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Abs t rac t .  For the most compelling applications of threshold cryptosys- 
terns, security against chosen ciphertext attack seems to be a require- 
ment. However, there appear to be no practical threshold cryptosystems 
in the literature that are provably chosen-ciphertext secure, even in the 
idealized random hash function model. The contribution of this paper 
is to present two very practical threshold cryptosystems, and to prove 
that they are secure against chosen ciphertext attack in the random hash 
function model. 

1 I n t r o d u c t i o n  

In this paper, we consider the problem of designing threshold cryptosystems tha t  
are secure against chosen ciphertext at tack.  Our goal is to design a practical 
scheme, and provide strong evidence that  it cannot be broken. 

Known standard (i.e., non-threshold) cryptosystems that  are provably secure 
against chosen ciphertext at tacks (under s tandard intractabili ty assumptions) 
are unfortunately quite impractical,  and thus only of theoretical interest. We 
cannot expect to do any bet ter  for threshold cryptosystems. 

However, practical non-threshold schemes have been devised and proven se- 
cure in the so-called random hash fnnction, or random oracle, model. This ap- 
proach, first used by Fiat and Shamir [15], and later given a more rigorous 
t reatment  by Bellare and Rogaway [2], works as follows. Suppose that  a cryp- 
tographic scheme that  makes use of hash functions can be proven secure under 
standard intractabili ty assumptions, but in an idealized model of computat ion 
where the hash functions are replaced by "black boxes" tha t  output  random 
strings. Then the basic tenet of the random hash function approach is to view 
this as "strong evidence" that  the scheme is secure. See [2] for further discussion 
of the random hash function model. 

Even though the most  compelling applications of threshold cryptosystems 
seem to require chosen-ciphertext security, there appear  to be no practical thresh- 
old cryptosystems in the li terature that  are provably secure, even in the random 
hash function model. Our main contribution is to present and analyze two such 
schemes. The first scheme, which we call TDH1 (for Threshold Diffie-Hellman), 
is secure assuming the hardness of the Diffie-Hellman problem [13]. The second 
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scheme, TDH2, is secure under the stronger assumption of the hardness of the 
Diffie-Hellman deczsion problem, but is more efficient than -I-DH1. 

1.1 T h r e s h o l d  c r y p t o s y s t e m  and chosen ciphertext attack 

In a threshold cryptosystem there is a single public encryption key, but the 
corresponding private decryption key is shared among a set of, say, n decryption 
servers in such a way that  a threshold, say, k of them must cooperate to decrypt 
a message. The servers output decryption shares that  can be combined to obtain 
the cleartext. 

Security against chosen ciphertext attack intuitively means the following. A 
message m is encrypted, yielding a ciphertext c, and an adversary is allowed to 
feed the decryption system arbitrary ciphertexts c~--different from, but perhaps 
related to c--obtaining the corresponding decryption. Security in this scenario 
means that the adversary should gain no useful information about the message 
m .  

In a threshold cryptosystem, the adversary has more power. Firstly, the ad- 
versary may corrupt a subset (of size at most k -  1) of the decryption servers; in 
particular, the adversary knows their shares of the secret key. Secondly, and per- 
haps more importantly, the adversary can obtain not only the the decryption of 
a given ciphertext, but also the decryption shares generated by all of the servers. 
There is clearly no way to prevent this, since even if it is the responsibility of 
one of the servers to combine shares, this server may be corrupt and collaborate 
with the adversary. 

1.2 Motivation 

One of the main motivations for a threshold cryptosystem is that it allows one to 
construct a third-party decryption service in a distributed, secure, fault-tolerant 
fashion, without a significant increase in the size of or the cost of creating a 
ciphertext vis-h-vis a standard cryptosystem. To be at all useful, the third party 
should not decrypt everything that  comes its way and give it to just anybody, 
but should implement some kind of useful policy. To implement such a policy 
securely, in addition to chosen-ciphertext security, one needs an additional facil- 
ity: the ability to attach a label to the ciphertext during the encryption process. 
Such a label is a bit string that  contains information that can be used by the 
third party to determine if the decryption request is authorized, according to 
its policy. Formally, one should think of the label as being a part of the cipher- 
text, so that changing the label changes the ciphertext; security against chosen 
ciphertext attack would then imply, in particular, that one cannot subvert the 
third party's policy by simply swapping labels. 

Perhaps the most obvious example of this is key recovery. Here, two parties 
who wish to communicate generate a session key, and encrypt the session key 
under a third party's public key. The party that  creates the encryption attaches 
a label containing the identities of the two parties, and the current time. This 
labeled ciphertext is sent along the wire, along with the encrypted conversation. 



