
Securing Threshold Cryptosystems against
Chosen Ciphertext Attack

Victor Shoup* Rosario Gennaro '~

Abs t rac t . For the most compelling applications of threshold cryptosys-
terns, security against chosen ciphertext attack seems to be a require-
ment. However, there appear to be no practical threshold cryptosystems
in the literature that are provably chosen-ciphertext secure, even in the
idealized random hash function model. The contribution of this paper
is to present two very practical threshold cryptosystems, and to prove
that they are secure against chosen ciphertext attack in the random hash
function model.

1 I n t r o d u c t i o n

In this paper, we consider the problem of designing threshold cryptosystems tha t
are secure against chosen ciphertext at tack. Our goal is to design a practical
scheme, and provide strong evidence that it cannot be broken.

Known standard (i.e., non-threshold) cryptosystems that are provably secure
against chosen ciphertext at tacks (under s tandard intractabili ty assumptions)
are unfortunately quite impractical, and thus only of theoretical interest. We
cannot expect to do any bet ter for threshold cryptosystems.

However, practical non-threshold schemes have been devised and proven se-
cure in the so-called random hash fnnction, or random oracle, model. This ap-
proach, first used by Fiat and Shamir [15], and later given a more rigorous
t reatment by Bellare and Rogaway [2], works as follows. Suppose that a cryp-
tographic scheme that makes use of hash functions can be proven secure under
standard intractabili ty assumptions, but in an idealized model of computat ion
where the hash functions are replaced by "black boxes" tha t output random
strings. Then the basic tenet of the random hash function approach is to view
this as "strong evidence" that the scheme is secure. See [2] for further discussion
of the random hash function model.

Even though the most compelling applications of threshold cryptosystems
seem to require chosen-ciphertext security, there appear to be no practical thresh-
old cryptosystems in the li terature that are provably secure, even in the random
hash function model. Our main contribution is to present and analyze two such
schemes. The first scheme, which we call TDH1 (for Threshold Diffie-Hellman),
is secure assuming the hardness of the Diffie-Hellman problem [13]. The second

* IBM Zurich Research Lab, Saumerstrasse 4, CH-8803 Rueschlikon, Switzerland.
sho@zurich.ibm.com

** IBM T. J. Watson Research Center, P.O.Box 704, Yorktown Heights NY 10598,
USA. rosario~w atson.ibm.com

scheme, TDH2, is secure under the stronger assumption of the hardness of the
Diffie-Hellman deczsion problem, but is more efficient than -I-DH1.

1.1 T h r e s h o l d c r y p t o s y s t e m and chosen ciphertext attack

In a threshold cryptosystem there is a single public encryption key, but the
corresponding private decryption key is shared among a set of, say, n decryption
servers in such a way that a threshold, say, k of them must cooperate to decrypt
a message. The servers output decryption shares that can be combined to obtain
the cleartext.

Security against chosen ciphertext attack intuitively means the following. A
message m is encrypted, yielding a ciphertext c, and an adversary is allowed to
feed the decryption system arbitrary ciphertexts c~--different from, but perhaps
related to c--obtaining the corresponding decryption. Security in this scenario
means that the adversary should gain no useful information about the message
m .

In a threshold cryptosystem, the adversary has more power. Firstly, the ad-
versary may corrupt a subset (of size at most k - 1) of the decryption servers; in
particular, the adversary knows their shares of the secret key. Secondly, and per-
haps more importantly, the adversary can obtain not only the the decryption of
a given ciphertext, but also the decryption shares generated by all of the servers.
There is clearly no way to prevent this, since even if it is the responsibility of
one of the servers to combine shares, this server may be corrupt and collaborate
with the adversary.

1.2 Motivation

One of the main motivations for a threshold cryptosystem is that it allows one to
construct a third-party decryption service in a distributed, secure, fault-tolerant
fashion, without a significant increase in the size of or the cost of creating a
ciphertext vis-h-vis a standard cryptosystem. To be at all useful, the third party
should not decrypt everything that comes its way and give it to just anybody,
but should implement some kind of useful policy. To implement such a policy
securely, in addition to chosen-ciphertext security, one needs an additional facil-
ity: the ability to attach a label to the ciphertext during the encryption process.
Such a label is a bit string that contains information that can be used by the
third party to determine if the decryption request is authorized, according to
its policy. Formally, one should think of the label as being a part of the cipher-
text, so that changing the label changes the ciphertext; security against chosen
ciphertext attack would then imply, in particular, that one cannot subvert the
third party's policy by simply swapping labels.

Perhaps the most obvious example of this is key recovery. Here, two parties
who wish to communicate generate a session key, and encrypt the session key
under a third party's public key. The party that creates the encryption attaches
a label containing the identities of the two parties, and the current time. This
labeled ciphertext is sent along the wire, along with the encrypted conversation.

A law enforcement agency may be authorized via a court order to tap the line,
and request that the third party decrypt the ciphertext containing the session
key. To protect individual privacy, the court order specifies to whom the wiretap
applies and a time interval. To enforce this policy, the third party only decrypts
a ciphertext if the information in its label is consistent with the given court
order.

