected objects. 

This paper is organised as follows. Section 2 presents the problems created by aliasing in 
object oriented programs, and Section 3 discusses related work. Section 4 then introduces the 
concepts underlying flexible alias protection, and Section 5 presents a model for static mode 
checking. Section 6 discusses future work, and Section 7 concludes the paper. We begin by 
describing the problem caused by aliasing in object oriented programs. 

2 Aliasing and Encapsulation 

Aliases can cause problems for object oriented programs whenever a program abstraction is 
implemented by more than one object in the target program. That is, when there is one aggre-
gate object representing the whole of an abstraction and providing an encapsulated interface 
to it, and encapsulating one or more other objects implementing the abstraction represented by 
lht: aggregate object. We say the objects implementing the aggregate objects are members of 
the aggregate object's aliasing shadow1• 

Aliasing can cause problems whenever references into an aggregate object's shadow exists 
from outside the shadow. Messages can be sent to that shadow object via the alias, bypassing 
the aggregate, and modify the state of the subsidiary objects, and thus of the whole abstraction 
implemented by the aggregate object, see Figure I. References to an aggregate object's shadow 
can arise in two ways: either an object which is referenced from outside can be added into the 
shadow, or a reference from within the shadow can be passed out. 

The breaches of encapsulation caused by aliasing may affect correctness of the aggregate 
objects, causing the program to err, or, perhaps even more seriously, opening security holes in 
the application. We illustrate these problems with two examples. 

Consider an object implementing a simple hash table (see Figure 2). The hash table object 
has two components: an array of table entries and an integer, stored as variables named contents 

1 An aggregate object's shadow is similar to Wills' demesnes (41], or the objects in an Island [19] or Balloon 
[2]. In this paper, we use the term shadow to denote the intrinsic nature of this set of objects, and other terms to 
denote particular aliasing control mechanisms 



J. Noble, J. Vitek and J. Potter 79 

Figure I Unconstrained Aliasing. The hash table a has a shadow composed of representation objects 
size and contents, and some argument objects contained in the table, i, j, and k. Both contents and k 
are seen from the outside by d. Thus, d is able to change the state of a 's implementation without going 
through a. 

and size. The hash table object is an aggregate, its shadow contains the integer, the array, and 
the table entry objects in the array. If a reference to the contents array exists from outside the 
hash table object (that is, ifthe array is aliased) the contents of the hash table can be modified 
by sending a message directly to the array object, without sending a message to the hash table 
object itself. 

class Hashtable< Hashable, Item> { 

} 

private Array<HashtableEntry<Hashable, Item>> contents; 
private int size; 

public void put(Hashable key, Item val); 
public Item get(Hashable key); 

public Array<HashtableEntry<Hashable,Item>> 
expose () { 

r·eturn contents; 
} ; 

Figure 2 A Simple Hashtable 

Aliases to the hash table's elements can arise in a nwnber of ways. For example, if refer-
ences to the key and item objects are retained outside the hashtable, the hash table elements 
will be aliased. Alternatively, a hash table operation (such as get) can directly return a reference 
to an object stored in a hash table, and this will immediately create an alias. 

Aliases to the array object making up the hashtable's internal representation may also be 
created. Typically, representation objects are created within the aggregate object of which they 



80 Flexible Alias Protection 

are a part, and so preexisting references from outside the aggregate are unlikely. An operation 
upon the aggregate can, however, return a reference to one of the internal representation objects 
just as easily as it can return a reference to one of the elements- for example, Figure 2 shows 
how a hashtable could include an expose operation which would return the entire array. 

Exposing internal representation may have security implications if objects are used as capa-
bilities [13, 16]. Viewing an object's interface as a capability is appealing, because it leverages 
the safety property guaranteed by a strong type system to tum it into a protection mechanism 
for implementing access control. In effect, the type system prevents access to operations not 
explicitly listed in an object's interface. The danger with this model is that, as there are no 
strong protection domains between entities, it surprisingly easy to <;>pen an aggregate object to 
attacks [39]. Aliasing plays an important role here as it can be exploited to gain access to the 
trusted parts of an abstraction. A case in point is the recent defect in an implementation of 
SUN's digital signatures for Java applets which permitted any applet to become trusted, simply 
because an alias to the system's internal list of signatures was being returned, instead of a copy 
of that list. 

Ibis paper is concerned with a programming discipline which simultaneously prevents 
aliases to the internal representation of an abstraction from escaping the abstraction's scope, 
and protects an abstraction from existing aliases to objects it receives as argument, while pre-
serving many common object oriented programming styles. We will start by reviewing known 
approaches to this problem. 

3 Related Work 

3.1 Aliasing and Programming Languages 

The traditional solution adopted by programming languages to encapsulate references (and thus 
aliases) is to provide access modes which control how names can be used within programs. For 
example, consider the private and protected modes of Java and c++ which restrict access to 
the names of variables and methods. 

An aggregate object's shadow can be stored within the aggregate object's protected local 
state, but this is not enough to protect the shadow objects from aliasing [2, 19, 20]. As we 
have already seen, a method attached to an aggregate object can return a reference to a shadow 
object. An aggregate object can also store objects created outside itself into nominally private 
state, and these objects may have been aliased before they become members of the shadow. An 
object's encapsulation barrier protects only that individual object, and that object's private local 
state: the members of an aggregate object's shadow are not effectively encapsulated. That is to 
say, access modes protect local state by restricting access to the names of the local state, rather 
than to the objects to which the names refer. 

In practice, many programming languages do not provide even this level of encapsulation. 
In languages such as c++ and Java, the language access modes provide protection on a per-
class basis, so any object can retrieve a private reference from any other object of the same 
class, thus instantly creating an alias into another object's shadow. Eiffel includes expanded 



J. Noble, J. Vitek and J. Potter 81 

types which are always passed by value rather than reference. Unfortunately, subcomponents 
of expanded types can be passed by reference, and so can be aliased. 

Rather than rely on access modes, it is sometimes suggested that aliasing can be controlled 
using private classes - that is, a private object should be an instance of a private class, rather 
than stored in a private variable. Private classes are not a general solution, however, since they 
also protects names rather than objects. For example, private classes are typically shared among 
all instances of the class where they are declared. More importantly, if a private class is to be 
used with existing libraries or frameworks, it will have to inherit from a well known public 
class, and so dynamic type casts can be used to access the private class as if it were its public 
superclass. 

Garbage collection (or at least a restricted form of explicit memory management) is required 
to support all forms of aliasing control. If a program can delete an object while references to it 
are retained, and that object's memory is then reallocated to a new object, the new object will 
be aliased by the retained pointers to the nominally deleted object. 

In practice, then, careful programming and eternal vigilance are the only defences against 
aliasing problems in current object oriented languages. 

3.2 Full Alias Encapsulation 

In recent years there have been a number of proposals to address aliasing in object oriented 
languages. For example, expressions can be analysed statically to determine their effects, de-
scribed in terms of the memory regions they can change or depend upon [35, 28], whole pro-
grams can be analysed directly to detect possible aliasing [26, 10, 22], or hints may be given 
to the compiler as to probable aliasing invariants [18]. Objects can be referred to by tracing 
paths through programs, rather than by direct pointers, so that aliased objects will always have 
the same name [3, 6, 5], or pointers can be restricted to point to a particular set of objects [38]. 
Copying, swapping, destructive reads, or destructive assignments can replace regular reference 
assignment in programs, so that each object is only referred to by one unique or linear pointer 
[ 4, 8, 32, 17, 27]. Finally, languages can provide an explicit notion of aggregation, object 
containment, or ownership [19, 2, 9, 24, 11, 15]. Unfortunately, these proposals forbid many 
common uses of aliasing in object oriented programs. 