A law enforcement agency may be authorized via a court order to tap the line, 
and request that  the third party decrypt the ciphertext containing the session 
key. To protect individual privacy, the court order specifies to whom the wiretap 
applies and a time interval. To enforce this policy, the third party only decrypts 
a ciphertext if the information in its label is consistent with the given court 
order. 

Another example is the recent work of [1] on fair exchange, where an "off 
line" trusted third party is used to enforce fairness. 

A label might also contain the identity or public key of the intended recipient, 
allowing the decryption service to direct the cleartext to that recipient only. 

The usefulness of labeled ciphertext was already observed by Lim and Lee 
[18] (who called it an indicator). In a non-threshold cryptosystem, labeled ci- 
phertexts can be implemented by simply embedding a hash of the label in the 
cleartext before encrypting. The decryption service is given a ciphertext and a 
label, computes the cleartext, and compares the value of the embedded hash with 
the hash of the given label. If these match, and the decryption policy authorizes 
the given label, then the cleartext is released. If the underlying cryptosystem 
is secure against chosen ciphertext attack, then so too will be the cryptosys- 
tem with labeled ciphertexts. This implementation is not suitable for threshold 
cryptosystems since the attacker who is mounting the chosen ciphertext attack 
may be cooperating with some of the decryption servers. Those servers see the 
decrypted labeled plaintext before it is output, thus it is too late at that  point 
to check if the label is correct, since the attacker has already seen the result of 
the decryption operation. 

1.3 O u t l i n e  o f  t h e  paper  

In w we review relevant background and related work. In this section, we also 
sketch a simpler threshold cryptosystem, which we call TDH0, which may indeed 
be secure, but for which it seems difficult to obtain a security proof under stan- 
dard cryptographic assumptions, even in the random hash function model. In w 
we define what we believe is a simple yet adequate formal security model. In w 
we briefly discuss the basic technical tools we use in the design and analysis of 
our cryptosystems, TDH1 and TDH2, which we describe and analyzed in 5 and 
6, respectively. In w we discuss some implementation issues, and we conclude 
with some final remarks and open questions in w 

2 B a c k g r o u n d  a n d  R e l a t e d  W o r k  

2.1 C h o s e n  c i p h e r t e x t  a t t a c k  

I m p r a c t i c a l  b u t  provable  schemes .  In the context of standard (i.e., non- 
threshold) cryptosystems, provably secure cryptosystems secure against cho- 
sen ciphertext attack were given by Naor and Yung [20], Rackoff and Simon 
[23], Oolev, Dwork, and Naor [14], and De Santis and Persiano [10]. Unfortu- 
nately, all known provably secure schemes rely on theoretical constructions of 
non-interactive zero-knowledge proofs [4], and as such are quite impractical. 



P r a c t i c a l  schemes .  Again in the context of non-threshold cryptosystems, prac- 
tical cryptosystems intended to be secure against chosen ciphertext attack were 
proposed by Damgard [8], Zheng and Seberry [28], and Bellare and Rogaway 
[2,3]. The schemes in [28,2,3] are all known to be chosen-ciphertext secure in the 
random hash function model. 

2.2 Threshold cryptosystems 

Threshold cryptosystems are part of a general approach known as threshold 
cryptography, introduced by Boyd [5], Desmedt [11], and Desmedt and Frankel 
[12]. In particular, in [12], a threshold cryptosystem based on the Diffie-Hellman 
problem is presented. The techniques developed later by De Santis el ai [9] yield 
a corresponding system based on RSA [24]. These schemes can be shown to 
withstand chosen plaintext attack, but they are not known to withstand chosen 
ciphertext attack. 

2.3 W h y  isn't it trivial to secure a threshold cryptosys tem against 
chosen ciphertext  attack? 

Our first observation is that  none of the practical schemes mentioned above 
can be readily transformed into threshold schemes that  are chosen-ciphertext 
secure. To see why, consider the scheme in [2], which is representative. This 
scheme uses a trapdoor permutation f and hash functions G and H; to encrypt 
a message m, a random r in the domain of f is chosen, and the ciphertext is 
( f(r) ,  m *  G(r), H(r ,  m)). The output length of G is equal to that  of m, and the 
output length of H is large enough to make it difficult to find collisions. Given a 
ciphertext (s, c, v), the deeryption algorithm computes r = f - l ( s ) ,  m = G(r )~c ,  
and v' = H(r, m). If v ~ = v, it outputs m, and otherwise "?". 

The proof of security in the random hash function model relies in a critical 
way on the fact that  the decryption algorithm makes the "validity test" v = v' 
before generating an output. 

Now consider turning this into a threshold scheme, and assume we can ef- 
fectively share the trapdoor. The problem is that the above validity test cannot 
be performed until after the individual shares of f - l ( s )  are generated and then 
combined. As mentioned above, we must assume that  the adversary can see these 
shares, making the validity test pointless, and giving the adversary the ability 
to invert f at chosen points. This destroys any hope of proving security using 
current techniques. 

