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Abstract. In contrast to ordinary digital signatures, the verification of
undeniable signatures and of confirmer signatures requires the cooper-
ation of the signer or of a designated confirmer, respectively. Various
schemes have been proposed so far, from practical solutions based on
specific number-theoretic assumptions to theoretical constructions using
basic cryptographic primitives. To motivate the necessity of new and
provably secure constructions for confirmer signatures, we first describe
a flaw in a previous realization by Okamoto. We then present two generic
constructions for designing provably secure and efficient confirmer vari-
ants of many well-known signature schemes, including the schemes by
Schnorr, Fiat and Shamir, ElGamal, and the RSA scheme. The con-
structions employ a new tool called confirmer commitment schemes. In
this concept the ability to open the committed value is delegated to a
designated confirmer. We present an efficient realization based on the
Decision-Diffie-Hellman assumption.

Keywords: designated confirmer signature schemes, undeniable signa-
ture schemes, commitment schemes, provable security.

1 Introduction

Digital signatures are an important tool for realizing security in open distributed
systems and in electronic commerce as they guarantee the authenticity of data.
In the common model, a digital signature can be verified by everyone (uni-
versal verifiability) and therefore its validity cannot be denied by the signer
(non-repudiation). However, in certain applications universal verifiability is not
desirable, for instance if a provable commitment presents valuable information,
like in an auction with signed bids. Undeniable signatures, introduced by Chaum
and van Antwerpen in [7], are a solution to this problem. Such signatures can
be verified only with the signer’s cooperation in a way that preserves the non-
repudiation property. This implies that a verifier cannot check the validity of
a signature on his own. This property is called invisibility or simulatability.
Practical realizations of undeniable signature schemes have been proposed in
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[7] and [4]. Other solutions have the additional property that the scheme can
later be converted into an ordinary signature scheme with universal verifiability
(e.g. [3, 27, 21, 11, 22, 16]). While all these solutions are based on particular
number theoretic problems, Boyar et al. [3] show how to construct a convertible
undeniable signature scheme based on any digital signature scheme.

A drawback of (convertible) undeniable signatures is that the signer could
be forced to cooperate in the verification of a signature. Entrusted undeniable
signatures [28] overcome this problem. However, a more severe problem is that
the verification of signatures is not possible if the signer is absent or denies col-
laboration. This problem can be overcome with designated confirmer signatures
[6]. In this scenario, the ability to verify signatures is delegated to an additional
entity, called the confirmer. Concrete realizations were presented in [6, 26]. Fur-
thermore, Okamoto showed in [26] that confirmer signature schemes exist if and
only if public key encryption schemes exist.

Our Contribution: Several of the previously proposed undeniable signature
schemes have shown to be flawed, as was described in [12, 20, 21], and it is
possible to show that the entrusted undeniable signature scheme described in
(28] is flawed as well. Here we point out in detail that the confirmer signature
schemes by Okamoto [26] have a certain weakness as well.

The main result of this paper consists of two generic constructions for con-
firmer signatures. Unlike the constructions for undeniable and confirmer signa-
tures presented in [3] and [26], respectively, which are merely proofs of existence
and result in inefficient solutions, our constructions yield efficient schemes (the
practical construction proposed in [26] is insecure, see Section 3). We introduce
a new tool named confirmer commitments. Compared to ordinary commitment
schemes, confirmer commitments are not opened by the commiter but by a des-
ignated confirmer. Moreover, the confirmer is able to prove efficiently whether or
not a given commitment “contains” a certain message without revealing any use-
ful knowledge. We describe a concrete realization whose security is equivalent to
the Decision-Diffie-Hellman assumption and discuss an alternative construction
based on the higher residue assumption. Using such a confirmer commitment
scheme and a secure signature scheme satisfying certain conditions, our con-
structions yield secure confirmer signature schemes. Possible candidates for the
underlying signature schemes are, among others, the schemes by Schnorr [31],
Fiat-Shamir [14], ElGamal [13], and the RSA scheme [30]. Our constructions
have the interesting feature that it is possible to choose the commitment scheme
and the signature scheme, as well as the security parameters, independently.
With respect to unforgeability, the security of the resulting confirmer scheme
is equivalent to the security of the underlying signature scheme, given that the
confirmer commitment is collision resistant. Whereas with respect to invisibility,
its security is equivalent to the security of the confirmer commitment scheme.
Finally, we outline how to deal with multiple confirmers.