Another example is the recent work of [1] on fair exchange, where an "off
line" trusted third party is used to enforce fairness.

A label might also contain the identity or public key of the intended recipient,
allowing the decryption service to direct the cleartext to that recipient only.

The usefulness of labeled ciphertext was already observed by Lim and Lee
[18] (who called it an indicator). In a non-threshold cryptosystem, labeled ci-
phertexts can be implemented by simply embedding a hash of the label in the
cleartext before encrypting. The decryption service is given a ciphertext and a
label, computes the cleartext, and compares the value of the embedded hash with
the hash of the given label. If these match, and the decryption policy authorizes
the given label, then the cleartext is released. If the underlying cryptosystem
is secure against chosen ciphertext attack, then so too will be the cryptosys-
tem with labeled ciphertexts. This implementation is not suitable for threshold
cryptosystems since the attacker who is mounting the chosen ciphertext attack
may be cooperating with some of the decryption servers. Those servers see the
decrypted labeled plaintext before it is output, thus it is too late at that point
to check if the label is correct, since the attacker has already seen the result of
the decryption operation.

1.3 O u t l i n e o f t h e paper

In w we review relevant background and related work. In this section, we also
sketch a simpler threshold cryptosystem, which we call TDH0, which may indeed
be secure, but for which it seems difficult to obtain a security proof under stan-
dard cryptographic assumptions, even in the random hash function model. In w
we define what we believe is a simple yet adequate formal security model. In w
we briefly discuss the basic technical tools we use in the design and analysis of
our cryptosystems, TDH1 and TDH2, which we describe and analyzed in 5 and
6, respectively. In w we discuss some implementation issues, and we conclude
with some final remarks and open questions in w

2 B a c k g r o u n d a n d R e l a t e d W o r k

2.1 C h o s e n c i p h e r t e x t a t t a c k

I m p r a c t i c a l b u t provable schemes . In the context of standard (i.e., non-
threshold) cryptosystems, provably secure cryptosystems secure against cho-
sen ciphertext attack were given by Naor and Yung [20], Rackoff and Simon
[23], Oolev, Dwork, and Naor [14], and De Santis and Persiano [10]. Unfortu-
nately, all known provably secure schemes rely on theoretical constructions of
non-interactive zero-knowledge proofs [4], and as such are quite impractical.

P r a c t i c a l schemes . Again in the context of non-threshold cryptosystems, prac-
tical cryptosystems intended to be secure against chosen ciphertext attack were
proposed by Damgard [8], Zheng and Seberry [28], and Bellare and Rogaway
[2,3]. The schemes in [28,2,3] are all known to be chosen-ciphertext secure in the
random hash function model.

2.2 Threshold cryptosystems

Threshold cryptosystems are part of a general approach known as threshold
cryptography, introduced by Boyd [5], Desmedt [11], and Desmedt and Frankel
[12]. In particular, in [12], a threshold cryptosystem based on the Diffie-Hellman
problem is presented. The techniques developed later by De Santis el ai [9] yield
a corresponding system based on RSA [24]. These schemes can be shown to
withstand chosen plaintext attack, but they are not known to withstand chosen
ciphertext attack.

2.3 W h y isn't it trivial to secure a threshold cryptosys tem against
chosen ciphertext attack?

Our first observation is that none of the practical schemes mentioned above
can be readily transformed into threshold schemes that are chosen-ciphertext
secure. To see why, consider the scheme in [2], which is representative. This
scheme uses a trapdoor permutation f and hash functions G and H; to encrypt
a message m, a random r in the domain of f is chosen, and the ciphertext is
(f(r) , m * G(r), H(r , m)). The output length of G is equal to that of m, and the
output length of H is large enough to make it difficult to find collisions. Given a
ciphertext (s, c, v), the deeryption algorithm computes r = f - l (s) , m = G(r)~c ,
and v' = H(r, m). If v ~ = v, it outputs m, and otherwise "?".

The proof of security in the random hash function model relies in a critical
way on the fact that the decryption algorithm makes the "validity test" v = v'
before generating an output.

Now consider turning this into a threshold scheme, and assume we can ef-
fectively share the trapdoor. The problem is that the above validity test cannot
be performed until after the individual shares of f - l (s) are generated and then
combined. As mentioned above, we must assume that the adversary can see these
shares, making the validity test pointless, and giving the adversary the ability
to invert f at chosen points. This destroys any hope of proving security using
current techniques.

The above difficulty was noted by Lira and Lee [18], who observed that
a publicly checkable validity test would be useful in this regard. Lim and Lee
proposed two practical systems based on this observation; however, both schemes
were subsequently broken by Frankel and Yung [16].