The above difficulty was noted by Lira and Lee [18], who observed that  
a publicly checkable validity test would be useful in this regard. Lim and Lee 
proposed two practical systems based on this observation; however, both schemes 
were subsequently broken by Frankel and Yung [16]. 

Interestingly, one can readily convert all of the impractical schemes mentioned 
above into secure (but impractical) threshold schemes. It is instructive to see why 
this is so. All of these schemes use a publicly checkable validity test, which is 



essentiMly a non-interactive zero-knowledge proof of knowledge of the plaintext. 
The key to the proof of security is that one can simulate the adversary's view 
with a simulator that has a trapdoor that allows it to extract the plaintext from 
the given proof of knowledge in a decryption request, thus allowing the simulator 
to respond correctly to the request. Assuming the underlying decryption function 
can be effectively shared, such a scheme can then be transformed into a threshold 
scheme where each decryption server performs the validity test before generating 
a decryption share. 

2.4 The  TDH0 Cryptosystem 

What makes the above approach impractical is the proof of knowledge. An obvi- 
ous thing to try is to design an appropriate zero-knowledge proof of knowledge 
of the plaintext in the random hash function model that is more practical. 

One obvious "solution" is the following threshold cryptosystem, based on 
the Diffie-Hellman problem, which we call TDH0. Say we have a group G of 
prime order q with generator g, a hash function H, and a public key h -- g*. To 
encrypt a message m, we choose r E Zq at random, and compute u = gr and 
c = H(h r) G) m. The ciphertext consists of u, c, and a non-interactive proof of 
knowledge of logg u. It is straightforward to share the secret key, and a decryption 
server only generates a decryption share if the proof of knowledge is valid. 

For the non-interactive proof of knowledge, we could use Schnorr's [25] sig- 
nature scheme with "public key" u and "private key" r. 

Intuitively, this strategy makes sense, and TDH0 may very well be secure, 
although it does not seem possible to prove that it is secure using known tech- 
niques, under standard cryptographic assumptions, even in the random hash 
function model. 

The problem is a bit subtle. In the random hash function model, Schnorr's 
signature scheme is indeed a proof of knowledge, but the corresponding knowl- 
edge extractor does not operate "on line"--it must rewind the adversary many 
times, each time running it forward with different random outputs for the hash 
function used in the signature scheme. This type of "rewinding" extractor is 
adequate to prove that the corresponding signature scheme is secure in the ran- 
dom hash function model, but appears to be inadequate to prove the security 
of TDH0. The reason is that a simulator for TDH0 must respond to many de- 
cryption requests on-line, and all of this rewinding--possibly "undoing" previ- 
ous decryption requests which recursively leads to more rewinding--results in a 
blow-up in the running time of the simulator that is exponential in the number 
of decryption requests. A similar phenomenon was observed by Pointcheval and 
Stern [22] in the context of blind digital signatures. 

One could circumvent all this by straightaway assuming an on-line knowledge 
extractor; that is, we simply assume that any algorithm that can create create a 
valid proof of knowledge can be transformed into an algorithm that simultane- 
ously outputs a corresponding witness. A similar type of assumption is made by 
Damgard [8] and Zheng and Seberry [28]. This type of assumption, however, is 



not very acceptable: it is completely nonstandard,  and it is not at all clear how 
it is related to any kind of intractabili ty assumption. 

3 A Formal Security  Model  

A k out of n threshold cryptosystem consists of the following components: 

- A key generatzon algorithm that  takes as input a security parameter ,  the 
number n of decryption servers, and the threshold parameter  k; it outputs  
a public key PK, and a list SK1, . . . ,  SKn of private keys. 

- An encryption algorithm that  takes as input the public key PK and a clear- 
text m, and a label L, and outputs  a ciphertext c. 

- A deeryption algorithm that  takes as input the public key PK, an index 
1 < i < n, the private key SKi, a ciphertext c, and a label L, and outputs  a 
decryption share ~ri. 

- A recovery algorithm that  takes as input the public key PK, a ciphertext c, 
a label L, and a list ~r h . . . ,  an of decryption shares, and outputs  a cleartext 
m .  

Operat ion of the cryptosystem runs as follows. There is a trusted dealer and 
a set P1 , . . .  ,Pn of decryption servers. Under certain conditions the presence of 
a trusted dealer can be eliminated [21]. 

In an initialzzation phase, the dealer is run, creating the public and private 
keys. For 1 < i < n, the public key PK and private key SKi are given to server 
P~. 

A user who wants to encrypt a message can run the encryption algorithm, 
using the public key. 

A user who wants to decrypt a ciphertext gives the ciphertext to each server 
Pi, who each generate a decryption share ~rl. These shares are then combined 
using the recovery algori thm to obtain the cleartext. 