Organization of the Paper: Section 2 contains our model of confirmer sig-
nature schemes. In Section 3 a previously proposed scheme is analyzed and a
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weakness is pointed out. Then we introduce the concept of confirmer commit-
ments in Section 4. Section 5 describes how to design secure confirmer signature
schemes based on confirmer commitments and proof systems or existentially
forgeable signature schemes. Some extensions are discussed in Section 6.

2 Model

The players in a designated confirmer signature scheme are a signer S, a con-
firmer C, and a verifier V. Note that it is possible that the signer also plays the
role of the confirmer, in which case the scheme becomes an “ordinary” undeni-
able signature scheme. A confirmer signature scheme consists of the following
efficient algorithms and protocols:

— Two key generators KGs(1%) — (zs,ys) and KGc(1%) — (zc,yc). The
parameter £ is a security parameter, (zs,ys) is a secret/public key pair for
the signer and (z¢,y¢) is a secret/public key pair for the confirmer.

— A probabilistic signature generation algorithm Sig(m, zs,yc) = o for sign-
ing a message m € {0,1}*.

— An interactive signature verification protocol (Cyey, Vi) between the con-
firmer and the verifier:

(Crerach VO om,0135,50) v { g

The private input of Cy,, is z¢ and the common input consists of m, o,
ys, and yo. After a successful protocol execution the verifier’s output (in-
dicated by —v) is either 1 or 0. Note that in some realizations there exist
separate protocols for confirming and denying signatures. However, these
two protocols can easily be merged into a single protocol.

Remarks: In this model, both confirmation and disavowal are delegated to the
confirmer. However, the signer is always able to confirm (but not necessarily to
deny) a signature generated by himself by proving his knowledge of the secret
key and of the random values used for generating this signature. In certain
applications it could be useful that the signer also knows the key z¢ or if a
scheme with multiple confirmers is used (see Section 6).

Moreover, the confirmer is able to (totally) convert the scheme into an ordi-
nary signature scheme by releasing his secret key z¢. If there is also an efficient
non-interactive variant of the proof (Cys,, Vyer) (called receipt), he is able to
convert single signatures as well.

The following definitions are required for the definitions of the security prop-
erties of confirmer signature schemes.

— Correctness: A message-signature pair (m, o) is defined to be correct (with
respect to ys and y¢) if and only if Pr[Sig(m,xs,yc) = ¢] > 0. In other
words, (m, o) is correct if o could have been generated by Sig(m, zs,yc).



409

— Oracles: For fixed keys zg, ys and ye let Os be an oracle which on input m
returns a signature ¢ generated according to the probability distribution of
Sig(m, zs,yc) and let Oy be an oracle which on input a message-signature
pair (m, o) outputs whether or not (m, o) is correct with respect to ys and
yc. Let further Mg and My denote the sets of messages that were sent to
the oracles Og and Oy, respectively, during an experiment.

A confirmer signature scheme must meet the following security requirements.

— Unforgeability of signatures: There exists no polynomial time algorithm
which, on input ys, yo, ¢ {computed using the key generators) and given
access to the oracle Og, outputs with non-negligible probability an arbitrary
correct message-signature pair (m’,¢’) for a message m' ¢ Mg.

~ Invisibility of signatures: There exists a polynomial time algorithm Sim
which on input ys and yc simulates signatures on arbitrary messages and
has the following property. Let B be a black-box which for fixed public
keys and on input m returns either simulated signatures (if B = Sim) or
correct signatures (if B = Sig), and let Mp denote the set of messages sent
to B during an experiment. Then for any polynomial time algorithm A with
access to Og, Oy, and B, and which guarantees that Mp and MsU My are
always disjoint, the value

[Pr{A(ys,yc) = 1| B = Sim] — Pr[A(ys,yc) = 1| B = Sig]|

is negligible (the public keys are chosen according to the key generators).
Note that the simulator Sim does not need the message m as input. This
makes the invisibility property even stronger than the usual simulatability
property since the message of a correct message-signature pair (m, o) can
be replaced by any message m’ (as long as m' is chosen independently of o)
without enabling a verifier to find out that (m’, ) is incorrect.

