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Abs t r ac t .  We introduce a new cryptosystem with trapdoor decryption 
based on the difficulty of computing discrete logarithms in the class group 
of the non-maximal imaginary quadratic order OAq, where Alq = Aq 2, 
A square-free and q prime. The trapdoor information is the conductor 
q. Knowledge of this trapdoor information enables one to switch to and 
from the class group of the maximal order (_OA, where the representa- 
tives of the ideal classes have smaller coefficients. Thus, the decryption 
procedure may be performed in the class group of Oa rather than in the 
class group of the public (.9Aq, which is much more efficient. We show 
that inverting our proposed cryptosystem is computationally equivalent 
to factoring the non-fundamental discriminant Aq, which is intractable 
for a suitable choice of A and q. We also describe how signature schemes 
in OAq may be set up using this trapdoor information. Furthermore, 
we illustrate how one may embed key escrow capability into classical 
imaginary quadratic field cryptosystems. 
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1 I n t r o d u c t i o n  

Since Diffie and Hellman's  introduction of public key cryptography in [9] a variety 
of encryption and signature schemes based on the discrete logari thm problem 
(DLP) have been proposed [11, 23, 22]. Due to the nature  of cryptosystems based 
on the DLP, it is possible to replace the group ~Z/p2g* in the classical protocols 
by other finite Abelian groups in which the DLP is more intractable or the 
implementat ion yields bet ter  performance.  Popular  examples are the group of 
points on elliptic curves [20, 15], the divisor class group of hyperelliptic curves 
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[16], the group Z~In~Z*, where n is the product of two large primes [19], and 
the class group of imaginary quadratic fields [5, 18]. 

In this work we will focus on discrete log cryptosystems based on the class 
group of non-maximal imaginary quadratic orders. This is a slight, but in prac- 
tice very important generalization of [5, 18], where only the class group of the 
imaginary quadratic field, i.e., the class group of the maximal order was consid- 
ered. It is known that the computation of discrete logarithms in the class group 
of an imaginary quadratic order can be used to factor the corresponding discrim- 
inant [5, 25]. Thus, the inversion of these cryptosystems is at least as difficult 
as factoring. On the other hand, there is no good algorithm known to compute 
discrete logs in the class group of the maximal order if only the factorization 
of the discriminant is known. Therefore, these cryptosystems are very interest- 
ing from a theoretical point of view. While the best algorithms for computing 
discrete logarithms in class groups [12, 3] have sub-exponential complexity, they 
are still too inefficient for large discriminants. 

However, the cryptosystems based on discrete logarithms in class groups have 
not yet gained very much attention in practice, because the known implemen- 
tations are still too inefficient. A step towards practical cryptosystems based 
on imaginary quadratic class groups is presented in this article. We introduce 
a trapdoor variation of this type of cryptosystem which significantly improves 
the decryption procedure. The trapdoor information is the factorization of the 
non-fundamental discriminant Aq = Aq 2, where A is square-free and q is prime. 
Knowledge of the conductor q enables one to switch to the class group of the 
maximal order and back. Thus, the key-owner may take advantage of the short- 
cut via the maximal order when decrypting. This is somewhat similar to the 
application of the Chinese remainder theorem when generating RSA signatures. 
However, the relative speedup is much higher in our proposed system. 

If an attacker knows the factorization of the discriminant Aq = Aq 2, our sys- 
tem is no longer secure, since he is able to switch to the class group of the max- 
imal order Oz~ where he may easily attack the system using the sub-exponential 
algorithms from [12, 3]. Hence, breaking our scheme is "only" equivalent to fac- 
toring the discriminant, unless A is chosen sufficiently large. 

Using the knowledge of the factorization of Aq, one may compute the order 
of the group of equivalence classes of Oaq via the maximal order. This enables 
signature schemes in the class group of (.Paq to be set up. Knowledge of the 
conductor also enables one to set up a key escrow system by providing a non- 
maximal order to users of a classical imaginary quadratic field cryptosystem. 

The paper is organized as follows: We first briefly discuss the relation between 
the maximal and non-maximal orders in imaginary quadratic number fields. We 
give algorithms to switch to and from the class group of the non-maximal order 
to the class group of the maximal order and explain the parameter setup for the 
new scheme. The new scheme is discussed in terms of security; this will include 
a proof that breaking our scheme is computationally equivalent to factoring the 
non-fundamental discriminant Aq = Aq 2 . We also present run time statistics for 
various parameter sizes which illustrate the efficiency of our new scheme. Finally, 
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we discuss how signature schemes and a key escrow system may be set up using 
class groups of non-maximal imaginary quadratic orders. 