Note that  the above model of a threshold cryptosystem is not the most  
general possible: the need for a trusted dealer may be relaxed, and decryption 
may involve a more general distributed computat ion.  We do not discuss these 
possible variations in this paper.  

Any practical k out of n cryptosystem should be robust, i.e., it should be 
able to tolerate the presence of an adversary that  tries to hinder the recovery 
process. When a eiphertext c is decrypted, a list of corresponding decryption 
shares a l , . . . ,  an is produced. The scheme is robust if the recovery algori thm 
recovers the plaintext m (at least with overwhelming probability) even if at most  
k - 1 of the decryption shares are incorrect. Robust  threshold cryptosystems are 
presented in [21,17] and we follow their general approach in order to make our 
schemes robust. 

To define security against chosen cipherte~t attack, we consider the following 
game played against an adversary. 
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G a m e  A 

A1 The adversary chooses to corrupt a fixed set of k - 1 servers. 
A2 The key generation algorithm is run. The private keys of the corrupted 

servers are given to the adversary, while the other private keys are given 
to the uncorrupted servers, and kept secret from the adversary. The  adver- 
sary of course receives the public key as well. 

A3 The adversary interacts with the uncorrupted encryption servers in an arbi- 
t rary fashion, feeding them ciphertext/ label  pairs, and obtaining decryption 
shares. 

A4 The adversary chooses two cleartexts m0 and m I and a label L. These are 
given to an "encryption oracle" that  chooses b E {0, 1} at random, encrypts 
mb using the given label L, and gives the ciphertext c to the adversary. 

A5 The adversary continues to interact with the uncorrupted servers, feeding 
them ciphertext/label pairs (c', L') # (c, L). 

A6 At the end of the game, the adversary outputs b' E {0, 1}. 

Security against chosen ciphertext attack means that for any polynomial time 
bounded adversary b' = b with probability only negligibly greater than 1/2. 

The above definition captures the notion of security against a slatzc adversary 
(i.e., one who corrupts players only at the beginning of the protocol). All known 
practical threshold cryptosystems (including [21,17]) are provably secure only 
against such a static adversary; our protocol has the property as well. 

4 Bas ic  Tools  

4.1 T h r e s h o l d  s e c r e t  s h a r i n g  

Let q be a prime, and 1 < k _< n < q. Shamir's [26] k out of n secret sharing 
scheme over Zq works as follows. We have a random secret x E Zq. We choose 
random points f l , . - - ,  fk-1 E Zq, set f0 = x, and define the polynomial F(X) = 
)-~k-1 r For 1 < i < n, xi = F( i )  E Zq is the ith share ofx .  Just for notation j=O J3 3" 
purpose we will denote x as its own 0th share, x = x0 = f0. 

If any subset of k - 1 shares is revealed, then no information about x is 
obtained, whereas if k shares are revealed, x is completely determined, and 
can be computed by interpolation. Actually the following property holds: for 
any ordered subset S = { i l , . . . , i k }  C {O, . . . ,n} ,  and any i e { O , . . . , n } \ S ,  
there exists an easy-to-compute sequence )~1,- As �9 ., ik E Zq, such that  xi = 

~k--_i  ) ~  Xi J �9 

4.2 Z e r o - k n o w l e d g e  p r o o f  o f  d i s c r e t e  l o g a r i t h m  ident i t ies  

Let G be a group of prime order q with generators g, ~. Let EDLogg,~ be the 
language of pairs (u, fi) E G 2 such that  log 9 u = log~ ft. 

Our cryptosystems will heavily rely on a zero-knowledge proof of membership 
for the language EDLogg,~. It is important  to notice that  our proofs techniques do 



not require a proof of knowledge (which would create the problems encountered 
with the TDH0 cryptosystem). 

The following is a well-known zero-knowledge proof system for EDLogg,~, due 
to Chaum and Pedersen [7]. Although it happens to also be a proof of knowledge 
we will not use that  property in our schemes. 

Let (u, ~) E EDLogg,~ be given, so there exists r E Zq such that  u = gr and 

- The prover chooses s E Zq at random, computes w = g' and tO = ~s, and 
sends w, tO to the verifier. 

- The verifier chooses e E Zq at random, sending this to the prover. 
- The prover sends f = s+re to the verifier. The verifier checks that  g! = wu e 

and .~I = to~e. 

It is well known that  this proof system is sound: the verifier can be cheated 
into accepting a pair not in the language with probability at most 1/q. It is also 
well known that  this proof system can be simulated in zero-knowledge against 
an honest verifier. By making the challenge e a hash of (u, w, ~, to), then in 
the random hash function model, this becomes a non-interactive zero-knowledge 
proof. 

Actually, a stronger soundness condition holds that  we will need in the sequel: 
the argument that  one uses to show soundness in the above non-interactive proof 
system can be used to show that when the verifier accepts, not only do we have 
(with overwhelming probability) logg u = logj fi, but also logg w = logy to. 