Interestingly, one can readily convert all of the impractical schemes mentioned
above into secure (but impractical) threshold schemes. It is instructive to see why
this is so. All of these schemes use a publicly checkable validity test, which is

essentiMly a non-interactive zero-knowledge proof of knowledge of the plaintext.
The key to the proof of security is that one can simulate the adversary's view
with a simulator that has a trapdoor that allows it to extract the plaintext from
the given proof of knowledge in a decryption request, thus allowing the simulator
to respond correctly to the request. Assuming the underlying decryption function
can be effectively shared, such a scheme can then be transformed into a threshold
scheme where each decryption server performs the validity test before generating
a decryption share.

2.4 The TDH0 Cryptosystem

What makes the above approach impractical is the proof of knowledge. An obvi-
ous thing to try is to design an appropriate zero-knowledge proof of knowledge
of the plaintext in the random hash function model that is more practical.

One obvious "solution" is the following threshold cryptosystem, based on
the Diffie-Hellman problem, which we call TDH0. Say we have a group G of
prime order q with generator g, a hash function H, and a public key h -- g*. To
encrypt a message m, we choose r E Zq at random, and compute u = gr and
c = H(h r) G) m. The ciphertext consists of u, c, and a non-interactive proof of
knowledge of logg u. It is straightforward to share the secret key, and a decryption
server only generates a decryption share if the proof of knowledge is valid.

For the non-interactive proof of knowledge, we could use Schnorr's [25] sig-
nature scheme with "public key" u and "private key" r.

Intuitively, this strategy makes sense, and TDH0 may very well be secure,
although it does not seem possible to prove that it is secure using known tech-
niques, under standard cryptographic assumptions, even in the random hash
function model.

The problem is a bit subtle. In the random hash function model, Schnorr's
signature scheme is indeed a proof of knowledge, but the corresponding knowl-
edge extractor does not operate "on line"--it must rewind the adversary many
times, each time running it forward with different random outputs for the hash
function used in the signature scheme. This type of "rewinding" extractor is
adequate to prove that the corresponding signature scheme is secure in the ran-
dom hash function model, but appears to be inadequate to prove the security
of TDH0. The reason is that a simulator for TDH0 must respond to many de-
cryption requests on-line, and all of this rewinding--possibly "undoing" previ-
ous decryption requests which recursively leads to more rewinding--results in a
blow-up in the running time of the simulator that is exponential in the number
of decryption requests. A similar phenomenon was observed by Pointcheval and
Stern [22] in the context of blind digital signatures.

One could circumvent all this by straightaway assuming an on-line knowledge
extractor; that is, we simply assume that any algorithm that can create create a
valid proof of knowledge can be transformed into an algorithm that simultane-
ously outputs a corresponding witness. A similar type of assumption is made by
Damgard [8] and Zheng and Seberry [28]. This type of assumption, however, is

not very acceptable: it is completely nonstandard, and it is not at all clear how
it is related to any kind of intractabili ty assumption.

3 A Formal Security Model

A k out of n threshold cryptosystem consists of the following components:

- A key generatzon algorithm that takes as input a security parameter , the
number n of decryption servers, and the threshold parameter k; it outputs
a public key PK, and a list SK1, . . . , SKn of private keys.

- An encryption algorithm that takes as input the public key PK and a clear-
text m, and a label L, and outputs a ciphertext c.

- A deeryption algorithm that takes as input the public key PK, an index
1 < i < n, the private key SKi, a ciphertext c, and a label L, and outputs a
decryption share ~ri.

- A recovery algorithm that takes as input the public key PK, a ciphertext c,
a label L, and a list ~r h . . . , an of decryption shares, and outputs a cleartext
m .

Operat ion of the cryptosystem runs as follows. There is a trusted dealer and
a set P1 , . . . ,Pn of decryption servers. Under certain conditions the presence of
a trusted dealer can be eliminated [21].

In an initialzzation phase, the dealer is run, creating the public and private
keys. For 1 < i < n, the public key PK and private key SKi are given to server
P~.

A user who wants to encrypt a message can run the encryption algorithm,
using the public key.

A user who wants to decrypt a ciphertext gives the ciphertext to each server
Pi, who each generate a decryption share ~rl. These shares are then combined
using the recovery algori thm to obtain the cleartext.

Note that the above model of a threshold cryptosystem is not the most
general possible: the need for a trusted dealer may be relaxed, and decryption
may involve a more general distributed computat ion. We do not discuss these
possible variations in this paper.

Any practical k out of n cryptosystem should be robust, i.e., it should be
able to tolerate the presence of an adversary that tries to hinder the recovery
process. When a eiphertext c is decrypted, a list of corresponding decryption
shares a l , . . . , an is produced. The scheme is robust if the recovery algori thm
recovers the plaintext m (at least with overwhelming probability) even if at most
k - 1 of the decryption shares are incorrect. Robust threshold cryptosystems are
presented in [21,17] and we follow their general approach in order to make our
schemes robust.

To define security against chosen cipherte~t attack, we consider the following
game played against an adversary.

7

G a m e A

A1 The adversary chooses to corrupt a fixed set of k - 1 servers.
A2 The key generation algorithm is run. The private keys of the corrupted

servers are given to the adversary, while the other private keys are given
to the uncorrupted servers, and kept secret from the adversary. The adver-
sary of course receives the public key as well.