2 O r d e r s  i n  i m a g i n a r y  q u a d r a t i c  n u m b e r  f i e l d s  

Basic notions of imaginary quadratic fields and orders can be found in [2], [13] 
or [7]. For a more complete t reatment  of the relationship between maximal and 
non-maximal orders we refer to [8]. 

Let A be any non-square negative integer congruent to 0 or 1 modulo 4. The 
quadratic order of discriminant A is defined as 

O~ = Z~+ A +--------~Z~. 
2 

The maximal order of the quadratic field Q(v/-~) will be denoted by Oal, and 
the non-maximal order with conductor f will be denoted by Ozls, where A I = 
f2A1. If the conductor is prime, we will denote it by q rather than f, and the 
corresponding non-maximal order will be denoted by Ozlq. All primitive ideals 
of an order O~ will be presented in standard representation: 

where a 6 ~ > 0 ,  b 2 = A (mod 4a), and - a  < b _< a. Recall that  a primitive 
ideal is reduced if a _< e and b _> 0, if a = c or Ibl = a, where c = (b 2 - A) /4a .  It 
can be shown that  a reduced ideal a satisfies .)V(a) = a < ~/IAI/3. On the other 

hand, if A/(a) =_< I~A-]-/4, then a is reduced. The set of all invertible ideals of 
Oz~ will be denoted by Zz~, and the set of all invertible, principal ideals by Pz~. 
Ideal equivalence is denoted by a ,-, b, and the class group and class number of 
Oz~ are denoted by Cl (A)  and h(A) ,  respectively. 

Our cryptosystem makes use of the relationship between non-maximal orders 
Oz b and the maximal order Ozh in Q ( v ~ ) .  

Proposition 1. Let (9 be an order in the quadratic field Q(v/-~). Then 0 has 
finite index in OA1. I f  we set f = [OA~ : 0], then O = ~Z + fO~a~ and the 
discriminant of 0 is equal to f2A1.  

Proof. See [8, Lemma 7.2, page 133]. [q 

Note that  this proposition also justifies the notation Oza s. A nice property of 
(nonzero, fractional) ideals in the maximal order O~al is that  all ideals are in- 
vertible. This is not t rue for non-maximal orders O,a I . However, we will see that  
this holds for a slightly smaller subset, namely the ideals which are prime to the 
conductor f .  

D e f i n i t i o n  2. Let OA be an order in an imaginary quadratic field and m 6 IN. 
We say that  a nonzero ideal a of Oza is prime to m if a + m O a  = O,a. 
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In our case, where we are interested in Oaf-ideals, we have the following: 

Proposition 3. Let Oaf  be an order of conductor f and a C_ Oaf be a nonzero 
Oaf-ideal. Then 

1. a is prime to the conductor if and only if its norm A/'(a) is relatively prime 
to f ,  i.e., gcd(Af(a), f )  = 1. 

2. I f  a is prime to the conductor f ,  then a is invertible. 

Proof. See [8, Proposition 7.4, page 135 and Lemma 7.18, page 143]. [] 

Furthermore, we know that  the norm of ideals prime to the conductor is multi- 
plicative, as it is for ideals in the maximal order. 

P r o p o s i t i o n  4. Let Oaf  be an order of conductor f and a, b be nonzero Oaf -  
ideals. Then Af(ab) - Af(a)Af(b). 

Proof. See [8, Lemma 7.14, page 140]. [] 

The set of invertible ideals of O a f ,  i.e., the ideals which are prime to f ,  
will be denoted by 7:af (f) .  Then the above propositions show that  they form a 
subgroup of 7:af. Inside this subgroup we have a smaller subgroup, the principal 
ideals of Ozaf which are prime to f .  This subgroup is denoted by P a l  (f)- 

Proposition 5. There is an isomorphism 

7:A1(f)/~ ( f )  ~ 7:zal/7 ~ = CI(AXf) A! A! 

Proof. See [8, Proposition 7.19, page 143]. [] 

This shows that  we may "neglect" the Oas-ideals which are not prime to the 
conductor if we are only interested in the class group CI(AI) .  To express how 
this isomorphism can be used for our purposes, we have the following: 

Proposition 6. Let Oas be an order of conductor f in an imaginary quadratic 

field Q(v/-~) with maximal order OA~. 