4.3 Intractability assumptions 

Let G be a group with generator g. 
The DiJfie-Hellman problem is this: given g* and gU, compute gXy, where x 

and y are random exponents. 
The DiJfie-Hellman decision problem is this: given a triple that  is either of 

the form (g*,gY,g*Y) or (g*, gy,gZ), where x, y, and z are random exponents, 
determine which is the case. 

Clearly, the second problem is no harder than the first, but it is not known 
if they are equivalent. The only known method for solving either problem is to 
solve the discrete logarithm problem: given gX, compute x. For suitable groups, 
such as a large prime-order subgroup of the multiplicative group modulo a large 
prime, all of these problems are widely conjectured to be intractable. 

5 T h e  TDH1 C r y p t o s y s t e m  

We now describe the threshold cryptosystem TDH1. 
TDH1 works over an arbitrary group G of prime order q, with generator g; 

for simplicity, assume that  messages and labels are/-bi t  strings. It uses four hash 
functions: 

H I : G - ~ { 0 , 1 }  z, H2 : {O,1}a x {O, 1}t x G x G - ~  G, H3, H4 : G3 -~ Zq. 



K e y  G e n e r a t i o n .  For a k out of n scheme, the key generation algorithm runs as 
follows (we assume q > n). Random points f0, . . . ,  fk-1 E Zq are chosen, defining 

a polynomial F ( X )  k-1 F ( i )  E Zq = ~ i = 0 . f i  x j  E Zq[X]. For 0 < i < n, set xi = 
and hi = gX,. For notational convenience, we set x = F(0) and h = h0 = gX. 
The public key is (h, hi, . . . ,  hn), and the ith private key is xi,  for 1 < i < n. 

Note that the components h i , . . . ,  hn of the public key are only needed to 
verify decryption shares in the recovery algorithm, and are not needed by the 
encryption algorithm. In other words, the sender needs only to know h while the 
hi should be made available to all the decryption servers. 

The key generation protocol may be thought as being performed by a trusted 
dealer that  self-destroys after the generation of the key. However using technique 
from [21] we may also assume that  there is no need for a trusted dealer and that 
the players jointly generate the key pair. 

E n e r y p t i o n .  The algorithm to encrypt a message m E {0, 1} 1 with label L E 
{0, 1} t runs as follows. We choose r, s E Zq at random, and compute 

c = H l ( h  r) G m ,  u = g r ,  w = g ~ ,  O = H 2 ( c , L , u , w ) ,  

The ciphertext is (c, u, fi, e, f ) .  
What  is happening here is that  the encryption includes a non-interactive 

proof that  logg u = log~ ft. 

D e c r y p t i o n .  Decryption server i does the following given ciphertext 
(c, u, ~, e, f )  and label L. It checks if e = H3(~, ~, ~), where 

w = g l / u e ,  ~ = g ~ ( c ,  L, u, w),  ~ = ~ J / ~ e .  

If this condition does not hold, it outputs  "?". Otherwise, it proceeds as follows. 
It then chooses si E Zq at random, and computes 

ui = u ~', u~ = u~', h~ = g " ,  e, = H4(ui,u~,h~),  fi  = si + xiei .  

Its output  is (ui, ei, f i ) .  
What  is happening here is that  the decryption share includes non-interactive 

proof that  log u ui = logg hi. This is needed for robustness reason since it enforces 
the condition that  the partial decryption is correct (see Theorem 1). 

R e c o v e r y .  The recovery algorithm takes as input a ciphertext (c, u, fi, e, f ) ,  and 
a list of decryption shares. A share (ui, el, f~) is "good" if ei = H4(ui ,  u~, h~), 

' = uY'/u~ ' and h~ = hl'/h~. '. Now assume we have a subset S = where u i 
{ i l , . . . ,  ik} of good shares. Then, using the notation defined in w the recovery 
algorithm outputs 

k 

j---1 
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T h e o r e m  1. In the random hash functzon model, the TDH1 cryptosystem zs 
secure agaznst chosen ciphertext attack, assuming the DiJJie-Hellman problem in 
G is hard. 

The proof is in Appendix A. We also remark that it is straightforward to 
prove that  in the random hash function model, the scheme is robust provided 
n > 2 k - 1 .  

6 The TDH2 Cryptosys tem 

Cryptosystem TDH2 is very similar to TDH1. The main difference is that the 
group element ~, instead of changing with each encryption, is chosen at key- 
generation time. 

We now give the details. As before, we have a group G of prime order q with 
generator g. We need three hash functions: 

H1 : G --+ {0, 1} t, H2 : {0, 1} I x {0, 1} I x G 4 --+ Zq, H4 : G a --+ Zq.  