— Consistency of verification: For all Cy,,. and all (correct and incorrect)
message-signature pairs (m, o) the following equation must hold

1 if (m, o) is correct

Cy ,V s Uy ) =
( Ver(wC) Ver())(m, 0,ys,yc) =v {0 otherwise

except with negligible probability. Informally, this means that the confirmer
cannot claim that a correct (incorrect) signature is incorrect (correct).

— Non-transferability of verification: The verification protocol (Cyey, Vier) is
a minimum knowledge bi-proof (according to the definition given in [15]).

Note that these security requirements are very similar to the requirements for
convertible undeniable signature schemes presented in [11].
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3 A Weakness in a Previous Scheme

In this section we review one of the confirmer signature schemes proposed in [26]
and point out that the confirmer can forge signatures of the signers. Let G be
a cyclic group of prime order ¢ and let g be a generator of G. Let h denote a
collision resistant hash function. The scheme works as follows.

— Key Generation: The signer picks a random number zg as his secret key
and computes ys := ¢g*5 as his public key. The confirmer picks a random
number z¢ as his secret key and computes y¢o := ¢*¢ as his public key.

— Signature Generation: The signer computes 71 := gkt ¢ := y& ry 1= g*2
using random ki, k2 €r Z, and calculates r := ¢ ® h(m,r2),s = kz +
r - zs (mod gq) (where @ denotes bit-wise exclusive or). Then the triple
(r1,7,8) is a designated confirmer signature on m.

— Signature Verification: Given a signature (ri,7,5) on a message m, the
signer (or confirmer) and verifier compute ¢ := r ® h(m, g* - y5"). The con-
firmer gives an interactive zero-knowledge proof that log, g = log,, ¢ (mod
g) holds or not by using the protocols in [4]. The signer can confirm
a signature by giving an interactive zero-knowledge proof that log, ¢ =
log, 1 (mod g¢) holds.

This scheme suffers from the weakness that the confirmer can forge signatures
universally, i.e. he is able to generate signatures for all messages chosen by
himself. He picks r, s at random and computes for an arbitrary message m the
values ¢ :=r @ h(m,g° -y5") and r; := &' . The signature (ry,r, s) is valid, as
zc = log, yc = log,, & (mod q). Furthermore, there is a k; such that ry := gk
and thus é = gF1oc = yé‘. Hence the equation k; = log, 1 = log, ¢ (mod g)
is satisfied as well.

The attack can also be adopted to the general construction based on proofs
of knowledge and therefore also to special instances as the Fiat-Shamir based
scheme [26]. If r; is an additional input of the hash function, the attack is
countermeasured.

4 Confirmer Commitments

4.1 Definition

A confirmer commitment scheme (CKG, Com, Sh) consists of a commiter, a
confirmer, a verifier, and the following efficient algorithms and protocols:

— A key generation algorithm CKG(1%) = (xc,yc), where £ is a security pa-
rameter and (z¢,yc) is a secret/public key pair for the confirmer.

— A probabilistic algorithm Com(m,yc) — d for committing to messages m €
{0,1}*, where y¢ is the public key of the confirmer, and d is the resulting
commitment.
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— An interactive showing protocol Sk = (Cgy, , Vg, ) between the confirmer and
the verifier:

(Csp (zc), Vs, O)(m, d, yc) —v { (1)

A commitment d is called a commitment for a message m (with respect to the
confirmer public key y¢) if and only if Pr{Com(m,yc) =d] > 0. The above
algorithms must meet the following requirements.

Collision resistance: There exists no polynomial time algorithm which on
input z¢ and yo outputs with non-negligible probability a triple (m,m’, d)
such that d is a commitment for both m and m/'.

— Invisibility of commitments: There exists a polynomial time simulator CSim
such that for all messages m the two random variables Com(m,yc) and
CSim(yc) are computationally indistinguishable (according to the definitions
of [18]).

— Consistency of showing: For all polynomial time algorithms Cg'h’ for all
messages m and for all commitments d the following equation must hold

1 if d is a commitment for m

(Cap (zc), Vo 0)(m, dyyo) =v {

0 otherwise
except with negligible probability.

— Non-transferability of showing: The protocol (Cgy, , Vgy, ) is @ minimum knowl-
edge bi-proof (according to the definition given in [15]).