I. I f  ~ is an Oa~ -ideal prime to f ,  then a = ~ n Oaf  is an Oaj  -ideal prime 
to f and Af(~) = Af(a). 

2. I f  a is an Oaf -ideal prime to f ,  then ~ = aOal is an Oal -ideal prime to f 
and .f~f ( a ) = Af ( !2l ) . 

3. The map qo : f~ ~-r ~ ln  Oa,  induces an isomorphism 7:a~(I)~I,a,(f). The 
inverse of this map is qo -1 : a ~-~ aOa~. 

Proof. See [8, Proposition 7.20, page 144]. [] 

The next proposition shows that  if we are only concerned with equivalence 
classes of ideals, then the primality condition in Proposition 6 does not impose 
an insurmountable obstacle. 
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P r o p o s i t i o n  7. Let Oza be an order in an imaginary quadratic field. Given a 
nonzero integer f ,  then every ideal class in Cl (A)  contains an O,a-ideal prime 
to f .  

Proof. See [8, Corollary 7.17, page 142]. [] 

We will restrict ourselves to the case where the conductor is prime in our 
cryptosystem. To implement our scheme, we will need constructive versions of 
Proposition 6 and 7. Therefore, we will give simple algorithms for computing an 
OA-ideal prime to the conductor q and for switching from 27,al to ZAq and back. 

A l g o r i t h m  1 ( F i n d I d e a l P r i m e T o ) .  
I n p u t :  A primitive On-ideal a = (a, b) and a prime q 
O u t p u t :  A primitive OA-ideal ~ --, a = (A,B),  such that gcd(A/'(2),q) = 
gcd(A, q) = 1 

1. IF gcd(a,q) > 1 THEN 
(a)  c e -  (b 2 - A ) / 4 a  
(b) IF gcd(c,q) > 1 THEN /* Compute ~2 */ 

i. A e - a + b + c  
ii. B e - - b - 2 a  

(c) E L S E / *  Compute ~1 */ 
i. A e - c  

ii. B e -  - b  
(d) RETURN(A, B) 

2. ELSE RETURN (a,b) 

Proof (Correctness). Let c = (b 2 - A) /4a.  Then for any ideal a = (a, b) we have 
gcd(a, b, c) = 1 by definition. 

First we will show that  at least one of the numbers a, c, a + b + c is relatively 
prime to q. Suppose that  gcd(a,q) > 1, and gcd(c,q) > 1, i.e., q la and q lc, 
Further, suppose that  gcd(a + b + c, q) > 1, i.e., q I (a + b + c). This implies that  
q I b, which is a contradiction to gcd(a, b, c) = 1. 

Now we will show that  the new coefficients A, B, C = (B 2 - A ) / 4 A  satisfy 
gcd(A,/~, C) = 1, and therefore (A, B) is the standard representation of a primi- 
tive ideal. ~1 = (c, -b )  is obviously an ideal in s tandard representation, because 
gcd(c, -b ,  a) = 1. Next we consider ~2. Note that  C = ( ( - b  - 2a) 2 - A) / (4 (a  + 
b + c)) = a. A similar argument as above shows that  gcd (a + b + c, - b -  2a, a) = 1. 

It remains to show that  the ideals ~1 or ~2 are indeed equivalent to a. Let 
0 : ~ /91 : - - ~  : - -b tv /~  /92- 1 ----b--2a+~/'~ , 2c , o-T-1 - 2(a+b+c) and ~ti = (~+/giZz~), 
i E {1, 2}. Then easy calculation shows that  

1 1 a_~O c a/gQt 1 a=a(2~+/92~)=a/9(-~Zz~+ZZ~)=a/9(Z7~ - 2 ~ ) =  ( c ~ + c 0 1 ~ ) =  c 

and 

1 a(/9 + 1) ~ . 
a = a ( ~  + (/9 + 1 )Z~)  = a(/9 + 1 ) ( ~  - f f ~ - - ~ Z ~ )  - a + b + c 

[] 
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We now give algorithms for switching from the set of invertible ideals of the 
maximal order ]:,a~ to the set of invertible ideals of the non-maximal order ZA~ 
and back. These algorithms will be the key ingredients of our proposed scheme, 
which is discussed in more detail in Section 3. 