K e y  G e n e r a t i o n .  Same as for TDH1, except that  a random element ~ E G is 
chosen which is also part of the public key. 

E n c r y p t i o n .  The algorithm to encrypt a message m E {0, 1} z with label L E 
{0, 1} I runs as follows. We choose r , s  E Zq at random, and compute 

c = H l ( h r ) |  u = g  ~, w = g  s, ~ = ~ ,  ~b=~ ~, 

e=  H2(c,L,u,w, fi,@), f = s + r e .  

The ciphertext is (c, u, fi, e, f ) .  
As in TDH1, the encryption includes a non-interactive proof that  logg u = 

logy u. 

D e c r y p t i o n .  Decryption server i does the following given ciphertext 
(c, u, fi, e, f )  and label i .  It checks that  e = H2(c, L, u, w, ft, w), where w = g]/u e 
and t~ = ~ll/fi e. If this condition does not hold, it outputs "?". Otherwise, it 
proceeds exactly as in TDH1, creating an output  (ui, el, fi). 

Recove ry .  Same as for TDH1. 

T h e o r e m 2 .  In the random hash function model, the TDH2 cryptosystem is 
secure against chosen ciphertext attack, assuming the Diffie-Hellman decision 
problem in G is hard. 

The proof is in Appendix B. As for TDH1, the scheme is robust in the random 
hash function model if n > 2k - 1. 
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7 Implementation Issues 

To implement these schemes, one has to choose concrete hash functions. This is 
relatively straightforward, but  see [2] for a detailed discussion. One technicality 
that we have to deal with here, though, is the hash function H1 in TDH1, whose 
output  is supposed to be an element of the group G. For example, consider the 
case where p is a prime, p -  1 = mq, (m, q) = 1, and G is the group of order q in 
Z~. We could implement H1 by raising the output  of a standard hash function 
(viewed as a number) to the power m modulo p. This gives us an element in G. 
Note that  the decryption and recovery algorithms must also check that  the given 
group elements lie in G. It is straightforward to modify the proof of security to 
deal with this. 

Unfortunately, this implementation of H1 is quite costly, as it requires extra 
exponentiations, some to the power m, which is typically much larger than q. 

The TDH2 scheme does not suffer from this problem. Moreover, in TDH2, 
the group element ~ is fixed (per public key). In practice, this makes quite a 
difference, as one can pre-compute a table that  makes exponentiation to the 
base .~ far more efficient than when it is constantly changing [6,19]. This speeds 
up the encryption algorithm significantly. Of course the same can be done for g 
already in TDH1. 

8 Conclusion 

We have proposed two new threshold cryptosystems, TDH1 and TDH2, that are 
provably secure in the random hash function model assuming, respectively, that 
the Diffie-Hellman and Diffie-Hellman decision problems are hard. 

TDH2 requires a stronger intractability assumption than TDH1, but is much 
more efficient. Moreover, TDH2 is not much less efficient than the very simple 
TDH0 scheme in w which is not known to be secure in the random hash 
function model. 

We close with three open problems: (1) determine the security of TDH0; (2) 
find a practical threshold cryptosystem based on RSA that  is provably secure in 
the random hash function model; (3) find practical and provably secure threshold 
cryptosystems, without the random hash function model. 

Appendix  A: Proof  of Theorem 1 

We show how to use an adversary that  can guess bit b in game A to solve the 
Diffie-Hellman problem. It is clear that if the adversary is to guess bit b, then he 
must query the function H1 at the same point that  the encryption oracle did. We 
simulate the adversary's view up to the point that  this happens. After this point, 
the simulation is no longer perfect, but it does not matter:  we already solved the 
Diffie-Hellman problem. Actually, the output  of our algorithm is simply a list 
of all points at which H1 was queried, which with nonnegligible probability will 
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contain the solution to the Diffie-Hellman problem. Techniques in [27] can be 
used to transform this into an algorithm that  outputs a single, correct solution 
to the Diffie-Hellman problem. 

We now give the details of the simulation. Let c~,/3 E G random elements in 
G for which we want to solve the Diffie-Hellman problem to the base g. That  is, 
we want to compute 3' = crl~ ~ 

At any point in the simulation, the adversary may query one of the random 
hash functions. The simulator responds by first checking if the value of the hash 
function has already been defined at the given point; if so, it responds with the 
defined value; otherwise, it chooses a random value, defines the value of the hash 
function at the given point to be this value, and responds with this value. 

The simulator itself may at some point choose to define the value of a hash 
function at a chosen point. Such "backpatching" is allowable so long as the hash 
function has not already been defined at the chosen point. 

Now suppose the adversary in step A1 chooses to corrupt a subset of k - 1 
servers. Without loss of generality, we can assume these are servers/)1, �9 .-, Pk-  1. 
Let S = {0 , . . . ,  k - 1}, and we will write A~j instead of ,~s. 