Remark: Note that the commiter is always able to prove that d = Com(m, y¢)
is a commitment for a message m (but usually he is not able to prove that d is
not a commitment for m’ # m).

Confirmer commitment schemes have many similarities with probabilistic en-
cryption schemes [17]. In fact probabilistic encryption schemes are a special
case of confirmer commitments with the additional property that the message
m can be derived (i.e. decrypted) from the commitment (cipher-text) d.

4.2 A Realization Based on the Decision-Diffie-Hellman Problem

Let G be a cyclic group of prime order ¢ for which it is infeasible to compute
discrete logarithms. Let further hy : {0,1}* — Z,; denote a collision resistant
hash function. Then a secure confirmer commitment scheme can be constructed
as follows.

— Key generation: yc = (g, z) for g a randomly chosen generator of G, z :=
g*¢, and z¢ €r Z;

— Commitment: Com(m,yc = (g,2)) = (di,ds) with dy = gF+he(™) and
dy := 2* for k € Z,.
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— Showing: (Cgp(zc),Vgr())(m,(d1,dz),yc = (g,2)) is an interactive zero-
knowledge bi-proof for proving

logg(z) é log,, (dzzh"(m)) (mod g).

An efficient protocol for such a zero-knowledge bi-proof can be found in [22]
and is reviewed in the appendix B.

For the security analysis we make use of the following assumption.

Decision-Diffie-Hellman Assumption: Let the two sets Q and DH be de-
fined as follows:

Q= {(91,92,41,¥2) € G*| (g1) = (92) = G }
DH = {(g1,92,41,12) € Q| logy, 11 = log,, y2}

Note that the elements of D'H correspond to a Diffie-Hellman key exchange with
base base element g1, exchanged values y; and g2, and resulting key y». The
DDH assumption says that two random variables which are uniformly distributed
over Q and DH, respectively, are computationally indistinguishable.

Let us now show briefly that the above scheme meets all security requirements.

— Collision resistance: Assume that there exists an algorithm for finding a
collision, i.e. a triple (m,m',d = (d;,d;)) for which d is a commitment for
both m and m'. This implies that there exists a k € Z, satisfying

2k = ds and gk+h‘1(m) =d; = gk+hq(ml) ,

which further implies that hq(m) = hy(m'). Therefore, the messages m and
m' are a collision for the hash function h, which contradicts the assumptions.

— Invisibility: The simulator for this commitment scheme consists of an algo-
rithm that outputs a pair of truly random elements of G. For any message
m it is possible to show that the invisibility property of the commitment
scheme is equivalent to the DDH assumption:

- Invisibility — DDH: a single sample (d;,d2) of the invisibility problem
with public key yo = (g,2) can be transformed into arbitrary many
samples of the DDH problem by computing

(ga’ Zﬂ, dtll’Ygaé’ (dzth(m))ﬂ'yzﬁti)

for a, 3 €g Z; and v,0 €r Z,. If (di,dz) is a commitment for m,
then the resulting DDH samples are uniformly distributed over DH. If
(d1,ds) is simulated, then the DDH samples are uniformly distributed
over Q (except with negligible probability).

- DDH — invisibility: a single sample (g1, g2,¥1,¥2) of the DDH prob-
lem can be transformed into arbitrary many samples of the invisibility
problem by computing
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h
(9=91, 2= ga,dy = y2gy "™, dy = ygf)
for a,8 €r Z,. If the DDH sample was in DH, the resulting samples
are random commitments for m with regard to the public key yc =
(g,2). Otherwise, the resulting samples are distributed according to the
distribution of the simulator.

— Consistency and non-transferability of showing: These two properties are
direct consequences of the soundness property and the zero-knowledge prop-
erty, respectively, of the interactive bi-proof system. The proofs of these two
properties can be found in [22].

5 Confirmer Signatures Using Confirmer Commitments

At a first glance, an obvious realization of a confirmer signature scheme based
on a confirmer commitment scheme and any secure digital signature scheme
would be the following. Instead of signing a message m directly, i.e. computing
Sig(m), the signer first computes a confirmer commitment d = Com(m,yc) and
then generates a signature on this commitment, i.e. 0 = Sig(d). A verifier can
check that ¢ is a correct signature on d, but since he cannot check whether d
is a commitment for m, the verification is only possible with the cooperation of
the confirmer. Such a scheme is sufficient in many practical applications, but
it does not satisfy our security requirements. More presicely, it does not meet
the requirements for the invisibility property because in general no simulation
of signatures is possible.