Algorithm 2 ( G o T o N o n M a x O r d e r ) .  
I n p u t :  A primitive Oa~-ideal 2 = (A, B), the conductor q 
O u t p u t :  A primitive O~q-ideal a = ~o(93) = (93) A O~q = (a, b), where 93 ~ !2i 
and gcd(Af(93), q) = 1 

1. (a, bq) +-FindldealPrimeTo(2, q) 
2. b +-- bqq mod 2a 
3. RETURN (a,b) 

Proof (Correctness). After Step 1 we have gcd(a, q) = 1 and may apply ~o from 
Proposition 6. Now Af(93) = Af(a) = a by Proposition 6(1). The assertion about 
b is immediate by Proposition 1 and the uniqueness of b mod 2a. 13 

The step from :Zaq back to the maximal order is almost as simple. This 
algorithm allows anybody who knows the fundamental discriminant A1 and/or  
the conductor q to switch to the maximal order Oal .  

Algorithm 3 ( G o T o M a x O r d e r ) .  
I n p u t :  A primitive Ozaq-ideal a = (a, b), the fundamental discriminant A z and the 
conductor q 
O u t p u t :  A primitive Oal-ideal ~ = ~ - i (b )  = (b)O~, -- (A, B), where b N a and 
gcd(Af(b), q) = 1 

1. (A, B) <--FindldealPrimeTo(a, q) 
2. bo +-- A mod 2 
3. Solve 1 = #q + AA for #, A E .~  
4. B +-- B/z + Abok mod 2A 
5. RETURN (A,B)  

Proof (Correctness). After Step 1 we have gcd(A, q) = 1 and may apply ~-1 
from Proposition 6. Again, Af(b) = Af(2) = A by Proposition 6(2). Note that 
we constructed # in Step 3 such that  # -= f - 1  (mod A). This inversion is always 
possible, because gcd(A, q) = 1. Furthermore, the assertion about B follows from 
the standard algorithm for ideal multiplication. 13 

Our proposed cryptosystem in Section 3 is constructed over Aq _-- Alq 2, 
where q is a prime integer. In this case, the condition for a reduced ideal to be 
prime to the conductor q is given by the following Lemma. 

L e m m a  8. Let Aq = Alq2. If  q is a prime such that ~/[AI[ < q, then every 
reduced ideal in Cl(Aq) is prime to q. 
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Proof. Let a = (a,b) be a reduced ideal in Cl(Aq) ,  and c -- (b 2 - Aq)/4a.  
Assume contrary to our assertion that  gcd(a, q) > 1, which implies q I a because 
q is prime. We know that  b 2 - 4ac = Alq2. Since q la, this implies that  q ~ ,  
q [ b and q2 [ b ~. Because a is reduced it holds that  a < ~[A 1 [qUa = q~/[Az [/3. 

Thus, since qla ,  we must have q2 Xa, because x / IAl l /3  < x/fAll  < q. Since 
q2 [ b 2 it follows that  q l c, because 4ac = b ~ - Alq 2, b 2 [ q2 and q2 Xa. However, 
this is a contradiction to the requirement gcd(a, b, c) = 1 for a reduced ideal. [] 

Thus, if we chose the conductor q such that ~/]AI[ < q, then all reduced ideals 
in the non-maximal order are prime to q. 

It is important  to note that  the isomorphism ~ is between the ideal groups 
Z~ 1 (q) and Iz~ (q), and unfortunately not the class groups. If, for 2 ,  ~ �9 Ia~ (q) 
we have 2 ,.. ~ ,  it is not necessarily true that  ~ (2)  ,~ ~ (~ ) .  On the other hand, 
equivalence does hold under ~-1 : 

T h e o r e m  9. For a,b �9 Ia~(q) such that a ..~ b, ~ - l ( a )  ~ ~-l(b),  

Proof. This follows from the exact sequence: 

Cl(Aq)  ~ C l ( A )  - -~  1 

(see [21, Theorem 12.9, p. 82]). [D 

We will make use of the following lemma in our proposed cryptosystem: 

L e m m a  10. For a �9 Iaq (q), 

~ - - l ( a ) x  ,~ ~ o - l ( a  x) . 

Proof. Use the fact that  ~0 is an isomorphism between ideal groups and combine 
this with Theorem 9. [] 

Furthermore, we can show that  the isomorphism ~ induces a correspondence 
between reduced ideals in CI(A)  and Cl(Aq)  if we restrict ourselves to reduced 
ideals with small norm. 