In this section, we review two of the most powerful proposals: John Hogg's Islands [19] 
and Paulo Sergio Almeida's Balloons [2]. Although they differ greatly in detail and mechanism 
- Islands use aliasing mode annotations attached solely to object's interfaces, while Balloons 
use sophisticated abstract interpretation - both these proposals have a common aim, which we 
term fa// alias encapsulation. Essentially, these proposals statically prevent external references 
into an object's shadow. This restriction ensures that Islands and Balloons can never suffer from 
problems caused by aliasing - their representations cannot be exposed, they cannot accept 
aliased objects from outside, and they cannot depend transitively upon other aliased objects. 
These restrictions apply only at the interface between Islands and Balloons and the rest of 
the system, so objects may be aliased freely inside or outside a Balloon or Island. Similarly, 
aliasing of normal objects is unrestricted within Islands and Balloons. This allows Islands and 



82 Flexible Alias Protection 

Balloons to encapsulate complex linked structures while still providing aliasing guarantees to 
the rest of the system. 

Unfortunately, full encapsulation of aliasing is too restrictive for many common design 
idioms used in object oriented programming. In particular, an object cannot be a member 
of two collections simultaneously if either collection is fully encapsulated against aliases. A 
collection's member is part of the collection's shadow, and as such cannot be part of another 
fully encapsulated collection. 

Islands and Balloons have mechanisms which mitigate against this restriction, generally by 
distinguishing between static and dynamic aliases - a static alias is an alias caused by reference 
from a long-lived variable (an object's instance variable or a global variable) while a dynamic 
alias is caused by a short-lived, stack allocated variable. Unfortunately, these distinctions also 
cause problems. Both Islands and Transparent Balloons allow dynamic aliases to any member 
of an aggregate object's shadow. This allows collection elements to be acted upon when they 
are within the collection, provided no static references are created. Unfortunately, this also 
allows objects which are part of an aggregate's private internal representation to be exposed. 

Islands restrict dynamic aliases to be read only, that is, Islands enforce encapsulation but 
not information hiding. Transparent Balloons impose no such restriction, so in a transparent 
Balloon, an internal representation object can be dynamically exposed and modified externally. 
Almeida also describes Opaque Balloons which forbid any dynamic aliases. That is, transparent 
balloons control static aliasing, but provide neither information hiding nor encapsulation, while 
opaque balloons completely hide and encapsulate everything they contain. 

4 Flexible alias protection 

Although aliasing has the potential to cause a great many problems in object oriented programs, 
it is demonstrably the case that these problems do not manifest themselves in the vast majority 
of programs. That is, although paradigmatic object oriented programming style uses aliasing, 
it does so in ways which are benign in the majority of cases. 

This situation parallels that of programming in untyped languages such as BCPL or assem-
bler. Although untyped languages leave a wide field open for gratuitous type errors, program-
mers can (and generally do) successfully avoid type errors, in effect imposing a type discipline 
upon the language. Of course, it is almost certain that type problems will arise over time, espe-
cially as programs are maintained by programmers unaware of the uses and constraints of the 
types in the program. As a result more formal static typing mechanisms have evolved to protect 
the programmer against type errors. The success and acceptance of a type system in practice 
depends on the extent to which it supports or constrains idiomatic programming style [25]. 

Our aim is to use techniques similar to type checking to provide guarantees about programs' 
aliasing properties, but without compromising typical object oriented programming styles. In 
particular, we aim to support many benign uses of aliasing, including objects being contained 
within multiple collections simultaneously, while still providing significant protection against 
aliasing problems. This requires that some form of aliasing be permitted, but that aliasing must 
be restricted to where it is appropriate. 



J. Noble, J. Vitek and J. Potter 83 

Some objects can always be aliased freely without affecting the program's semantics. These 
objects are instances of value types which represent primitive values, such as machine level in-
tegers, characters or booleans. Since instances of value types are immutable (they never change, 
although variables holding them can change) they cause no problems when they are shared be-
tween various aggregate objects2• Functional languages have always used aliasing to implement 
immutable referentially transparent values - the great advantage being that precisely because 
these objects are immutable, any aliasing is completely invisible to the programmer. 

The observation that value types can be aliased indiscriminately without compromising 
safety, because their state does not change, suggests an alternative formulation of the aliasing 
problem: the problem is not the presence of aliases, but the visibility of non-local changes 
caused by aliases. This suggests a different approach to dealing with aliasing: rather than 
trying to restrict aliases by constraining the references between objects, we should restrict the 
visibility of changes to objects. Aliasing can certainly be permitted, provided any changes 
within aliased objects are invisible. 

This bears out the experience that many object oriented programs have been written in spite 
of aliasing- aliasing per se causes no problems for object oriented programming: the problem 
is the unexpected changes caused by aliasing. Object oriented programs which employ aliasing 
must do so in ways which avoid critical dependencies on mutable properties of objects. 

To address these aliasing issues and to develop a programming discipline that may help 
preventing the problems described in previous section, we introduce the notion of an a/ias-
protected container as a particular kind of aggregate object which is safe from the undesirable 
effects of aliasing. The remainder of this section is devoted to specifying the characteristics 
of alias-protected containers. The following section introduces alias mode checking which 
provides the means to enforce alias protection in object oriented languages by using aliasing 
modes and roles. 

4.1 Alias-Protected Containers 

We propose to protect containers from aliasing by dividing the elements of a container's shadow 
into two categories - the container's private representation and the container's public argu-
ments. A container's representation objects are private and should not be accessible from out-
side. A container may freely operate upon (or depend upon) its representation objects -it may 
create new representation objects, change their state, and so on, but never expose them. 

A container's arguments can be publicly accessed from elsewhere - in particular, an object 
can be an argument of more than one container. Because these objects are available and modi-
fiable outside the container, the container may only depend upon argument objects inasmuch as 
they are immutable, that is, a container can never depend upon any argument object's mutable 
state. It is important to realise that the dependency is on the interface presented by the element 
objects to the collection. Provided all the operations in this interface do not rely upon mutable 
state, no changes in the element object can be visible to collection, and the element objects can 

2 Almeida describes how value types can be implemented as a specialisation of Balloons, and Hogg mentions 
immutable objects in passing. 



84 Flexible Alias Protection 

be freely aliased and mutated outside the collection. Tiris restriction protects the container's 
integrity against changes in elements caused via aliases. 

For example, a hash table typically depends on element objects understanding a message 
which returns their hash code. If an element's hash code changes (presumably caused by an-
other part of the program modifying the element via an alias) the integrity of the hash table 
will be compromised, but ifthe hash codes never change, the hash table will function correctly, 
even if other aspects of the elements change frequently. 

Because a container's argument and representation objects have different aliasing and mu-
tability restrictions - representation objects must remain inside the container, but can be read 
and written, while argument objects must be treated as immutable but can be referenced from 
outside the container - the implementation of the container needs to keep the two sets com-
pletely separate. If a representation object is accidently treated as an argument, it can be ex-
posed outside the container, typically by being explicitly returned as the result of a method. 
If an argument object is treated as part of the representation, the containers implementation 
can become susceptible to problems caused by pre-existing aliases to the argument. Figure 3 
illustrates how the objects referred to by a hash table (from Figure 2) are either part of the hash 
table's representation or arguments. 

. ...... 

. ... 