A3 The adversary interacts with the uncorrupted encryption servers in an arbi-
t rary fashion, feeding them ciphertext/ label pairs, and obtaining decryption
shares.

A4 The adversary chooses two cleartexts m0 and m I and a label L. These are
given to an "encryption oracle" that chooses b E {0, 1} at random, encrypts
mb using the given label L, and gives the ciphertext c to the adversary.

A5 The adversary continues to interact with the uncorrupted servers, feeding
them ciphertext/label pairs (c', L') # (c, L).

A6 At the end of the game, the adversary outputs b' E {0, 1}.

Security against chosen ciphertext attack means that for any polynomial time
bounded adversary b' = b with probability only negligibly greater than 1/2.

The above definition captures the notion of security against a slatzc adversary
(i.e., one who corrupts players only at the beginning of the protocol). All known
practical threshold cryptosystems (including [21,17]) are provably secure only
against such a static adversary; our protocol has the property as well.

4 Bas ic Tools

4.1 T h r e s h o l d s e c r e t s h a r i n g

Let q be a prime, and 1 < k _< n < q. Shamir's [26] k out of n secret sharing
scheme over Zq works as follows. We have a random secret x E Zq. We choose
random points f l , . - - , fk-1 E Zq, set f0 = x, and define the polynomial F(X) =
)-~k-1 r For 1 < i < n, xi = F(i) E Zq is the ith share ofx . Just for notation j=O J3 3"
purpose we will denote x as its own 0th share, x = x0 = f0.

If any subset of k - 1 shares is revealed, then no information about x is
obtained, whereas if k shares are revealed, x is completely determined, and
can be computed by interpolation. Actually the following property holds: for
any ordered subset S = { i l , . . . , i k } C {O, . . . ,n} , and any i e { O , . . . , n } \ S ,
there exists an easy-to-compute sequence)~1,- As �9 ., ik E Zq, such that xi =

~k--_i) ~ Xi J �9

4.2 Z e r o - k n o w l e d g e p r o o f o f d i s c r e t e l o g a r i t h m ident i t ies

Let G be a group of prime order q with generators g, ~. Let EDLogg,~ be the
language of pairs (u, fi) E G 2 such that log 9 u = log~ ft.

Our cryptosystems will heavily rely on a zero-knowledge proof of membership
for the language EDLogg,~. It is important to notice that our proofs techniques do

not require a proof of knowledge (which would create the problems encountered
with the TDH0 cryptosystem).

The following is a well-known zero-knowledge proof system for EDLogg,~, due
to Chaum and Pedersen [7]. Although it happens to also be a proof of knowledge
we will not use that property in our schemes.

Let (u, ~) E EDLogg,~ be given, so there exists r E Zq such that u = gr and

- The prover chooses s E Zq at random, computes w = g' and tO = ~s, and
sends w, tO to the verifier.

- The verifier chooses e E Zq at random, sending this to the prover.
- The prover sends f = s+re to the verifier. The verifier checks that g! = wu e

and .~I = to~e.

It is well known that this proof system is sound: the verifier can be cheated
into accepting a pair not in the language with probability at most 1/q. It is also
well known that this proof system can be simulated in zero-knowledge against
an honest verifier. By making the challenge e a hash of (u, w, ~, to), then in
the random hash function model, this becomes a non-interactive zero-knowledge
proof.

Actually, a stronger soundness condition holds that we will need in the sequel:
the argument that one uses to show soundness in the above non-interactive proof
system can be used to show that when the verifier accepts, not only do we have
(with overwhelming probability) logg u = logj fi, but also logg w = logy to.

4.3 Intractability assumptions

Let G be a group with generator g.
The DiJfie-Hellman problem is this: given g* and gU, compute gXy, where x

and y are random exponents.
The DiJfie-Hellman decision problem is this: given a triple that is either of

the form (g*,gY,g*Y) or (g*, gy,gZ), where x, y, and z are random exponents,
determine which is the case.

Clearly, the second problem is no harder than the first, but it is not known
if they are equivalent. The only known method for solving either problem is to
solve the discrete logarithm problem: given gX, compute x. For suitable groups,
such as a large prime-order subgroup of the multiplicative group modulo a large
prime, all of these problems are widely conjectured to be intractable.

5 T h e TDH1 C r y p t o s y s t e m

We now describe the threshold cryptosystem TDH1.
TDH1 works over an arbitrary group G of prime order q, with generator g;

for simplicity, assume that messages and labels are/-bi t strings. It uses four hash
functions:

H I : G - ~ { 0 , 1 } z, H2 : {O,1}a x {O, 1}t x G x G - ~ G, H3, H4 : G3 -~ Zq.

K e y G e n e r a t i o n . For a k out of n scheme, the key generation algorithm runs as
follows (we assume q > n). Random points f0, . . . , fk-1 E Zq are chosen, defining

a polynomial F (X) k-1 F (i) E Zq = ~ i = 0 . f i x j E Zq[X]. For 0 < i < n, set xi =
and hi = gX,. For notational convenience, we set x = F(0) and h = h0 = gX.
The public key is (h, hi, . . . , hn), and the ith private key is xi, for 1 < i < n.