L e m m a  11. Let ~ be a reduced ideal in 0 , ~  prime to q where q is a prime. 
Then a = ~(~)  is also reduced in Oz~l. 

Proof. Let 2 be a reduced ideal in O a l ,  which is prime to q. Then Af(2) < 
[/3 holds. By Proposition 6 we know that  Af(a) = Af(~l) = A < ~ < 

= ~ / 4 ,  for q > 1. This implies tha t  a is also reduced in Oa~. [] 

L e m m a  12. Let a = (a, b) be a reduced ideal in OAq prime to q, where q is a 

prime. I r a  <_ ~ / 4 ,  then ~ = ~ - l ( a )  is a reduced ideal in Oa 1 . 

Proof. By Proposition 6, we know that  A/'(2[) = Af(a) < }x/T-A-~/4. This implies 
that  ~{ is reduced in O~ 1 . [] 
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By these two Lemmas and Proposition 6 there is a one-to-one correspondence 
between reduced ideals in Cl(Aq) and CI(A1) whose norms are smaller than 
14V /4. 

Finally, we give the relationship between the class numbers h(A1) and h(Al). 

T h e o r e m  13. Let Oz~ s be the order of conductor f in an imaginary quadratic 
field Q( Vr~) with maximal order On1. Then 

h(A/) - [O--~ ~ 0--7 ] h ( A 1 ) f  ~ (1 (A1/Pl)p = nh(A1), 

where n E IN and (A 1/p) is the Kronecker-symbol. 

Proof. See [8, Theorem 7.24, page 146]. [] 

3 T h e  n e w  c r y p t o s y s t e m  

3.1 System setup 

The setup of the proposed cryptosystem is very simple. Alice chooses a large 
prime p. If p - 3 (mod 4) then A = -p,  else A = -4p. Obviously A is a 
fundamental discriminant. Next she chooses another large prime q and computes 
the non-fundamental discriminant Aq = Aq 2, i.e., q will be the conductor of the 
publicly available non-maximal order Oa~. 

Alice now chooses any prime O~ -ideal g -- (g, bg). This may be done by 
selecting a prime g where (Aq/g) : 1 and computing bg, i.e., a square-root of 
Aq mod 4g using Shanks' probabilistic algorithm RESSOL. A version of RESSOL 
with expected run time O ((log g) 3 + log Aq. log g), and a deterministic algorithm 
for computing the Kronecker-symbol (Z~q/g) in O((log g)2 +log g.log Aa) may be 
found in, for example, [10, page 43 fl]. Alice must then compute her individual 
keys. She chooses a random integer a E [2, [ ~/V~q~]] and computes the reduced 
ideal a equivalent to ga. The exponentiation is done via some Square & Multiply 
variant and the algorithms Multiply, Square and Reduce from [4] or NUCOMP and 
NUDUPL from [26]. We summarize the public and private system parameters: 

Public Private 
non-fundamental discriminant Aq secret key a 
On -ideal g (base ideal) conductor q 
Oaq-ideal a (public key) 

3.2 Encryption 

Encryption is done completely analogous to E1Gamal encryption [11] in the non- 
maximal order OAq. We embed the plaintext in an OAq-ideal m, select an integer 
k, and compute: 

ek(m, k) = (~1, I)2), 
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where th and 1)2 are reduced ideals in Zz~ and 

i] 1 : [ ~ k ,  i) 2 = m a  k . 

Note that the encryption is carried out entirely in the class group of the non- 
maximal order, and that all ideal arithmetic is performed with reduced ideals. 
Furthermore, we require Af(m) < [ v / ~ / 4  in order to uniquely decrypt the mes- 
sage m (see Lemma 12). 

3.3 Decryption 

The decryption algorithm is similar to E1Gamal decryption, but here we make use 
of our trapdoor information, namely the factorization of Aq. All ideal arithmetic 
is done with reduced ideals in the maximal order as opposed to the non-maximal 
order. 

A lgor i thm 4 (Decrypt) .  
Input: The ciphertext ek(m, k) : (01, t)2), t)l, 1~2 E -~Aq, the conductor q 
Ou tpu t :  m, the O~(ideal containing the embedded plaintext. 

1. ~ 1  :GoToMaxOrder(ol,q). 
2. 02 =GoToMaxOrder(l~2,q). 
3. ~ = f ~ 2 ( ~ )  -1 .  