Now in step A2, we proceed as follows. We choose Xl , . . .  ,xk-1 E Zq at ran- 

dom, and we set h = a. Then for k < i < n, we compute hi = h x'~ 1-I~__--I g ~ ' ~ "  
Next, we have to describe how to simulate the "encryption oracle" in step 

A4, and how to simulate each query to one of the noncorrupt decryption servers. 
We deal first with the encryption oracle. The adversary gives a label L and 

two messages, m0 and ml,  to the encryption oracle. We ignore the messages 
completely. Instead, we simply choose c ~ {0, 1} z and t , e , f  E Zq at random. We 
then set 

u = / ~ ,  g = g t ,  d = u  t ,  w = g f / u  e, ~ , = g f / f l  e. 

We then backpatch, defining H2(c, L , u , w )  = g, and H3(g, fi,@) = e. The 
output  of the encryption oracle is (c, u, u, e, f) .  

It is easily verified that this backpatching is allowable. Also, one sees that  
u, g, and fi have the right distribution; namely, they are random, subject to 
to the condition logg u = logg ft. The rest is just a standard zero-knowledge 
simulation. Thus, simulation is perfect, and will remain perfect, as long as the 
adversary does not query H1 at the point 7 = ul~ h. Note that  the simulator 
never directly queries or backpatches H1 itself; it only does this upon request of 
the adversary. 

We next deal with the simulation of the uncorrupted decryption servers. First 
of all, whenever the adversary queries H2 at a point other than (c, L, u ,w) ,  we 
arrange that the simulator defines the value j at that  point by first choosing 
t E Zq at random, and then computing ~ = h t, so that  the simulator knows 
log h ~ (but the adversary is oblivious to this). 

Now suppose Pi is given a valid ciphertext/ label  pair ((c, u, fi, e, f ) ,  L) r 
((c, u, d, e, f) ,  L). Now, ((c, u, fi, e, f ) ,  L) determines via the validity conditions 
corresponding variables ~, w, t~. 

We first argue that we can assume that  (c, L, u, w) # (c, L , u , w ) .  On the 
contrary, suppose that (c, L, u, w) = (c, L, u, w). Then of course ~ = g. But then 
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with overwhelming probability, we must also have (fi, ~)  = (u, w). This easily 
follows from the strong soundness condition discussed in w It then follows 
that  e = e and f = f ,  which contradicts our assumption that  ((c, u, fi,e, f ) ,  L) 
((c, u, f i , e , f ) ,  L). 

So assume (c, L, u, w) ~ (c, L, u, w). We can assume that  the adversary has 
already queried H2 at the point (c, L, u, w), so that  we have ~ = H2(c, L, u, w) = 
h t, where t is known to the simulator, as discussed above. 

Now suppose u = g r  where r is not known to the simulator. We want to 
compute h r. But by the soundness of the proof that  logg u = log~ ~, we can 
assume that fi = ~r. But then (~) l / t  = (~)r/t = h r. 

So the simulator can compute h r, but we are not quite done. We want to 
simulate the output  of server Pi, who is supposed to output  ui = h~., along 
with a proof that  log~ ui = log 9 hi. But ui can be computed by the simulator 

as u i  (s k-1 = 1-Ij=l u~;~';" Once we have tq, we can readily produce a zero- 
knowledge simulation of the proof that log~, ui = log~ hi, backpatching H4 as 
necessary. 

That  completes the proof of Theorem 1. 

A p p e n d i x  B: Proof  of Theorem 2 

Again, the proof is by reduction, and we assume the adversary queries, with 
nonnegligible probability, the same point in game A that  was queried by the 
encryption oracle in step A4. 

Let ((~, fl, 7) be a random instance of the Diffie-Hellman decision problem. 
This triple is drawn from one of two distributions: that of DiJ:fie-Hellman triples, 
where c~ = gX, fl = gy, and 7 = gXy, for random x, y E Zq, or from that  of random 
triples, where (~ = g~, /3 = g~, and 7 = g~, for random x , y , z  E Zq. The job of 
the simulator is to distinguish between these two distributions. It outputs a 1 
or a 0, and to be an effective test, the expected value of its output  on the two 
distributions should differ by a nonnegligible amount. 

We simulate the view of the adversary in game A as follows. 
As in the proof of Theorem 1, we assume the adversary corrupts players 

P 1 , . . . ,  Pk-1 in step A1. In step A2, we set h = a ( =  g~), generate x l , . . . ,  xk-1 E 
Zq at random, and solve for h k , . . . ,  hn as in the proof of Theorem 1. We also 
choose t E Zq at random and set ~ = h t ( = gXt). 