In this section we show that for two large classes of digital signature schemes,
namely those based on 3-move proofs of knowledge and existentially forgeable
signatures, it is possible to design related confirmer signature schemes that meet
the requirements defined in Section 2.

5.1 Proofs of Knowledge and Proof-Based Signatures

Let R C X x Y be a polynomial time checkable relation for which random
samples (z,y) € R can be computed efficiently, but for which it is infeasible,
given y € Y, to find an z € X such that (z,y) € R. Let (P,V) be a proof of
knowledge for the relation R (see [24] for definitions) between a prover P and
a verifier V. Informally, on common input y the protocol (P,V) allows P to
convince V about his knowledge of a value z satisfying (z,y) € R. We assume
that (P, V) has the following properties:

— (P, V) consists of exactly three moves and the only active role of the verifier
V is to announce a random ¢-bit challenge in the second move. The value t is
a security parameter and is chosen such that successful cheating is possible
only with negligible probability (e.g. t = O(|y|)).
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P(z,y) V(y)
(Ta k) = Pl(way) r
CER {0, l}t
-— ¢
s:= P3(z,y,7,k, ) 1
§ Accept(r,c,s,y) - {0

After the last move, the verifier decides whether to accept the proof or not.

— (P,V) is honest-verifier zero-knowledge in the following way: there exists
a simulator Simpyy which on input y and a challenge ¢ outputs a triple
(r',¢’ = ¢,s') such that for a randomly chosen ¢ bit string ¢ the random
variable Simp vy (y,c) is indistinguishable from a transcript of a successful
execution of (P, V) on input y (note that V is the honest verifier).

Efficient proof systems of this type are known for several relations, such as
discrete logarithms in a finite cyclic group G = (g) (with Rpr = {(z,¢%) |0 <
z < |G|}) [31], and quadratic residues modulo a composite number n (with
Ror = {(u,v?* modn) |u € Z}) [14].

Given a collision resistant hash function h : {0,1}* — {0,1}¢, such a proof
system can be used to build a digital signature scheme (with the techniques
presented in [24]). The signer chooses a random secret/public key pair (z,y) €r
R. A signature on a message m is generated as follows: (r,k) := Pi(z,y);
¢ := h(m,r); s := Ps(z,y,T,k,c). The resulting signature is the pair (r,s) and
can be verified by checking whether Accept(r, h(m,r),s,y) = 1.

Using the techniques of [2, 29] it can be proved that under the assumption
that h is a truly random function, breaking such a signature scheme (with an
adaptive chosen message attack) is as hard as finding the secret key z.

5.2 Proof-based Confirmer Signatures

Using a confirmer commitment scheme a proof of knowledge of the type described
above can also be turned into a secure confirmer signature scheme in the following
way (h is the collision resistant hash function used above).

— Key generation: (zs,ys) €g R and (z¢,yc) := CKG(1%)

— Signature generation:

- (r,k) := Pi(zs,ys)

d := Com(m/||r,yc), where || denotes concatenation of strings
- ¢:= h(d)
- 5:= P3(zs,ys,7, k,C)

The resulting signature is (r, s, d).

— Signature verification: The verifier’s output is 0 if Accept(r, h(d), s,ys) =0,
and (Cgy, (z¢), Vg, 0)(m||r, d, yc) otherwise.
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In other words, a message-signature pair (m, (r, d, s)) is regarded correct if and
only if Accept(r,h(d),s,ys) =1 and d is a commitment for m/||r.

Under the assumption that h is a truly random function it can be shown that
this scheme meets all security requirements of a confirmer signature scheme.