Figure 3 A hashtable's internal Array and Entry objects are part of its representation (dark grey) while 
student and RawMark objects are stored as the basbtable's arguments (light grey). Representation objects 
can only be referenced from within the hashtable aggregate (solid arrows) while arguments objects can 
be referenced from outside(dotted arrows). 

Alias protected containers themselves may be aliased, in fact they may even be mutually 
aliased. For instance, a container may be passed as argument to itself. Tiris does not cause 
problems, however, as a container cannot depend upon the mutable state of its argument objects. 

One very important aspect for the usability of any definition of alias-protected containers 
is their composability - that is whether alias-protected containers can be implemented out of 
simpler containers. 



J. Noble, J. Vitek and J. Potter 85 

4.2 Composing Containers 

Complex aggregate objects should be able to be composed from simpler objects - that is, 
containers need to be able to use other objects as part of their implementations. This is easily 
accommodated within our container model - a container can certainly have another object 
(which could be a container) as part of its representation. Provided the internal object does 
not expose its own representation or depend upon its arguments, the composite container will 
provide the same level of aliasing protection as an individual container object. 

Sometimes, however, a composite container may need to use an internal container to store 
some of its argument or representation objects. For example, a university student records sys-
tem may need to record the students enrolled in each course and the raw marks each student has 
received. Each course object can use a hash table to keep track of its students and their marks, 
however students will be part of the course's arguments (since a single student could be enrolled 
in multiple courses) while each student's raw marks will be part of the course's representation, 
since only weighted final marks should actually be presented to students. As far as the internal 
hash table is concerned, both the student objects and mark objects are its arguments - the 
students being the hash table's keys and the raw marks the hash table's items. The hash table 
will also have its own representation objects, which must be completely encapsulated inside it. 

To maintain flexible alias protection, a container's representation objects and argument ob-
jects must be kept completely separate. This requirement holds no matter how a container is 
implemented. When a container uses an internal collection, this requirement must be enforced 
on the internal collection also. If a representation object could be passed into the internal 
collection, then retrieved and treated as if it were an argument, then the composite container's 
representation could be exposed. Similarly, if an argument could be retrieved from an inner col-
lection and treated as part of the composite container's representation, the composite container 
would become susceptible to its arguments aliasing. 

To avoid breaching encapsulation, composite containers have to be restricted in how they 
can pass objects to internal objects. We consider that each object has one or more argument 
roles, which describe how the object uses its arguments. An object must keep its various argu-
ment roles separated - in particular, it may only return an argument as a particular role from 
some message if the argument was passed into the object as the same role. For example, a 
simple collection, such as a set, bag, or list, will have only one argument role, while an indexed 
collection, such as a hash table mapping keys to items, will have two roles, one for its keys 
and one for its items. A composite container may only store one kind of object (argument or 
representation) in any given inner object's role. Thus, an enclosing container can store part of 
its representation in an inner container and retrieve it again, sure that the inner container has not 
substituted an argument object or an object which is part of the inner container's representation. 

Reconsidering the university course example, the hash table will have a key role and an item 
role. The course object stores its argument Student objects in the hash table's key role, and its 
representation objects representing the students' marks in the hash table's item role, fig. 4. 



86 Flexible Alias Protection 

Figure 4 A Course uses a hashtable as part of its representation (dark grey) while Student and Lecturer 
objects are the course's arguments (light grey). The hashtable also stores RawMark objects for each 
student, and these are arguments to the hashtable but part of the Course's representation (mid gray), so 
cannot be accessed from outside the Course (dotted arrows). 

4.3 Summary 

We have introduced flexible alias protection to provide a model of aliasing which supports 
typical object oriented programming styles involving aggregate container objects. Flexible 
alias encapsulation separates the objects within an aggregate container into two categories -
representation objects which can be modified within the container but not exported from it, and 
argument objects which can be exported from the container but which the container must treat 
as immutable. Argument objects can be further divided into subcategories, each representing a 
different argument role. Just as a container's representation objects must be kept separate from 
its argument objects, so each role must be kept independent. 

These restrictions can be expressed in the following invariants: 

• Fi No Representation Exposure -A container's mutable representation objects should 
only be accessible via the container object's interface. No dynamic or static references to 
representation objects should exist outside the container. 

• F2 No Argument Dependence -A container should not depend upon its arguments' 
mutable state. That is, a container should use arguments only insofar as they are im-
mutable. 

• Fa No Role Confusion - A container should not return an object in one role when it 
was passed into the container in another role. 

In the next section we describe how aliasing modes ensure these three invariants can be 
checked statically for a variety of container types. 



J. Noble, J. Vitek and J. Potter 87 

5 Aliasing Modes 

We have developed a set of aliasing modes and a simple technique, aliasing mode checking, to 
statically ensure invariants F1 .•• F3 hold, so that a container can defend itself against possible 
aliasing problems. Aliasing mode checking aims to preserve as much as possible of the paradig-
matic object-oriented style, including the benign use of aliasing, while making program's alias-
ing properties explicit. Aliasing mode checking is based on declarations of aliasing modes, 
which are similar to the modes used in Islands [19] or the cons t mode used in c++ [36]. An 
aliasing mode is essentially a tag which annotates the definition of a local name, and restricts 
the operations which can be performed upon objects through that name. Modes are purely 
static entities, having no runtime representation. Like the c++ const attribute, and unlike 
Island's modes, our aliasing modes can decorate every type constructor in a type expression, 
and are propagated through the expressions in the program, just as types are. Also like c++ or 
Islands' modes, our modes are relational in that they restrict access only through the name they 
annotate - if an object is aliased by another name, the aliases may have different modes and 
allow different operations to be performed on the object. Unlike c++'s const, modes may 
not be cast away. 

Aliasing mode checking verifies an object's aliasing properties to a similar extent that a 
static type checker verifies an object's typing properties. Working from declarations supplied 
by the programmer, an aliasing mode checker propagates aliasing modes through expressions. 
The resulting modes are then checked for consistency within the defining context. Like most 
type checking, aliasing mode checking is conservative, so it should not accept programs which 
do not have the required aliasing properties, but it may reject programs which actually have 
the required properties if it cannot verify them statically. Also like type checking, aliasing 
mode checking is enforced by a set of simple, local rules, designed to be easy for programmers 
to understand and to debug. Note that although they are similar, aliasing mode checking and 
type checking are completely orthogonal. An expression's aliasing mode correctness implies 
nothing about its type correctness, and vice versa. 

The aliasing mode system comprises the following modes: arg, rep, free, var, and val. 
These modes decorate the type constructors in a language's type expressions, resulting in moded 
type expressions. The arg and var modes optionally also have a role tag R, which is used 
to distinguish between similar modes which play different roles. The first two modes, rep 
and arg, are the most important, and identify expressions referring to the representation and 
argument objects of containers. The.free mode is used to handle object creation, the val mode 
is syntactic sugar for value types, and the var mode provides a loophole for auxiliary objects 
which provide weaker aliasing guarantees. To separate argument objects from representation 
objects and argument objects in other roles, different modes are not assignment compatible, 
except that expressions of.free mode can be assigned to variables of any other mode (assuming 
type compatibility). 