Note that the components h i , . . . , hn of the public key are only needed to
verify decryption shares in the recovery algorithm, and are not needed by the
encryption algorithm. In other words, the sender needs only to know h while the
hi should be made available to all the decryption servers.

The key generation protocol may be thought as being performed by a trusted
dealer that self-destroys after the generation of the key. However using technique
from [21] we may also assume that there is no need for a trusted dealer and that
the players jointly generate the key pair.

E n e r y p t i o n . The algorithm to encrypt a message m E {0, 1} 1 with label L E
{0, 1} t runs as follows. We choose r, s E Zq at random, and compute

c = H l (h r) G m , u = g r , w = g ~ , O = H 2 (c , L , u , w) ,

The ciphertext is (c, u, fi, e, f) .
What is happening here is that the encryption includes a non-interactive

proof that logg u = log~ ft.

D e c r y p t i o n . Decryption server i does the following given ciphertext
(c, u, ~, e, f) and label L. It checks if e = H3(~, ~, ~), where

w = g l / u e , ~ = g ~ (c , L, u, w), ~ = ~ J / ~ e .

If this condition does not hold, it outputs "?". Otherwise, it proceeds as follows.
It then chooses si E Zq at random, and computes

ui = u ~', u~ = u~', h~ = g " , e, = H4(ui,u~,h~), fi = si + xiei .

Its output is (ui, ei, f i) .
What is happening here is that the decryption share includes non-interactive

proof that log u ui = logg hi. This is needed for robustness reason since it enforces
the condition that the partial decryption is correct (see Theorem 1).

R e c o v e r y . The recovery algorithm takes as input a ciphertext (c, u, fi, e, f) , and
a list of decryption shares. A share (ui, el, f~) is "good" if ei = H4(ui , u~, h~),

' = uY'/u~ ' and h~ = hl'/h~. '. Now assume we have a subset S = where u i
{ i l , . . . , ik} of good shares. Then, using the notation defined in w the recovery
algorithm outputs

k

j---1

10

T h e o r e m 1. In the random hash functzon model, the TDH1 cryptosystem zs
secure agaznst chosen ciphertext attack, assuming the DiJJie-Hellman problem in
G is hard.

The proof is in Appendix A. We also remark that it is straightforward to
prove that in the random hash function model, the scheme is robust provided
n > 2 k - 1 .

6 The TDH2 Cryptosys tem

Cryptosystem TDH2 is very similar to TDH1. The main difference is that the
group element ~, instead of changing with each encryption, is chosen at key-
generation time.

We now give the details. As before, we have a group G of prime order q with
generator g. We need three hash functions:

H1 : G --+ {0, 1} t, H2 : {0, 1} I x {0, 1} I x G 4 --+ Zq, H4 : G a --+ Zq.

K e y G e n e r a t i o n . Same as for TDH1, except that a random element ~ E G is
chosen which is also part of the public key.

E n c r y p t i o n . The algorithm to encrypt a message m E {0, 1} z with label L E
{0, 1} I runs as follows. We choose r , s E Zq at random, and compute

c = H l (h r) | u = g ~, w = g s, ~ = ~ , ~b=~ ~,

e= H2(c,L,u,w, fi,@), f = s + r e .

The ciphertext is (c, u, fi, e, f) .
As in TDH1, the encryption includes a non-interactive proof that logg u =

logy u.

D e c r y p t i o n . Decryption server i does the following given ciphertext
(c, u, fi, e, f) and label i . It checks that e = H2(c, L, u, w, ft, w), where w = g]/u e
and t~ = ~ll/fi e. If this condition does not hold, it outputs "?". Otherwise, it
proceeds exactly as in TDH1, creating an output (ui, el, fi).

Recove ry . Same as for TDH1.

T h e o r e m 2 . In the random hash function model, the TDH2 cryptosystem is
secure against chosen ciphertext attack, assuming the Diffie-Hellman decision
problem in G is hard.

The proof is in Appendix B. As for TDH1, the scheme is robust in the random
hash function model if n > 2k - 1.

11

7 Implementation Issues

To implement these schemes, one has to choose concrete hash functions. This is
relatively straightforward, but see [2] for a detailed discussion. One technicality
that we have to deal with here, though, is the hash function H1 in TDH1, whose
output is supposed to be an element of the group G. For example, consider the
case where p is a prime, p - 1 = mq, (m, q) = 1, and G is the group of order q in
Z~. We could implement H1 by raising the output of a standard hash function
(viewed as a number) to the power m modulo p. This gives us an element in G.
Note that the decryption and recovery algorithms must also check that the given
group elements lie in G. It is straightforward to modify the proof of security to
deal with this.

Unfortunately, this implementation of H1 is quite costly, as it requires extra
exponentiations, some to the power m, which is typically much larger than q.