Now we discuss how to simulate the adversary's view of the encryption oracle 
in step A4, given a label L. We choose c E {0, 1} I at random. We set u = f l (=  gY) 
and fi = 7 t, which is either g~yt or g~t, depending on the distribution from which 
(~ , f l ,7)  was drawn. We then choose e, f E Zq at random, and compute w = 

g f / u  e, and ~, = ~ f / u e .  We then backpatch, setting U2(c, L, u, w, u, w) = e. 
The output  of the encryption oracle is (c, u, u, e, f) .  

The simulation of the uncorrupted servers is essentially just  as it was in the 
proof of Theorem 1: the key is that the simulator knows t with ~ = h t, and 
so given a valid ciphertext/ label  pair ((e, u, fi, e, f ) ,  L) # ((e, u, fi, e , f ) ,  L), it is 
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easy to argue that  with overwhelming probability logg u = log s fi, which implies 
we can compute u ~ as (fi)l / t ,  and simulate the rest of the server's output just 
as before. 

The simulator itself never directly queries or backpatches H1, except on be- 
half of the adversary. If the adversary ever queries H1 at 7, we stop and output 
1; otherwise, if the adversary terminates without querying H1 at 7, we output 
0. 

That  completes the description of the simulator. 
Consider the joint distribution of(h, g, u, fi). In the case where (a, fl, 7) drawn 

from the Diffie-Hellman triple distribution, (h, g, u, fi) is (statistically indistin- 
guishable from) a random element of G 4, subject to the condition log a u = log~ u. 
In the case where (c~, fl, 7) is a random triple, (h, g, u, fi) is simply (statistically 
indistinguishable from) a random element of G 4. In either case, 7 is determined 
by 3' -=- flog~ h; moreover, if (c~, fl, 7) is a Diffie-Hellman triple, then the relation 
,), : ulog~ h also holds. 

We now argue as follows. In the case where (c~,/3, 7) is drawn from the Diffie- 
Hellman triple distribution, the simulation of game A is perfect until the adver- 
sary queries H1 at 7 -- ul~ h, at which point we stop and output a 1. By our 
assumption about the behavior of the adversary, and the fact that  the simulation 
is perfect up to this point, this happens with nonnegligible probability. 

Now, if in the case where (a,/3, 7) is a random triple the simulator outputs 
a 1 with negligible probability, we are done: the simulator is an effective test for 
distinguishing Diflie-ltellman triples from random triples. 

Otherwise, suppose that in the case where (a,/3, 7) is a random triple the sim- 
ulator outputs 1 with nonnegligible probability. As mentioned above, (h, g, u, u) 
is just a random element in G 4. The other random variables e, f,  w, and ~" are 
also just random, subject to relations that  make the "proof" that  logg u = log~ fi 
look legitimate; in fact, the relation logg u = log~ fl does not in general hold, 
and the "proof" is entirely bogus, but that  is irrelevant. 

The point is that if the adversary makes the simulator output a 1, it can 
essentially compute f l o g ~ h  given random ( h , ~ , u , f )  E G 4. As we show below, 
we can use this adversary to solve the following variant of the Diffie-Hellman 
problem with the nonnegligible probability: given random c~ I = gt and/3'  = g ' ,  
compute 71 = gV/t. It is easy to see that  this problem is equivalent (under 
polynomial-time reduction) to the Diffie-Hellman problem, and is certainly at 
least as hard as the Diffie-Hellman decision problem. 

Now the details. The new simulation proceeds as follows. The input to the 
simulator is o/,/3' as above. First choose x E Zq at random, set g = (c~') x (=  gXt), 
and run the actual key generation algorithm for the cryptosystem, in particular, 
setting h = gX. Since this new simulator knows the private decryption key, it 
can without any trouble respond to arbitrary decryption requests. 

Now consider the encryption oracle in step A4, given label L. We choose c E 
{0, l} at random, e , f  E Zq at random, and u E G at random. We then set f = 

/31(_.: gV). We compute w = g f / u  e, and @ = 0f / f i  e. We then backpatch, setting 
H2(c, L, u, w, f ,  @) = e. The output of the encryption oracle is (c, u, f ,  e, f) .  
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This  new simulator  halts  when the adversary halts, ou tpu t t ing  the list of  all 
queries made  to H1. 

It  is s t ra ightforward to verify tha t  the view of  this adversary relative to  this 
new simulator  is identical to the view of  the adversary relative to the original 
s imulator  on a r a n d o m  triple, at least up until  the point  tha t  it queries H1 at 

7 = dl~ = (g~)~/~t = grit  = 7'. 

So, if the adversa ry  causes the first s imula tor  on a r a n d o m  tr iple to out-  
put  1 wi th  nonnegligible probabil i ty,  then this same adversa ry  causes this new 
s imula tor  to ou tpu t  a list containing the desired solut ion 7 ~. 

T h a t  completes the proof  of  Theorem 2. 
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