The modes attached to the parameters of the messages in an object's interface (including 
the receiver, self) determine the aliasing properties for the object as a whole. For example, if an 
object uses only modes arg,free, and val, it will be a "clean" immutable object, that is, it will 
implement a referentially transparent value type. If all of an object's method's parameters and 



88 Flexible Alias Protection 

return values (except the implicit self parameter) are restricted to arg,free, or val, the object 
will be an alias-protected container with flexible alias protection, and if in addition it has no 
variables of arg mode, the object will provide full alias encapsulation. The modes of an object's 
internal variables are used to check that the aliasing properties of the object's implementation 
match those of the declarations, as follows: 

rep A rep expression refers to an object which is part of another object's representation. Ob-
jects referred to by rep expressions can change and be changed, can be stored and re-
trieved from internal containers, but can never be exported from the object to which they 
belong. 

arg n A arg expression refers to an object which is an argument of an aggregate object. Ob-
jects referred to by arg expressions can never change in a way which is visible via that 
expression - that is, arg expressions only provide access to the immutable interface of 
the objects to which they refer. There are no restrictions upon the transfer or use of arg 
expressions around a program. 

free A.free expression holds the only reference to an object in the system, so objects referred 
to by a.free expression cannot be aliased. In particular, the mode of the return values of 
constructors is free. Expressions of mode free can be assigned to variables of any other 
mode, provided that any given.free expression is always assigned to variables of the same 
other mode. 

va/ A val expression refers to an instance of a value type. The va/ mode has the same semantics 
as the arg mode, however, we have introduced a separate val mode so that explicit arg 
roles are not required for value types. The va/ mode is the only mode which implies a 
constraint upon the type of the expression to which it is bound, and can be automatically 
attached to all expressions of value types where no other mode is supplied. 

var n The var mode refers to a mutable object which may be aliased. Expressions with mode 
var may be changed freely, may change asynchronously, and can be passed into or re-
turned from messages sent to objects. This mode is basically the same as the reference 
semantics of most object oriented programming languages, or the var mode in Pascal, 
except that it obeys the assignment (in)compatibility rules of the other modes. 

Note that modes and roles are not specific to a particular object oriented language, but do 
require a strong static type system. Our examples use an idealisation of Java with parametric 
polymorphism, based on Pizza [34], For pedagogical reasons, in places we use more explicit 
role annotations on variables and parameters than is strictly necessary. 

5.1 Modes and Invariants 

The purpose of aliasing modes is to enforce the flexible alias encapsulation invariants F1 to F3 . 

The invariants are enforced by recasting them in terms of the modes of expressions, rather than 
sets of objects, and then restricting the operations permissible on expressions of various modes. 



J. Noble, J. Vitek and J. Potter 89 

This results in three mode invariants, each corresponding to one flexible alias encapsulation 
invariant. The semantics of these invariants are implicit in the semantics of the modes described 
above, but we will consider each separately, as follows: 

• M1 No Representation Exposure - No expression containing mode rep may appear in 
an object's interface. An aggregate object's representation should remain encapsulated 
within that object. In the mode system, component objects which make up an object's 
representation will have mode rep, so they should not be returned from that object. Ex-
pressions including mode rep should not be accepted as arguments, due to the possibility 
of preexisting aliases. We take an object's interface to include all external variables or 
functions visible within an object, so this restriction (together with the composition rules 
below, §5.4) also stops objects exposing their representation through a "back door". 

• M2 No Argument Dependence -No expression of mode arg may be sent a message 
which visibly changes or depends upon any mutable state. Objects referred to by expres-
sions of mode arg may be freely aliased throughout the system, so containers may not 
depend upon their mutable state. To enforce this restriction, we forbid messages sent to 
arg expressions which access any mutable state. The only messages which may be sent to 
arg expressions are those which are purely functional - we call them clean expressions. 
For the same reason, arg expressions may only be passed to other functions as mode arg. 

• M3 No Role Confusion - No expression of any mode except fee may be assigned to 
a variable of any other mode. Objects subject to mode checking must keep objects of 
different roles separate. This can be implemented fairly simply by forbidding assignment 
between expression of different modes. 

Immutable Interfaces 

Rule M2 for avoiding argument dependencies requires that messages sent to expressions of 
mode arg should not depend upon mutable state, or cause any side effects. We call these 
types of messages clean messages, and they should be identified by an annotation on method 
declarations. One simple definition of a clean message is that it is made up only of clean 
expressions, where a clean expression either reads a variable of mode arg or val, or sends a 
clean message - the only.modes which may appear in a clean method definition are arg, va/, 
or fee, and a clean method cannot modify variables. More complex definitions of clean could 
be formulated to have the same effect, but with fewer practical restrictions. 

However it is defined, clean will impose restrictions on the way a container can use its 
arguments, but these restrictions are not as severe as they may seem. This is because aliasing 
mode checking distinguishes between clean inteifaces and clean objects. A clean interface 
provides access to the immutable properties of an otherwise mutable object, while a clean 
object implements an immutable value type. A mode arg reference to a mutable object restricts 
the use of that object to the clean portion of its interface - if the object is aliased elsewhere 
via rep or varmode, those references can make full use of the object. Completely clean objects 
are only required when value semantics (mode val expressions) are to be used, and should be 
identified by annotations on objects' definitions. 



90 Flexible Alias Protection 

5.2 Example: A Simple Hashtable 

To illustrate the use of modes and roles Figure 5 shows a simple example of a muve hashtable 
class completely annotated with mode declarations - compare with Figure 2. The hashtable 
is represented using an array of hashtable entries which hold the keys and items stored in the 
table. 

This example uses three modes - arg, val, and rep. Argument items to be contained within 
the hashtable are declared as mode "arg k" or mode "arg i" - that is, mode arg with role tag k 
for keys or i for items. The modes are identified both in the declarations of method parameters 
and return values, and within the definition of the table representation array. The representa-
tion array object holding the hashtable entries is mode rep, because it needs to be changed by 
the hashtable (to store and retrieve entries). The entries themselves are similarly mode rep. Be-
cause the table contains argument objects (which are mode arg), the table's full moded type is 
rep Array< HashtableEntry<arg k Hashable, arg i Item>>. Finally, integers 
are used to return size of the hashtable. Since integers are value types, these are mode val. 

class Hashtable< argk Hashable, argi Item> { 
private rep 

} 

Array< rep HashtableEntry<arg k Hashable, arg i I tern> > 
contents; 

privateval int size; 

publicvoid put(argk Hashable key, argi Item value}; 
publicargi Item get(argk Hashable key}; 

Figure s A Hashtable with Aliasing Mode Declarations 

5.3 Mode Checking 

In this section we give an intuitive overview of mode checking, as a formal definition is be-
yond the scope of this paper. A method is mode checked by first determining the modes of its 
constituent expression's terms, then propagating modes through expressions. Determining the 
mode of the terms in an expression is generally quite simple - aliasing modes are attached to 
terms in the environment. Propagating modes through compound subexpressions is more com-
plicated, but assuming moded type information for operators is available in the environment, 
parameter modes can be checked against the environment definitions, and then the operator's 
result mode from the environment can be taken as the mode of the whole subexpression. 

Figure 6 shows the definition of the hashtable's get method. The figure includes an arg k 
mode declaration on the method's key parameter, and is annotated with the modes of the most 
crucial terms in the method. 

The most important message send in the get method occurs on the first line, in int hash 
key . hashCode ( ) . The mode of key is arg, and only clean messages may be sent to 



J. Noble, J. Vitek and J. Potter 

arg i Item get (arg k Hashable key } { 
val int hash = key. hashCode (} ; 
val int index = 

(hash & Ox7FFFFFFF} % contents.length; 
rep HashtableEntry<arg k Hashable, arg i Item> e; 
for (e = contents[index]; e !=null ; e = e.next} { 

91 

II all rep HashtableEntry<arg k Hashable,arg i Item> 
if ( (e. key. hashCode () == hash) && e. key. equals (key) ) { 

II hashCode and equals must be clean 
return e. item; 

11 . .. 