The TDH2 scheme does not suffer from this problem. Moreover, in TDH2,
the group element ~ is fixed (per public key). In practice, this makes quite a
difference, as one can pre-compute a table that makes exponentiation to the
base .~ far more efficient than when it is constantly changing [6,19]. This speeds
up the encryption algorithm significantly. Of course the same can be done for g
already in TDH1.

8 Conclusion

We have proposed two new threshold cryptosystems, TDH1 and TDH2, that are
provably secure in the random hash function model assuming, respectively, that
the Diffie-Hellman and Diffie-Hellman decision problems are hard.

TDH2 requires a stronger intractability assumption than TDH1, but is much
more efficient. Moreover, TDH2 is not much less efficient than the very simple
TDH0 scheme in w which is not known to be secure in the random hash
function model.

We close with three open problems: (1) determine the security of TDH0; (2)
find a practical threshold cryptosystem based on RSA that is provably secure in
the random hash function model; (3) find practical and provably secure threshold
cryptosystems, without the random hash function model.

Appendix A: Proof of Theorem 1

We show how to use an adversary that can guess bit b in game A to solve the
Diffie-Hellman problem. It is clear that if the adversary is to guess bit b, then he
must query the function H1 at the same point that the encryption oracle did. We
simulate the adversary's view up to the point that this happens. After this point,
the simulation is no longer perfect, but it does not matter: we already solved the
Diffie-Hellman problem. Actually, the output of our algorithm is simply a list
of all points at which H1 was queried, which with nonnegligible probability will

12

contain the solution to the Diffie-Hellman problem. Techniques in [27] can be
used to transform this into an algorithm that outputs a single, correct solution
to the Diffie-Hellman problem.

We now give the details of the simulation. Let c~,/3 E G random elements in
G for which we want to solve the Diffie-Hellman problem to the base g. That is,
we want to compute 3' = crl~ ~

At any point in the simulation, the adversary may query one of the random
hash functions. The simulator responds by first checking if the value of the hash
function has already been defined at the given point; if so, it responds with the
defined value; otherwise, it chooses a random value, defines the value of the hash
function at the given point to be this value, and responds with this value.

The simulator itself may at some point choose to define the value of a hash
function at a chosen point. Such "backpatching" is allowable so long as the hash
function has not already been defined at the chosen point.

Now suppose the adversary in step A1 chooses to corrupt a subset of k - 1
servers. Without loss of generality, we can assume these are servers/)1, �9 .-, Pk- 1.
Let S = {0 , . . . , k - 1}, and we will write A~j instead of ,~s.

Now in step A2, we proceed as follows. We choose Xl , . . . ,xk-1 E Zq at ran-

dom, and we set h = a. Then for k < i < n, we compute hi = h x'~ 1-I~__--I g ~ ' ~ "
Next, we have to describe how to simulate the "encryption oracle" in step

A4, and how to simulate each query to one of the noncorrupt decryption servers.
We deal first with the encryption oracle. The adversary gives a label L and

two messages, m0 and ml, to the encryption oracle. We ignore the messages
completely. Instead, we simply choose c ~ {0, 1} z and t , e , f E Zq at random. We
then set

u = / ~ , g = g t , d = u t , w = g f / u e, ~ , = g f / f l e.

We then backpatch, defining H2(c, L , u , w) = g, and H3(g, fi,@) = e. The
output of the encryption oracle is (c, u, u, e, f) .

It is easily verified that this backpatching is allowable. Also, one sees that
u, g, and fi have the right distribution; namely, they are random, subject to
to the condition logg u = logg ft. The rest is just a standard zero-knowledge
simulation. Thus, simulation is perfect, and will remain perfect, as long as the
adversary does not query H1 at the point 7 = ul~ h. Note that the simulator
never directly queries or backpatches H1 itself; it only does this upon request of
the adversary.

We next deal with the simulation of the uncorrupted decryption servers. First
of all, whenever the adversary queries H2 at a point other than (c, L, u ,w) , we
arrange that the simulator defines the value j at that point by first choosing
t E Zq at random, and then computing ~ = h t, so that the simulator knows
log h ~ (but the adversary is oblivious to this).

Now suppose Pi is given a valid ciphertext/ label pair ((c, u, fi, e, f) , L) r
((c, u, d, e, f) , L). Now, ((c, u, fi, e, f) , L) determines via the validity conditions
corresponding variables ~, w, t~.

We first argue that we can assume that (c, L, u, w) # (c, L , u , w) . On the
contrary, suppose that (c, L, u, w) = (c, L, u, w). Then of course ~ = g. But then

13

with overwhelming probability, we must also have (fi, ~) = (u, w). This easily
follows from the strong soundness condition discussed in w It then follows
that e = e and f = f , which contradicts our assumption that ((c, u, fi,e, f) , L)
((c, u, f i , e , f) , L).

So assume (c, L, u, w) ~ (c, L, u, w). We can assume that the adversary has
already queried H2 at the point (c, L, u, w), so that we have ~ = H2(c, L, u, w) =
h t, where t is known to the simulator, as discussed above.