— Unforgeability of signatures: We show that any algorithm A that can forge
signatures with non-negligible probability can be used to find the signer’s
secret £g which contradicts the assumptions about the relation R. With-
out loss of generality we assume that A evaluates h for distinct arguments
only (see also [29]). We take control over h to simulate queries to the or-
acle Og (this simulation is not done by using the simulator of the con-
firmer signature scheme but by taking control over h): on input m we
first compute (r,c,s) := Sim(pyvy(ys,c) for a random c, then we compute
d .= Com(m||r,yc), set h{d) := ¢, and return the signature (r, s,d) as the
result of the simulated oracle. Since h is still a random function, A will
finally return a correct signature (r',s’,d’) on a message m with the same
probability of success. Using the proof techniques of [29] we can guess with
sufficiently high probability the position where h is evaluated with d’ and
return a new random value. With non-negligible probability A outputs an-
other signature (r',s",d") (note that r' remains fixed because the confirmer
commitment scheme is collision resistant). This method can be repeated
until there are enough s values such that the secret key zg can be computed
with the knowledge extractor of the proof system.

— Invisibility of signatures: The simulator for this signature scheme works as
follows: using the simulator CSim of the commitment scheme, one com-
putes d' = CSim(yc) and ¢’ := h(d'). Then, using the simulator of the
proof system, one computes (r',¢',s") := Simp vy(ys,c'); the resulting sim-
ulated signature on m is (r',s',d"). We show that with this simulator, the
invisibility property of the signature scheme is equivalent to the invisibility
property of the confirmer commitment scheme. As above, we take control
over the function h and simulate queries to Og. Queries to the oracle Oy
can be simulated as follows: on input (m, (r, s,d)) we return 1 if and only if
Accept(r, h(d), s,ys) = 1 and Og has returned a signature containing r and
d (note that in all other cases the signature must be incorrect because of the
unforgeability property). Now it can easily be seen that if the original algo-
rithm was able to distinguish correct and simulated signatures, the modified
algorithm would be able to distinguish real commitments from simulated
ones.

— Consistency and mon-transferability of verification: These two properties
are direct consequences of the corresponding properties of the confirmer
commitment scheme.

Example: Schnorr’s identification scheme [31] is a typical example of a proof
of knowledge that can be converted into a confirmer signature scheme. Let ¢
and p be prime numbers with q & 2200, p ~ 21924 and q|(p — 1). Let further g
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denote a generator of the subgroup G of Z;, of order g. The signer’s public key is
ys = ¢g*¢ for a randomly chosen zs €r Z,. A message m is signed by computing
r:= g* for k €g Z,, d := Com(ml||r,yc), and s := k — h(d)zs (mod g). The
resulting signature is the pair (s,d). Note that in the Schnorr scheme r equals
gsyg(d) and therefore r need not be part of the signature. The signature can be
verified by asking the confirmer to show that d is a commitment for m/||r.

With the confirmer commitment scheme described in section 4.2 (using the
same group G) the efficiency of this Schnorr-based confirmer scheme is as fol-
lows. The signature is 2248 bits long and its generation requires roughly 900
multiplications modulo p. During the interactive verification of a signature, 6120
bits of data are exchanged, the confirmer computes about 2250 modular mul-
tiplications, and the verifier computes about 2450 modular multiplications (see
appendix B). This compares favourably with the schemes presented in [11, 22].

5.3 Existentially Forgeable Signatures

Apart from the proof-based signature schemes, there exists also a generic con-
struction for existentially forgeable signatures. More precisely, we consider sig-
nature schemes (KG", Sig*, Ver") that meet the following requirements.

— KG" is a probabilistic key generation algorithm which outputs a secret/public
key pair (zs,ys), Sig® is the signature generation function which on input a
message m and the signer’s secret key zs outputs a signature ¢*, and Ver*
is a verification function which on input m, o*, and the signer’s public key
ys outputs 1 if ¢* is a correct signature on m and 0 otherwise.

— Let M be the (finite) set of all messages that can be signed. There exists a
polynomial time algorithm ExzistForge which on input yg outputs a message-
signature pair (m,o). Let MY denote the random variable representing
the output of EzistForge and let Ppx(m,o) denote the probability that
M = m and ¥ = ¢. Then for all m € M with Py(m) > 0 the two
distributions Pyyp(0,m) and Pr{Sig(m,zs) = o] over all possible values of
o are indistinguishable. In other words, if messages are only chosen according
to the probability distribution of M then real and forged message-signature
pairs are indistinguishable.

— There exists a finite group B with binary operation ® and inversion function
inv (both efficiently computable) such that the probability distribution of
messages generated by EzistForge and the uniform distribution over B are
indistinguishable.