Figure 6 The Hashtable Get Method 

expressions of mode arg. Provided the hashCode method is clean, it may be sent to the key 
parameter object. Since hashCode returns an integer, its return value has mode val and so 
can be assigned to a mode val variable. The arithmetic on the second line is simple: arithmetic 
operators on mode val expressions return mode val. 

The expressions within the for loop are more complex to check, as these involve a num-
ber of propagations. First, the mode of contents[ index] must be determined. This is a 
index operation on the contents array. Since the array has the mode rep Array<rep 
HashtableEntry<arg h Hashable, arg i Item>>, the result of an index operation 
will be the mode of the hash table entries - rep HashtableEntry<arg h Hashable, 
arg i Item>. This is the same as the mode of thee variable, so the assignment can pro-
ceed. Since this is a rep mode, the fields of e (and other HashtableEntries which also 
have mode rep) can be read and assigned to. The HashtableEntry objects have two fields, 
key and i tern with modes arg k and arg i respectively. Since arg k objects support clean 
hashCode and equals methods, these two sends can proceed even though they are sent to 
the mode arg expression e. key. Finally, e. i tern can be returned since it has mode arg i. 

5.4 Composing Moded Types 

Mode checking in the context of a single method is quite simple, and is adequately covered by 
the rules and invariants described above. In fact, the above rules apply within a single static 
type environment, such as a module or package, even if this involves more than one class. For 
example, the hash table above actually involves a number of objects (the hash table itself, its 
component array, and the hash table entries) but does so solely from the perspective of the hash 
table. 

Mode checking which crosses scope boundaries is somewhat more complex. When an ag-
gregate object is composed from a number of other objects, the modes in the aggregate object 
must be unified with the externally visible modes of its subsidiary objects - that is, the sub-



92 Flexible Alias Protection 

sidiary objects' arg and var roles. We call this process aliasing mode parameter binding, and it 
is analogous to the binding of type parameters when instantiating generic types. The complex-
ity arises when containers are composed inside other objects, as any mode must be able to be 
bound to mode arg moded type parameters of encapsulated containers. 

For example, imagine the hash table being used to represent the relationship between Student 
objects and RawMark objects representing the emolment in a university course (see Figure 7). 
The Student objects have mode arg, because they do not belong to the Course object-
in particular, one student can be emolled in a number of courses. The RawMark objects are 
part of the Course object's representation (i.e. mode rep), to ensure that they are encapsulated 
within the Course, and also so that they can be sent messages which change their state to 
record each Student's raw marks. These rep RawMark objects need to be stored within the 
Hash table, that is, passed to variables and retrieved as results which were declared as mode 
arg (see Figure 5). 

class Course<arg s Student> { 

} 

private rep Hashtable<arg s Student, rep RawMark> marks 
new Hashtable(); 

publicvoid enrol (args Student s) { 
rep RawMark r = new RawMark ( ) ; 
marks.put(s, r); 

} 
publicvoid recordMarkFor(args Student s, 

} 

val String workUnit, val int mark) { 
marks.get(s) .recordMarkFor(workUnit, mark); 

publicvoid finalReport (args Student s) { 
marks.get(s) .finalReport(); 

} 

Figure 7 A Course represented by a Hashtable 

Aliasing mode parameter binding occurs when generic types are instantiated and their pa-
rameters bound. A sequence of actual moded types (containing the client's roles) must be 
bound to a sequence of formal moded types (containing the server's roles), resulting in a map-
ping from formal to actual moded type parameters. Each moded type parameter is considered 
individually, in two stages. First, the parameter roles are bound, and then the aliasing modes in 
the bindings are checked. 

Each formal role in the server must map to one actual role in the client. One actual role 
may be mapped by more than one formal role, however. The most important feature of these 
mappings is that they must be consistent, that is there must be only one mapping for each 
object within any given scope, and whenever parameters are passed to or results retrieved from 
a particular object, the same mappings must be used. 



J. Noble, J. Vitek and J. Potter 93 

The aliasing mode bindings in these mappings are then checked depending upon the modes 
within the server's formal parameters. Formal parameters may have either mode arg or mode 
var (since mode rep is encapsulated within components, and modes.free and vat are global so 
do not need to be bound). Formal mode parameters of mode arg can be bound to any actual 
mode, and formal parameters of mode var can be bound to any actual mode except arg. 

These binding rules are designed to ensure that the flexible alias encapsulation invariants 
of an outer container are maintained, assuming they are maintained by an inner container. The 
interesting cases occur when objects which are parts of an outer container are passed to an inner 
encapsulated container, since the basic rules encapsulate aliasing in each individual container. 

The outer container's representation is protected against exposure (F1 is maintained) be-
cause the inner container can only return the outer container's representation objects back to 
the outer container, as the inner container is part of the outer container's representation. An 
inner container cannot depend upon any of the outer container's arguments, because the outer 
container's arguments can only be bound to mode arg in an inner container. Thus F2 for the 
whole container is supported by M2 in the inner container. 

Similarly, the role binding rules and M3 in an inner container ensure that the enclosing 
container's roles are not confused, maintaining F3 • Each formal role in the inner container can 
only be bound to at most one of the outer container's roles, so objects cannot be inserted into the 
inner container under one outer container role and retrieved as another. Several inner container 
roles may be bound to one outer container role, but this simply means the inner container makes 
a finer distinction within the outer container's roles. 

5.5 Choice of Modes 

Our choice of aliasing modes may seem somewhat idiosyncratic. While some of the modes 
(var, rep, vat) are hopefully noncontroversial, and others taken directly from previous work 
(free from Islands [ 19]), the arg mode is novel. We have also omitted several modes from other 
work, including read and unique modes [19, 2]. This section presents some of the rationale for 
our choice of modes. 

Modeva/ 

The val mode is in a strict sense redundant, as its semantics are essentially the same as arg 
mode, and could be replaced by arg mode without weakening the system. We have retained 
vat mode for a number of reasons, foremost of which is that we share a sense of the overall 
importance of value types [2, 29, 23]. A separate val mode provides an additional cue to the 
programmer when used to describe a component of a container's representation. Reading the 
moded type declaration rep Foo<arg a Shape> a programmer can conclude that the arg 
a components of Foo are "real" arguments which may be aliased elsewhere. In contrast, the 
similar declaration rep Foo<val Shape> makes clear that the Shape components are pure 
value types. More practically, an explicit val mode greatly reduces the number of roles pro-
grammers must consider when designing objects, because all expressions which handle clean 
objects can have mode vat. 



94 Flexible Alias Protection 

The Restrictions on Mode arg 

The restrictions we have placed on mode arg are particularly tight. Mode arg combines the re-
strictions of modes like c++ 's cons t, which prevents modifications to objects, and a strong 
transitive sense of referential transparency, so no changes are visible through arg mode refer-
ences. The second part of this restriction is certainly necessary to guarantee the flexible aliasing 
encapsulation invariants, in particular F2 • The first part of this restriction is less necessary, be-
cause the aliasing invariants implicitly assume that a container's arguments may be changed 
asynchronously via aliases at any time, so no mode safety would be lost by allowing changes 
via an arg reference (at least in sequential systems). We have imposed this restriction as a mat-
ter of taste, to keep the mode system as simple as possible, and because widespread use of a 
wri teonly mode seems quite counterintuitive [37). 

read and unique Modes 

Islands [19] make great use of a read mode, which can be seen as a transitive version ofC++'s 
cons t. These read mode expressions cannot be used to change mutable state, and cannot be 
stored in object's instance variables, but are not referentially transparent, so the objects upon 
which they depend may be changed ''underfoot" via aliases. 