Now suppose u = g r where r is not known to the simulator. We want to
compute h r. But by the soundness of the proof that logg u = log~ ~, we can
assume that fi = ~r. But then (~) l / t = (~)r/t = h r.

So the simulator can compute h r, but we are not quite done. We want to
simulate the output of server Pi, who is supposed to output ui = h~., along
with a proof that log~ ui = log 9 hi. But ui can be computed by the simulator

as u i (s k-1 = 1-Ij=l u~;~';" Once we have tq, we can readily produce a zero-
knowledge simulation of the proof that log~, ui = log~ hi, backpatching H4 as
necessary.

That completes the proof of Theorem 1.

A p p e n d i x B: Proof of Theorem 2

Again, the proof is by reduction, and we assume the adversary queries, with
nonnegligible probability, the same point in game A that was queried by the
encryption oracle in step A4.

Let ((~, fl, 7) be a random instance of the Diffie-Hellman decision problem.
This triple is drawn from one of two distributions: that of DiJ:fie-Hellman triples,
where c~ = gX, fl = gy, and 7 = gXy, for random x, y E Zq, or from that of random
triples, where (~ = g~, /3 = g~, and 7 = g~, for random x , y , z E Zq. The job of
the simulator is to distinguish between these two distributions. It outputs a 1
or a 0, and to be an effective test, the expected value of its output on the two
distributions should differ by a nonnegligible amount.

We simulate the view of the adversary in game A as follows.
As in the proof of Theorem 1, we assume the adversary corrupts players

P 1 , . . . , Pk-1 in step A1. In step A2, we set h = a (= g~), generate x l , . . . , xk-1 E
Zq at random, and solve for h k , . . . , hn as in the proof of Theorem 1. We also
choose t E Zq at random and set ~ = h t (= gXt).

Now we discuss how to simulate the adversary's view of the encryption oracle
in step A4, given a label L. We choose c E {0, 1} I at random. We set u = f l (= gY)
and fi = 7 t, which is either g~yt or g~t, depending on the distribution from which
(~ , f l ,7) was drawn. We then choose e, f E Zq at random, and compute w =

g f / u e, and ~, = ~ f / u e . We then backpatch, setting U2(c, L, u, w, u, w) = e.
The output of the encryption oracle is (c, u, u, e, f) .

The simulation of the uncorrupted servers is essentially just as it was in the
proof of Theorem 1: the key is that the simulator knows t with ~ = h t, and
so given a valid ciphertext/ label pair ((e, u, fi, e, f) , L) # ((e, u, fi, e , f) , L), it is

14

easy to argue that with overwhelming probability logg u = log s fi, which implies
we can compute u ~ as (fi)l / t , and simulate the rest of the server's output just
as before.

The simulator itself never directly queries or backpatches H1, except on be-
half of the adversary. If the adversary ever queries H1 at 7, we stop and output
1; otherwise, if the adversary terminates without querying H1 at 7, we output
0.

That completes the description of the simulator.
Consider the joint distribution of(h, g, u, fi). In the case where (a, fl, 7) drawn

from the Diffie-Hellman triple distribution, (h, g, u, fi) is (statistically indistin-
guishable from) a random element of G 4, subject to the condition log a u = log~ u.
In the case where (c~, fl, 7) is a random triple, (h, g, u, fi) is simply (statistically
indistinguishable from) a random element of G 4. In either case, 7 is determined
by 3' -=- flog~ h; moreover, if (c~, fl, 7) is a Diffie-Hellman triple, then the relation
,), : ulog~ h also holds.

We now argue as follows. In the case where (c~,/3, 7) is drawn from the Diffie-
Hellman triple distribution, the simulation of game A is perfect until the adver-
sary queries H1 at 7 -- ul~ h, at which point we stop and output a 1. By our
assumption about the behavior of the adversary, and the fact that the simulation
is perfect up to this point, this happens with nonnegligible probability.

Now, if in the case where (a,/3, 7) is a random triple the simulator outputs
a 1 with negligible probability, we are done: the simulator is an effective test for
distinguishing Diflie-ltellman triples from random triples.

Otherwise, suppose that in the case where (a,/3, 7) is a random triple the sim-
ulator outputs 1 with nonnegligible probability. As mentioned above, (h, g, u, u)
is just a random element in G 4. The other random variables e, f, w, and ~" are
also just random, subject to relations that make the "proof" that logg u = log~ fi
look legitimate; in fact, the relation logg u = log~ fl does not in general hold,
and the "proof" is entirely bogus, but that is irrelevant.

The point is that if the adversary makes the simulator output a 1, it can
essentially compute f l o g ~ h given random (h , ~ , u , f) E G 4. As we show below,
we can use this adversary to solve the following variant of the Diffie-Hellman
problem with the nonnegligible probability: given random c~ I = gt and/3' = g ' ,
compute 71 = gV/t. It is easy to see that this problem is equivalent (under
polynomial-time reduction) to the Diffie-Hellman problem, and is certainly at
least as hard as the Diffie-Hellman decision problem.