— Let hp : {0,1}* — B be a collision resistant hash function. Then signatures
of the form Sig(hp(m)) are existentially unforgeable under adaptive chosen
message attacks.

To illustrate these requirements let us consider the RSA scheme [30] with com-
posite modulus n, public exponent e, and M = Z). A simple method for
existentially forging RSA signatures is the following: first, choose 0 € Z,, at
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random and then compute the message m := ¢® (mod n). In this case, the
random variable M is uniformly distributed over M. Hence, we can for instance
define B = Z}, i.e. the additive group of integers modulo n (note that the
uniform distributions over Z;, and Z}, respectively, are indistinguishable).

It is easy to see that the ElGamal signature scheme [13] and some of its
variants satisfy these conditions as well.

5.4 Confirmer Signatures Based on Existentially Forgeable
Signatures

Let (KG", Sig*, Ver*) be an existentially forgeable signature scheme of the type
defined above. Using a confirmer commitment scheme (CKG, Com, Sh) it is
possible to construct a confirmer signature scheme as follows.

~ Key generation: KGs := KG* and KG¢o := CKG.
— Signature generation:
1. ber B
2. d:= Com(m|jb,yc)
3. o* := Sig"(hs(d) © b, z5)
The resulting signature is the triple (o*,d, b).

— Signature verification: The verifier’s output is 0 if Ver"(hp(d) ®b,0*,ys) =
0, and (Cgy, (zc), Vsp, ())(ml|b, d, yc) otherwise.

The security proof is sketched in the appendix A. With the RSA example
given above and any confirmer commitment scheme, the signature is computed
with b €g ZF, d := Com(m||b,yc), and ¢* := (hp(d) + b)/¢ (mod n). The
efficiency of this scheme with small public exponent e compares favourably with
the undeniable signature scheme of [16].

6 Extensions

In this section we suggest another realization of the confirmer commitment based
on an alternative number theoretic assumption. Then it is outlined how to deal
with multiple confirmers. Moreover, based on any efficient confirmer signature
scheme an efficient fair contract signing scheme with off-line trusted party (see
e.g. [1] for the model) can be realized, but details are omitted here.

6.1 Confirmer Commitment Scheme Based on the Higher Residues

It is desirable to design confirmer commitments based on other well established
number theoretic assumptions. One candidate is the e-th residue assumption
(e.g. see [9, 25]): An element a is an e-th residue in G, if and only if there is
an element w € G such that w® = a (let denote this set by HR,). All elements
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in G which are not e-th residues are called e-th non-residues. Loosely speaking,
it is assumed that for certain groups it is hard to decide (better than guessing)
if a given number w € G is an e-th residue, i.e. whether w € HR.. For exam-
ple, G = Z}, n is composite with unknown factorization and e (but not e?)
divides ¢(n). Using the techniques of [9, 25] combined with the proof technique
of [19, 23] it is possible to construct a confirmer commitment scheme. However,
this solution is unsatisfactory since there is no efficient method for proving that
a given a € G is an element of G\ HR.. By modifying the confirmer commitment
model and the general constructions for confirmer signatures slightly, we can get
around this problem. The basic idea is to fix a taboo-message m' which must not
be committed in the application. A commitment is well-formed if and only if it
is either a commitment of a certain message m # m’ or of the taboo-message
m'. Simulated commitments are just commitments of the taboo message. In
the interactive showing protocol the confirmer either proves that a given com-
mitment is a commitment of the actual message (which results in output 1) or
of the taboo message (resulting in output 0). To do this, only an efficient proof
for w € HR, is required. However, this works only if everybody is able to check
that a commitment is well-formed. Therefore, a minimum knowledge argument
is added to each commitment in order to prove that the commitment is well
formed. Such proofs can easily be constructed using the techniques of [10] for
proving that one of two statements is true without revealing which.

6.2 Multiple Confirmers

An obvious extension of the basic confirmer signature model is to allow several
confirmers C',...,C), to verify signatures.