We have omitted a read mode for three reasons. First, read expressions are used to dy-
namically expose objects which are part of Islands. Since argument objects within flexibly 
encapsulated containers can be statically or dynamically aliased outside, a read mode is much 
less necessary. Second, to be useful, a read mode must constrain Islands' clients, and we have 
tried to avoid modes which propagate upwards, out of containers into their context. Third, 
especially because of the restrictions on storing read expressions into objects' variables, read 
does not fit well with typical object oriented programming styles. 

Islands also introduced a unique mode [19], and similar ideas are used in Balloons [2] and 
have been proposed by others [32, 8, 17]. A unique variable is linear - it holds the only ref-
erence to an object [4]. We have not introduced a unique mode for much the same reasons we 
have omitted read. Like a read mode, a unique mode is useful in some cases, for example, a 
unique mode allows objects to be inserted to and removed from encapsulated containers without 
copying or aliasing. Like a read mode, a unique mode extends its protection "upwards", requir-
ing respect from containers' clients. Also, a unique mode may not provide as much protection 
as might be imagined, since unique objects can be shared via non-unique "handle" objects [32). 
Unfortunately, making effective use of unique objects seems to require programming language 
support, such as a destructive read [19], copy assignment [2], or swapping [17]. Finally, our 
free mode reduces the need for a unique mode, although at the cost of requiring extra object 
copying in some circumstances. 

Upwards and Downwards Mode Restrictions 

Most of our aliasing modes are anchored at a particular object, and propagate downwards into 
the implementation of that object, restricting the ways it can use other objects. This is in con-



J. Noble, J. Vitek and J. Potter 95 

trast to modes like read and unique which work upwards, giving rise to restrictions on objects' 
clients, Mode arg is a downward mode par excellence - arg imposes a great many restric-
tions on a container's implementations, but none on a container's client. We prefer downward 
modes to upward modes for several reasons. We assume objects with flexible alias encap-
sulation will form part of a traditional, alias-intensive object oriented system, and we aim to 
support a paradigmatic object oriented programming style, so we cannot make assumptions 
about programs' global aliasing behaviour. We don't want programmers to have to rewrite 
code to conform to mode restrictions. We imagine aliasing modes infiltrating the systems bot-
tom up - our flexible alias encapsulation is particularly suitable for describing properties of 
existing collection libraries, for example. Containers with flexible alias encapsulation must de-
fend themselves against aliasing problems: they cannot rely on the rest of the program "doing 
it for them" by obeying mode restrictions. 

The only assumption we do accept about the "rest of the program" is that any methods 
or expressions claiming to be clean or free are in fact clean or free. In a way, this constraint 
also flows downwards, from the interface of the external objects to their implementation, rather 
than upwards out of a container to its elements. We view clean and free as descriptions of 
the properties of external objects in the program, which restricts the operations which flexible 
alias encapsulated containers can do with those external objects, rather than restrictions on the 
external objects. 

5.6 Object Oriented Idioms 

We conclude the presentation of aliasing modes by showing how they can be used to capture 
the aliasing properties of a number of common object oriented programming idioms. 

Flyweights as clean objects 

Flyweight objects [12] contain no mutable intrinsic state, that is, a Flyweight object is an in-
stance of a value type. A Flyweight can be described using the mode system as a clean object, 
that is, an object which provides only a clean interface. A clean object is restricted to ex-
pressions of modes arg, free, and val - in particular, the mode of self is arg, which prevents 
assignment to any instance variables. For example, a simple Glyph flyweight could be imple-
mented as a clean object: 

clean class Glyph { 
privateval Font font; 
privateval int size; 
publicfree Glyph( val Font _font, val int _size) { 

font = _font; size = _size; 
I I . .. 

Although clean objects cannot normally access mutable state, they must still be constructed 
and initialised. Aliasing modes model construction explicitly, by treating constructors as special 



96 Flexible Alias Protection 

methods which return mode.free. This allows objects' instance variables to be initialised within 
constructors, because free does not have the clean-message only restriction of mode arg. A 
clean object's variables could even be initialised after construction, for example to cache the 
results of a clean method, modelling language constructs such as Java's blank finals [14) or 
Cecil's per-object field initialisers [7]. 

Collections and Facades with Full Alias Encapsulation 

Collections and Facades are usually modelled as containers with flexible alias protection, that is, 
as objects where only arg, val, and.free modes may appear in their method interfaces (including 
constructors) and any variables with scope larger than an object may only be read as mode arg. 
Aliasing modes can enforce the kind of full alias encapsulation provided by Islands [19) or 
Balloons [2]. In addition to the restrictions for flexible alias protection, instance variables of 
fully encapsulated containers may not have mode arg subcomponents. This allows aliased 
objects to be passed into a container, but not stored directly within it - to store an object it 
must first be copied, producing a.free object which can then be passed to a mode.free parameter 
and assigned to a mode rep variable. For example, a fully encapsulated TupperwareSet 
could be implemented using a Set with flexible alias protection as follows: 

class Tupperwareset { 
private 

rep Set<rep Object> storage; I I no arg subcomponents. 
public 

void add(free Object _o) { 

} 

rep Object o; // for clarity 
o = _o. ; I I assign free copy to rep 
storage. add (o) ; 

If the _o argument was mode arg rather than mode free, it could not be added to the rep 
storage set. 

Iterators for Collections 

Iterators [12] are commonly used to provide sequential access to collections. Unfortunately, 
by their very nature, iterators must alias the collections they iterate over, indeed, iterators often 
need direct access to containers' private implementations for efficiency reasons. This aliasing 
is made explicit in the rnoded type declarations, where an extra var role is required to indicate 
that implementations and iterators are aliased. 

class Fastvector<var a Array<argi Item>> { 
private 

var a Array<arg i Item> table; I I note var 
public 



J. Noble, J. Vitek and J. Potter 

} 

free FastVectoriterator<var a Array<arg i Item >> 
newiterator () { 

FastVectoriterator(this.table); 
II hand in internal table 

} 

class FastVectoriterator<var a Array<argi Item>> { 
public 

free FastVectoriterator<var a Array<arg i Item>> 
FastVectoriterator(var a Array<argi Item>>) { 
II direct access to Array implementation 
II via var parameter inside constructor ... 

class IteratorClient { 
private 

var FastVector<var a Array<rep Elem e>> arr; 
public 

void iterate() { 
var FastVectoriterator<var a Array<rep Elem e>> it; 
rep Elem e; 

97 

for (it=arr.newiterator(); it.hasNext; e = it.next) { 
e.use(); 
I I . .. 

In the example, the iterator and vector have mode var in their moded types, so they cannot 
be exported from the IteratorClient object, ifthe IteratorClient is to be an alias-
protected container. 

6 Discussion 

In this section we discuss further aspects of flexible alias protection and aliasing mode checking, 
and describe the current status of our work. 

6.1 Usability 

Because object identity is such a fundamental part of the object orientation paradigm, problems 
with aliasing cannot really be "solved". Any attempt to address the aliasing program for practi-
cal object oriented programming must be evaluated as an engineering compromise: how much 
safety does it provide, at what cost, and, most importantly, how usable are the mechanisms by 
typical programmers doing general purpose programming. 