4. m =GoToNonMaxOrder(ffJt, q). 
5. RETURN(m) 

Proof (Correctness). By definition, we have ff31 = ~-1(1~1) and ffJ2 = ~9-1(1~2) �9 
From Lemma 10 it follows that 

=  -l(mak) 

: ~0 - i ( m ) v  -1  (O k) 

~ k 

= ~ - l ( m ) ~ k  

and 

Thus, we have 

Since m was selected such 
~(9~) = m, from Lemma 12. 

~ v-l( )ak 

: ~ak 

~i~ ~, ~--1 (m)~[k~[--k 

~ 

that Af(m) < ~ - ~ ,  we can uniquely decrypt 
[3 
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3.4 S e c u r i t y  o f  t h e  p r o p o s e d  c r y p t o s y s t e m  

The main advantage of this protocol over an EIGamal protocol using only arith- 
metic in the non-maximal order is that decryption is performed in the maximal 
order, where the coefficients in the ideal representations are significantly smaller 
than those of the non-maximal order. We will now show that this computational 
advantage does not incur any loss in security. 

T h e o r e m  14. Assume that we can solve the discrete logarithm problem in 
CI( A). Then breaking the proposed cryptosystem is computationally equivalent 
to/actoring the discriminant Aq = Aq 2. 

Proof. (Sketch) Assume, that there is an algorithm for breaking the proposed 
cryptosystem which computes the message ideal m. Then we know the ideals 
g, a, gk and a k. This means that the Diffie-Hellman problem in Cl(Aq) can be 
solved using this algorithm. It is proved that (see [5]), an algorithm for solving 
the Diffie-Hellman problem in the imaginary quadratic class group of (9aq can 
be used to find the ambiguous ideals carrying factorizations of Aq = Aq 2. Hence 
we can reduce factoring the discriminant to breaking the proposed cryptosystem. 

On the other hand, if one is able to factor the non-fundamental discriminant 
Aq = Aq 2 he may switch to the maximal order Oz~ and solve the discrete loga- 
rithm problem in CI(A) which is assumed to be possible. Thus, the computation 
of discrete logs in Cl(Aq) can be reduced to factoring Aq = Aq 2. [] 

Remark that the assumption of being able to solve the discrete logarithm 
problem in Cl(A) is not unrealistic, since we choose A small to speed up the 
computations. Note furthermore that unlike the case of factoring of polynomials 
over finite fields (see, for example, [7, Section 3.4]), no algorithm is known which 
computes the "square-free factorization" of an integer substantially easier than 
the complete factorization. 

3.5 P a r a m e t e r  S izes  

Since breaking our proposed scheme is equivalent to factoring the public non- 
fundamental discriminant Aq, we have to choose the parameters A, q such that 
factoring Aq = Aq 2 is infeasible. Considering this situation yields the following 
requirements: 

- Aq has to be large enough that it can't be factored with O(A1/6+~ - 
methods, see e.g. [24] 

- A and q have to be large enough that they can't be found with the elliptic 
curve method [17] 

- Aq has to be large enough that it can't be factored with the number field 
sieve [6] 

- (signature setup only) A has to be small enough that the computation of 
h(A) is possible. 
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bit length ave. time (sec) 
Aq A q Enc Dec Decq DecR 
768 192 288 4.45 2.23 0.34 0.10 
832 192 320 5 .55  2.77 0.40 0.13 
896 192 352 6.69 3.39 0.53 0.16 
960 192 384 7.90 3.98 0.43 0.19 

1024 192 416 9 .41  4.72 0.46 0.23 

Table 1. Runtime Statistics 

First, note that  usual square root methods reduce to cube root methods, because 
Aq _-- Aq 2 and it is sufficient to know all prime factors up to the cube root. For 
example, the deterministic algorithm of Pollard and Strassen (see [24, Section 

4]) has running time O(A~/6+~ If A a > 242~ these methods are certainly 
infeasible. 

The general number field sieve has a conjectured running time 
Lz~q [1/3, (64/9)1/3], where L~ [a, b] = exp(b(log x) ~ (log log x) l -~) .  Hence, select- 
ing Aq > 2512 will ensure that  at tempting to factor it with the number field 
sieve is infeasible today. 

The elliptic curve method has been used to find factors of up to 156 bits 
length. Hence, we must select A, q > 217~ to ensure that  an adversary cannot 
factor Aq. If A < 2216, the DL problem in Cl(A) can be solved in reasonable 
time by anyone who knows the factorization of Aq [14], so selecting A > 2216 
may add an even greater level of security to our scheme. 