For instance, this can be achieved by modifying the confirmer commitment
scheme as follows: a multi-confirmer commitment for a message m is a n-tuple of
individual commitments, i.e. (Com(m,yc,), ..., Com(m,yc,)). A verifier now
needs to ask only a single confirmer to verify a signature. However, in order
to guarantee the consistency of verification, the signer has to provide a proof
that the individual commitments in the tuple are all commitments of a single
message. For the discrete logarithm based solution presented in Section 4 this is
very simple: for the n + 1-tuple (g"‘“‘hq(m), ¥&,, ---» y&, ) the signer proves that
discrete logarithms of the last n group elements to the corresponding bases are
all equal. It is possible that the signer is one of the confirmers. This enables
him to confirm correct signatures and/or to deny incorrect signatures on his
own. More complex access structures are possible as well, e.g. a scheme where
the collaboration of at least k out of the n confirmers is required to verify a
signature.
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Sketch of a Security Proof

Under the assumption that hg is a truly random functions it can be shown that
this scheme meets all security requirements of a confirmer signature scheme.

Unforgeability of signatures: Let h' denote another truly random function.
Using the techniques of [29] we show that forging confirmer signatures is as
hard as forging digital signatures of the underlying scheme using the hash
function A'. Let A be an efficient algorithm for forging signatures. We take
control over h to simulate the oracle Os (see the proof of the proof-based
signatures). With non-negligible probability A will return a correct message-
signature pair (m, (¢*, d, b)). We guess the position at which hp is evaluated
with the argument d and replace its output by A'(m) ® inv(b). Again with
non-negligible probability, A will return a correct message-signature pair
(m,(d',d,b'")). Since the confirmer commitment scheme is assumed to be
collision resistant, b and b’ must be equal. But then we have hp(d) © b’ =
h'(m) and therefore ¢’ is a correct signature on m in the secure variant of
the underlying signature scheme using the hash function A'.

Invisibility of signatures: A simulated signature for a message m can be
computed as follows: using the simulators of the commitment scheme and
of the existentially forgeable signature scheme one computes d := CSim(yc)
and (m*,0*) := ExistForge(ys), respectively. Then, one computes b :=
inv(hg(d)) ® m* (note that m* € B with overwhelming probability). The
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resulting simulated signature is the triple (6*,d,b). Under the assumption
that hp is a truly random function, on can show that simulated and “real”
signatures can be distinguished only if the invisibility property of the con-
firmer commitment scheme is violated.

— Consistency and non-transferability of verification: These two properties
are direct consequences of the corresponding properties of the confirmer
commitment scheme.

B A Bi-Proof for the Equality of two Discrete Logarithms

An important component of the confirmer commitment scheme based on the
DDH assumption is an efficient protocol that allows a prover to convince a
verifier about the equality or inequality of two discrete logarithms, such that
no additional information about these logarithms is leaked. An algorithm for
proving the equality and another one for proving the inequality was first given by
Chaum in [4]. Both algorithm can also be combined into a bi-proof. A bit-wise
bi-proof for this statement can be found in {15]. Because of efficiency reasons
we review the protocol given in [22] here.

Assume the prover knows the discrete logarithm z of y = o and wants to
allow the verifier to decide whether logg z = log, y for given group elements 3
and z in a multiplicative group G of prime order g, in which computing discrete
logarithms is infeasible.

1. The verifier chooses random values u,v € Z,, computes a := a*y”, and
sends a to the prover. _

2. The prover chooses random values k,k,w € Z,, computes r, := a*, rg =
Bk, 7o :=a¥, and g := B¥, and sends ry, 73, Fa, 7, and w to the verifier.

3. The verifier opens his commitment a by sending v and v to the prover.

4. If a # ay? the prover halts, otherwise he computes s := k— (v+w)z(mod g),
§:=k — (v+ w)k(mod q) and sends s and 5 to the verifier.

5. The verifier first checks whether oy ™" =rq, ’ry™% =7y, and Byt =
73 and then concludes:

if B°2¥*t* =ry3 then logsz = log,y
if 8°2Y*" # r3 then logg 2z # log, ¥

In [22] it was proved that the above protocol is complete and sound. It is also
zero-knowledge under the assumption that there exists no algorithm running in
expected polynomial time which decides with non-negligible probability better
than guessing whether two discrete logarithms are equal.

Note that if just the equality of two discrete logarithms should be proved
the protocol can be simplified such that it equals Chaum’s equality protocol in
[4]. The protocol can also easily be turned into a non-interactive argument by
omitting the commitment a, setting w to 0 and computing v as v = H(a, y, B,
Z, Ta, I8, Ta, 73), Where H is a collision resistant hash function.