98 Flexible Alias Protection 

The crucial question is how natural (or how contrived) a programming style is required by 
the proposed aliasing mode checking. Obviously aliasing mode declarations impose a syntactic 
overhead, but this at most doubles the cost of the kind of static type declarations used in Eiffel 
or c++, even if all type declarations must be annotated with modes. In return for the extra 
syntax, flexible alias encapsulation imposes significantly weaker restrictions on program de-
sign than other types of alias encapsulation [2, 19, 24], while still providing protection against 
common aliasing problems. In particular, flexible encapsulation allows container arguments to 
be aliased, permitting many programming idioms which cannot be used when aliases are fully 
encapsulated. 

Making aliasing modes explicit has advantages when checking aliasing modes and report-
ing aliasing errors. Like type checking, aliasing mode checking only needs information which 
is in the scope of the expression to be checked. Methods can be checked individually and incre-
mentally, and because alias modes are visible to the programmer in the program's text, errors 
can be reported in terms which programmers should be able to understand. This is in contrast 
to the sophisticated static analysis required to check Balloon types, which may need to check 
the implementation of a number of different classes as a unit, and which reports errors in terms 
of possible runtime aliasing states, rather than syntactic properties of the program [2]. The abil-
ity to present comprehensible error messages points towards an important secondary benefit of 
programmer-supplied aliasing declarations. Making alias modes explicit should help provide a 
conceptual language within which programmers can think about the aliasing properties of their 
programs and designs, in the same way that type systems promote awareness of program's type 
properties. 

6.2 Inheritance and Subtyping 

Aliasing issues are generally considered to be orthogonal to subtyping and inheritance [19, 2], 
so alias mode checking should be orthogonal to type checking and subtyping. In practice, there 
can be interplay between objects' aliasing properties, subtyping, and inheritance. 

Subtyping is defined by the substitution principle - that an instance of a subtype can be 
used wherever an instance of a supertype is acceptable [l]. Considering aliasing, substitution 
requires that a subtype's aliasing guarantees cannot be weaker than its supertype's. The precise 
rules can be derived from the aliasing mode invariants (particularly M3 ), expressed in the mode 
binding rules in section 5.4. A subtype's aliasing modes must be able to be bound wherever 
its supertype's modes can be bound. The main consequence of this rule is that a type's clean 
interface must be a subtype of its supertype's clean interface, for all types in the program. 

Alias mode checking depends upon inheritance, at least, it treats objects as if inheritance 
had been flattened. Modes introduce dependencies which make subclasses more dependent 
upon details of their superclasses, exacerbating the fragile base class problem. As with typing, 
visibility declarations can offer subclasses some protection against changes to superclasses 
mode definitions, by restricting the scope of the changes. If inheritance is used for code reuse, 
a subclass may require different modes to its superclass, giving rise to inheritance anomalies 
similar to those found in concurrent systems [31]. 



J. Noble, J. Vitek and J. Potter 99 

6.3 Concurrency 

Flexible alias protection and aliasing modes provide a good foundation within which object 
oriented languages can support concurrent execution. Flexibly encapsulated objects can be 
units of concurrency control, that is, a container can manage concurrent access to itself and its 
representation objects. The M1 invariant guarantees that no process is able to access a rep object 
without first passing through its enclosing container, and thus being subject to the container's 
concurrency control regime. Containers and their rep objects can be internally multi-threaded 
(providing intra-object concurrency) and they must manage this concurrency internally. 

The accessing modes map particularly well onto the Aspects of Synchronisation model of 
concurrency control [21] . This model divides concurrency constraints into three aspects -
exclusion constraints which protect objects against conflicting threads, state constraints which 
allow access to an object only when is it in a particular state, and coordination constraints 
which can depend upon multiple unrelated objects. Exclusion and state constraints are local 
to individual objects, that is, a container and any rep subcomponents. Transaction constraints 
involve multiple independent objects, so apply to objects which use mode var expressions. 

Finally, clean objects and interfaces do not require any form of concurrency control, because 
they do not involve mutable state. This is particularly useful in conjunction with flexible alias 
encapsulation, because multiple concurrent processes and multiple concurrent containers can 
safely store and access shared elements via mode arg or mode va/ without any concurrency 
control, because arg and val mode references only provide access to clean interfaces. 

6.4 Mode Polymorphism and Inference 

Our system of aliasing modes is more restrictive than it needs to be. This is because the pro-
grammer is forced to choose a specific mode declaration for every argument and variable, even 
though more than one declaration may be consistent within the context of the whole program. 
Unfortunately, once a mod,e has been chosen for a particular method or variable, other uses of 
that method which would require different modes are rejected by aliasing mode checking. 

What is required here is some form of mode polymorphism - a single definition of a 
method, variable, object, or interface needs to be interpreted with different generic bindings 
for modes, in the same way a type-generic module can be instantiated with different concrete 
types. In our development of aliasing mode checking to date, we have not investigated mode 
polymorphism deeply. 

Aliasing mode inference could also reduce the need for programmers to be overly specific 
about their program's aliasing modes. By analogy with type inference, aliasing mode inference 
would infer possible aliasing modes by analysing the source text of the program, automatically 
adding mode declarations to programs without them. We have only addressed inference in as 
much as mode checking's propagation of modes through expressions is the basis for inference. 



JOO Flexible Alias Protection 

6.5 Immutability and Change Detection 

Our aliasing mode system is also restrictive because it is based around immutable properties 
of objects - properties which are set when objects are created (or initialised lazily) but do 
not subsequently change. Some objects' otherwise "immutable" state may remain unchanged 
for long periods of time, but then change on rare occasions. For example, a student's name is 
generally immutable, but may be changed by deed poll or marriage. If names may possibly 
change, they cannot be part of the student objects' clean interface, so student objects cannot be 
sorted or indexed based upon their names. Rather, some other attribute of students must be used 
to access them. Most academic institutions introduce student numbers for just this purpose, of 
course, and these typically meet the all the requirements for being part of a clean interface. 
The use of aliasing modes supports the practice of assigning these kind of "account numbers" 
during program analysis and design [40]. 

Alternatively, dynamic change detection techniques could be employed to handle changes 
in objects which would otherwise be treated as immutable. In this approach, the program-
ming language or runtime system is extended to detect when a container depends upon the 
properties of one of its arguments, that is, when a container sends a message to another object 
through a mode arg reference. When such a dependency is detected, it can be recorded by the 
change detection system, which can then monitor the state of the "subject" object which is be-
ing depended upon. Using a mechanism such as the Observer pattern, when the subject's state 
changes, the dependent container can be notified of the change and can update its internal state 
[ 12]. We plan to extend our previous work on dynamic change detection to incorporate flexible 
alias protection and aliasing modes [33]. 

6.6 Current Status 

In this paper, we have presented a conceptual model of flexible alias protection. We have 
also developed formal models of flexible alias protection which are not presented here due to 
space restrictions. We are currently working on an extension of the Pizza compiler [34] to 
extend Java with aliasing modes and mode checking - indeed, all the examples in this paper 
are written using our moded Pizza (mmmPizza) syntax. Because aliasing mode checking is 
carried out purely at compile time, mmmPizza generates exactly the same code as the original 
Pizza compiler. We considered building a preprocessor to implement aliasing mode checking, 
however we believed it would be easier to modify an existing compiler than to build a mode 
checker from scratch. We are also working on the implementation of alias protected class 
libraries which we shall use in real applications. At that point, we will be able to asses more 
precisely the impact of aliasing modes on programming style. 



J. Noble, J. Vitek and J. Potter 101 

7 Conclusion 
One man 's constant is another man 's variable. 

Alan Perlis, Epigrams on Programming. 