Now the details. The new simulation proceeds as follows. The input to the
simulator is o/,/3' as above. First choose x E Zq at random, set g = (c~') x (= gXt),
and run the actual key generation algorithm for the cryptosystem, in particular,
setting h = gX. Since this new simulator knows the private decryption key, it
can without any trouble respond to arbitrary decryption requests.

Now consider the encryption oracle in step A4, given label L. We choose c E
{0, l} at random, e , f E Zq at random, and u E G at random. We then set f =

/31(_.: gV). We compute w = g f / u e, and @ = 0f / f i e. We then backpatch, setting
H2(c, L, u, w, f , @) = e. The output of the encryption oracle is (c, u, f , e, f) .

15

This new simulator halts when the adversary halts, ou tpu t t ing the list of all
queries made to H1.

It is s t ra ightforward to verify tha t the view of this adversary relative to this
new simulator is identical to the view of the adversary relative to the original
s imulator on a r a n d o m triple, at least up until the point tha t it queries H1 at

7 = dl~ = (g~)~/~t = grit = 7'.

So, if the adversa ry causes the first s imula tor on a r a n d o m tr iple to out-
put 1 wi th nonnegligible probabil i ty, then this same adversa ry causes this new
s imula tor to ou tpu t a list containing the desired solut ion 7 ~.

T h a t completes the proof of Theorem 2.

References

1. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. Preprint, 1997.

2. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for design-
ing efficient protocols. In First A CM Conference on Computer and Communica-
tions Security, 1993.

3. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in
Cryptology--Crypto '94, pages 92-111, 1994.

4. M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-interactive zero knowl-
edge. S l A M J. Comput., 6(4):1084-1118, 1991.

5. C. Boyd. Digital multisignatures. In H. Baker and F. Piper, editors, Crypto9raphy
and Coding, pages 241-246. Claredon Press, 1986.

6. E. F. Brickell, D. M. Gordon, K. S. McCurley, and D. B. Wilson. Fast exponenti-
ation with precomputation. In Advances in Cryptology-Eurocrypt '92, pages 200-
207, 1992.

7. D. Chaum and T. Pederson. Wallet databases with observers. In Advances in
Cryptology-Crypto '92, pages 89-105,]992.

8. I. Damgard. Towards practical public key cryptosystems secure against chosen
ciphertext attacks. In Advances *n Cryptology-Crypto '91, pages 445-456, 1991.

9. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function
securely. In 26th Annual ACM Symposium on Theory o] Computing, pages 522-
533, 1994.

10. A. De Santis and G. Persiano. Zero-knowledge proofs of knowledge without inter-
action. In 33rd Annual Symposium on Foundatzons of Computer Science, 1992.

11. Y. Desmedt. Society and group oriented cryptography: a new concept. In Advances
in Cryptology-Crypto '87, pages 120-127, 1987.

12. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Advances in Cryptology-
Crypto '89, pages 307-315, 1989.

13. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Trans. Info.
Theory, 22:644-654, 1976.

14. D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography. In 23rd Annual
A C M Symposium on Theory of Computing, pages 542-552, 1991.

15. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. In Advances in Cryptology--Crypto '86, pages 186-194,
1986.

16

16. Y. Frankel and M. Yung. Cryptanalysis of immunized LL public key systems. In
Advances in Cryptology-Crypto '95, pages 287-296, 1995.

17. R. Gennaro, S. Jarecki, H. Krawezyk, and T. Rabin. Robust and efficient sharing
of RSA functions. In Advances in Cryptology-Crypto '96, pages 157-172, 1996.

18. C. H. Lim and P. J. Lee. Another method for attaining security against adaptively
chosen ciphertext attacks. In Advances in Cryptology-Crypto '93, pages 420-434,
1993.

19. C. H. Lim and P. J. Lee. More flexible exponentiation with precomputation. In
Advances in Cryptology-Crypto '94, pages 95-107, 1994.

20. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In 22nd Annual A CM Symposium on Theory of Computing,
pages 427-437, 1990.

21. T. Pedersen. A threshold cryptosystem without a trusted party. In Advances in
Cryptology-Eurocrypt '91, pages 522-526, 1991.

22. D. Pointcheval and J. Stern. Provably secure blind signature schemes. In Advances
in Cryptology-Asiacrypt '96, pages 252-265, 1996.

23. C. Rackoff and D. Simon. Noninteractive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Advances in Cryptology-Crypto '91, pages 433-444,
1991.

24. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public-key eryptosystems. Communications of the ACM, pages
120-126, 1978.

25. C. Schnorr. Efficient signature generation by smart cards. J. Cryptoiogy, 4:161-
174, 1991.

26. A. Shamir. How to share a secret. Communications of the ACM, 22:612-613, 1979.
27. V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances

in Cryptolagy-Eurocrypt '97, 1997.
28. Y. Zheng and J. Seberry. Practical approaches to attaining security against adap-

tively chosen ciphertext attacks. In Advances in Cryptology-Crypto '92, pages
292-304, 1992.