3.6  Run-Time Statistics 

In order to demonstrate the improved efficiency of our t rapdoor  decryption, we 
implemented our scheme using the LiDIA library [1]. It should be emphasized 
here that  our implementation was not optimized for cryptographic purposes - -  it 
is only intended to provide a comparison between decrypting in the non-maximal 
order and using our t rapdoor decryption. For five different non-maximal orders 
of various sizes, we have computed the average run time for encryption, classical 
decryption, and our t rapdoor decryption of fifty randomly selected messages 
using randomly selected exponents. The results of these computations can be 
found in Table 1. Dec denotes the average time for classical decryption and Decq 
denotes the average time for the trapdoor decryption. The encryption is identical 
in both schemes, and the average time is denoted by Enc. We also give the run 
time for RSA decryption (DecR) using a modulus of the same size as A a. All 
run times are given in CPU seconds on a 160 Mz SPARC-ultra machine. 

As expected, our results clearly demonstrate an improvement in the decryp- 
tion time. This is due to the fact that almost all of the arithmetic is carried 
out with reduced ideals in the maximal order. Hence, the operands are of size 
approximately [ ~ / ~ ,  rather than [ v / ~ q  2 as in the case where the t rapdoor in- 
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formation is not used. Our decryption method is still not as fast as that  of RSA, 
but  it is at least comparable. 

4 F u r t h e r  a p p l i c a t i o n s  

It is in principal possible to use knowledge of the factorization of Aq to set 
up EIGamal-style and RSA-style signature schemes. If we select the fundamen- 
tal discriminant A such that  computing h(A) is feasible, then we can use the 
following corollary of Theorem 13 to compute h(Aq) at very little ext ra  cost. 

C o r o l l a r y  15. Let p, q > 4 be primes and A = - p ,  if p -- 3 (mod4) ,  or 
A = --4p, otherwise and (A/q)  be the Kronecker-symbol. Then 

h( Aq) = h( Aq 2) = h( A ) (q - ( A / q) ) . 

* O *  * Proof. Since p, q > 4, the group of units O~a -- Ozaq2 = {+l} .  Thus [ zal :Oaq]  
in Theorem 13 equals 1. Noting that  q is prime concludes the proof. [] 

Knowledge of h(Aq) allows us to set up DL-based signature schemes in Cl(Aq) 
very easily. Moreover, computing h(Aq) using the sub-exponential algorithm of 
Hafner-McCurley [12] or its more practical versions from [10] and [14] are still 
impractical for suitable choices of Aq. Unfortunately, these signature schemes 
have the disadvantage that  the signature generation and verification both take 
place in the non-maximal order, so no extra efficiency is gained using this ap- 
proach. Also, the security of these schemes is also computationally equivalent to 
factoring, so they probably have no significant advantages over regular E1Gamal 
or RSA signature schemes. 

An interesting side-effect of our scheme is that  it is possible to set up a key 
escrow cryptosystem using the classical imaginary quadratic field cryptosystem. 
Instead of a fundamental discriminant, the key provider simply issues a non- 
fundamental discriminant of which only he knows the conductor to the users of 
the protocol. The users have no way of knowing that  they are encrypting and 
decrypting in a non-maximal order, but  the key provider can easily read their 
messages by solving the DLP in the maximal order. Hence it is important  for any 
users of such protocols to ensure that  they only use fundamental discriminants, 
and to have their key provider prove that the discriminant he issues is indeed 
fundamental.  This could be done as follows: 

Assume that  Bob wants to prove to Alice that  A is squarefree. Remark that  
if A and r are coprime, then A is squarefree. Alice chooses a random integer 
x, computes y = x 'a and sends it to Bob. If A and r are indeed coprime, 
then Bob can compute an integer e such that  e .  A -- 1 (mod r  using the 
extended Euclidean algorithm. So Bob computes z -- ye and sends it to Alice. 
Alice compares x and z; if they are not equal, Alice rejects A. If A is not 
squarefree, then Bob can cheat with probability at most 1/q, where q21 A. Thus 
after several iterations without rejecting, Alice will believe that  A and r are 
coprime, and hence A is squarefree. 
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Note tha t  this method fails to prove squarefreeness for integers of the form 
pq where q l ( P -  1), for example. However, a key provider can easily select a 
squarefree discriminant A coprime to r  which he can prove is squarefree 
using the protocol given above. 
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