Aliasing is endemic in object oriented programming. Indeed, given that object oriented pro-
gramming is based strongly on object identity, perhaps alias oriented programming would be a 
better term than object oriented programming! We have presented flexible alias encapsulation, 
a conceptual model for managing the effects of aliasing, based on the observation that aliasing 
per se is not the major problem - rather, the problem is the visibility of changes caused via 
aliases. 1bis model uses explicit aliasing modes attached to types to provide static guarantees 
about the creation and use of object aliases. As a result, the model prevents exposure of ob-
ject's representations, limits the dependence of containers upon their arguments, and separates 
different argument roles. 

Acknowledgements 

We would like to thank Doug Lea for his pertinent comments on various drafts, Eydun Eli 
Jacobsen for his observation on protecting names versus protecting objects, David Holmes for 
his comments on aliasing and concurrent object systems, David Clarke for his perspectives from 
the evolving formal theory and implementation, John Boyland for his discussions about modes 
and promises, and Martin Odersky for the Pizza compiler. We also thank Bjorn Freeman-
Benson and the anonymous reviewers for their careful consideration. 1bis work was supported 
by Microsoft Pty. Ltd., Australia. 

References 
[l] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996. 

[2] Paulo Sergio Almeida. Balloon Types: Controlling sharing of state in data types. In ECOOP Proceedings, 
June 1997. 

[3] Pierre America and Frank de Boer. A sound and complete proof system for SPOOL. Technical Report 
Technical Report 505, Philips Research Laboratories, 1990. 

[4] Henry G. Balcer. 'Use-once' variables and linear objects - storage management, reflection and multi-
threading. ACM SIGPLAN Notices, 30(1), January 1995. 

[5] Edwin Blalce and Steve Cook. On including part hierarchies in object-oriented languages, with an imple-
mentation in Small talk. In ECOOP Proceedings, 1987. 

[6] Alan Borning. The programming language aspects ofThingLab, a constraint-oriented simulation laboratory. 
ACM Transactions on Programming Languages and Systems, 3(4), October 1981. 

[7] Craig Chambers. The Cecil language: Specification & Rationale. Technical Report Version 2.7, University 
of Washington, March 1997. 

[8] Edwin C. Chan, John T. Boyland, and William L. Scherlis. Promises: Limitied specifications for analysis 
and manipulation. In IEEE International Conference on Software Engineering (!CSE), 1998. 

[9] Franco Civello. Roles for composite objects in object-oriented analysis and design. In OOPSLA Proceedings, 
1993. 



102 Flexible Alias Protection 

[10] Alain Deutsch. Interprocedural May-Alias Analysis for Pointers: Beyond k-limiting. In Proceedigns of the 
ACM SIGPLAN'94 Conference on Programming Language Design and Implementation, June 1994. 

[ 11] Jin Song Dong and Roger Duke. Exclusive control within object oriented systems. In TOOLS Pacific 18, 
1995. 

[12] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns. Addison-Wesley, 
1994. 

[13] T. Goldstein. The gateway security model in the Java electronic commerce framework. Technical report, 
Sun Microsystems Laboratories - Javasoft, December 1996. 

[14] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification. Addison-Wesley, 1996. 

[15) Peter Grogono and Patrice Chalin. Copying, sharing, and aliasing. In Proceedings of the Colloquium on 
Object Orientation in Databases and Software Engineering (COODBSE'94), Montreal, Quebec, May 1994. 

[16) Daniel Hagimont, J. Mossil:re, Xavier Rousse! de Pina, and F. Saunier. Hidden software capabilities. In J 6th 
International Conference on Distributed Computing System, Hong Kong, May 1996. IEEE CS Press. 

[ 17) Douglas E. Harms and Bruce W. Weide. Copying and swapping: Influences on the design of reusable 
software components. IEEE Transactions on Software Engineering, 17(5), May 1991 . 

[18) Laurie J. Hendren and G. R. Gao. Designing programming languages for analyzability: A fresh look at 
pointer data structures. In Proceedings of the IEEE 1992 lnternational Conference on Programming Lan-
guages, April 1992. 

[19) John Hogg. Islands: Aliasing protection in object-oriented languages. In OOPSLA Proceedings, November 
1991. 

[20) John Hogg, Doug Lea, Alan Wills, Dennis deChampeaux, and Richard Holt. The Geneva convention on the 
treatment of object aliasing. OOPS Messenger, 3(2), April 1992. 

[21) David Holmes, James Noble, and John Potter. Aspects of synchronisation. In TOOLS Pacific 25, 1997. 

[22) Neil D. Jones and Steven Muchnick. Flow analysis and optimization of LISP-like structures. In Steven 
Muchnick and Neil D. Jones, editors, Program Flow Analysis: Theory and Applications. Prentice Hall, 
1981. 

[23) Stuart Kent and John Howse. Value types in Eiffel. In TOOLS 19, Paris, 1996. 

[24) Stuart Kent and Ian Maung. Encapsulation and aggregation. In TOOLS Pacific 18, 1995. 

[25) Brian Kernighan. Why Pascal is not my favourite programming language. Technical Report 100, Bell Labs, 
1983. 

[26] William Landi. Undecidability of static analysis. ACM Letters on Programming Languages and Systems, 
1(4), December 1992. 

[27) K . Rustan M. Leino and Raymie Stata. Virginity: A contribution to the specification of object-oriented 
software. Technical Report SRC-TN-97-001, Digital Systems Research Center, April 1997. 

[28) John M. Lucassen and David K. Gifford. Polymorphic effect systems. In Proceedings of the Eighteenth 
Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, January 1988. 

[29) B. J. MacLennan. Values and objects in programming languages. ACMSIGPLAN Notices, 17(12), December 
1982. 

[30) Ole Lehrmann Madsen, Birger Meller-Pedersen, and Kirsten Nygaard. Object-Oriented Programming in the 
BETA Programming Language. Addison-Wesley, 1993. 

[31] S. Matsuoka, K. Wakita, and A. Yonezawa. Sychronisation constraints with inheritance: What is not possi-
ble? - so what is? Technical report, Dept. oflnformation Science, University of Tokyo, 1990. 

[32] Naftaly Minsky. Towards alias-free pointers. In ECOOP Proceedings, July 1996. 

[33] James Noble and John Potter. Change detection for aggregate objects with aliasing. In Australian Software 
Engineering Conference, Sydney, Australia, 1997. IEEE Press. 

[34) Martin Odersky and Philip Wadler. Pizza into Java: Translating theory into practice. In Proc. 24th ACM 
Symposium on Principles of Programming Languages, January 1997. 



J. Noble, J. Vitek and J. Potter 103 

[35] John C. Reynolds. Syntatic control of interference. In 5th ACM Symposium on Principles of Programming 
Languages, January 1978. 

[36] Bjame Stroustrup. The C++ Programming Language. Addison-Wesley, 1986. 

[37] Bjame Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994. 

[38] Mark Utting. Reasoning about aliasing. In The Fourth Australasian Refinement Workshop, 1995. 

[39] Jan Vitek, Manuel Serrano, and Dimitri Thanos. Security and communication in mobile object systems. 
In J. Vitek and C. Tschudin, editors, Mobile Object Systems: Towards the Programmable Internet., LNCS 
1222. Springer-Verlag, April 1997. 

[40] William C. Wake. Account number: A pattern. In Pattern Languages of Program Design, volume I. 
Addison-Wesley, 1995. 

( 41] Alan Cameron Wills. Formal Methods applied to Object-Oriented Programming. PhD thesis, University of 
Manchester, 1992. 


