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A b s t r a c t .  We present a new protocol that allows two players to ex- 
change digital signatures over the Internet in a fair way, so that either 
each player gets the other's signature, or neither player does. The ob- 
vious application is where the signatures represent items of value, for 
example, an electronic check or airline ticket. The protocol can also be 
adapted to exchange encrypted data. The protocol relies on a trusted 
third party, but is "optimistic," in that the third party is only needed 
in cases where one player attempts to cheat or simply crashes. A key 
feature of our protocol is that a player can always force a timely and fair 
termination, without the cooperation of the other player. 

1 I n t r o d u c t i o n  

As more business is conducted over the Internet,  the fair exchange problem 
assumes increasing importance. For example, suppose player A is willing to give 
an electronic check to player B in exchange for an electronic airline ticket. The 
problem is this: how can A and B exchange these items so that  either each player 
gets the other 's  item, or neither player does. 

Both electronic checks and electronic airline tickets are implemented as digital 
signatures. Presumably,  many other items to be exchanged over the Internet  will 
be so implemented.  Therefore, it seems fruitful to focus our at tention on the fair 
exchange of digital signatures. 

In this paper,  we present a new protocol for the fair exchange of commonly 
used digital signatures, including RSA [21], DSS [16], Schnorr [22], Fiat-Shamir  
[12], GQ [t5], and Ong-Schnorr [19] signatures, as well as the payment  tran- 
scripts used in Brands '  [7] off-line, anonymous cash scheme. The protocol can 
also be used to exchange data  (such as stock quotes or an audio or visual s tream) 
encrypted under a key derived from an RSA inverse or discrete logarithm. This 
scenario was suggested by Franklin and Reiter [13], where it was also suggested 
that  the "quality" of the data  be certified or guaranteed by an independent 
authority. 

Our protocol uses a trusted third party, but  only in a limited fashion: the 
third par ty  is only needed in cases where one player a t tempts  to cheat or simply 
crashes; therefore, in the vast majori ty of transactions, the third par ty  will not 
need to be involved at all. Following [1], we call our protocol optimistic; in 
addition to [1], optimistic protocols for several variants of the fair exchange 
problem are discussed in [8,18]. 
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Of course, one could use an on-line trusted third party [10,11,14] in every 
transaction to act as a mediator, but the optimistic approach greatly reduces 
the load on the third party, which in turn reduces the cost and insecurity involved 
in replicating the service in order to maintain availability. It also makes it more 
feasible to distribute the third party, eliminating the single point of failure. 

Our protocol also enjoys the following properties: 

(1) To use it, one need not modify the signature scheme or message format at 
all. Thus, it will inter-operate with existing or proposed schemes for elec- 
tronic checks, coins, tickets, receipts, etc., without any  modification to these 
schemes. 

(2) It works in an asynchronous communication model: there are no synchronized 
clocks, and one player cannot force the other to wait for any length of t ime- -  
a fair and timely termination can always be forced by contacting the third 
party. 

(3) It is quite practical. A typical exchange requires only a few rounds of interac- 
tion, transmission of a few KBytes of data, and a couple thousand modular 
multiplications. 

(4) The protocol can be proved secure (modulo standard intractability assump- 
tions) in the random hash function model [5], where a hash function is re- 
placed by a "black box" that outputs random bit strings. 

(5) The two players may remain anonymous, if desired. 

We stress the practical importance of property (1): it allows a general-purpose 
fair exchange service to be deployed without the cooperation of the institutions 
responsible for the items being exchanged (banks, airlines, etc.). Indeed, it seems 
quite unrealistic to expect these institutions to redesign their schemes and all 
of the relevant software to accommodate a fair exchange protocol if this has not 
already been designed for. Our protocol can accommodate any common signature 
scheme without modification. Previous optimistic protocols for fair exchange do 
not allow for this: these protocols either require that  the item being exchanged 
have a special structure to facilitate the exchange protocol, or they partially 
sacrifice fairness, with one player ending up with just an affidavit from the third 
party that  the other player owes him something. In our protocol, the two players 
get the real th ing--not  a substitute or affidavit. 

Property (2) is perhaps even more important.  Previous optimistic fair ex- 
change protocols employ a "time-out" mechanism that  either leaves one player 
"hanging" for an unacceptably long time (if the time-out is too long), or exposes 
the other player to an unacceptable risk of being cheated (if the time-out is too 
short). Not only can this be a great inconvenience, it can also lead to a real loss 
in the case of time-sensitive data like stock quotes. In our protocol, this cannot 
happen so long as the third party is available. 

1.1 O v e r v i e w  

At a high level, our protocol works as follows. Suppose the two players hold 
signatures on agreed-upon messages. 
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Each player first reduces a "promise" of a signature to "promise" of a par- 
ticular homomorphic inverse (either a discrete logarithm or RSA inverse). A 
good reduction scheme should not make it any easier to compute the signature, 
while simultaneously guaranteeing that  the promised signature can be recovered 
from the promised inverse. Good reduction schemes exist for all of the signature 
schemes mentioned above. Essentially the same notion of reduction was used in 
[13] (although their reduction scheme for DSS is actually insecure). 

After this reduction phase, the players perform a fair exchange of homomor- 
phic inverses. As mentioned above, this sub-protocol can be used in exchanging 
data encrypted under a key derived (perhaps via a hash function) from a homo- 
morphic inverse. This idea is explored in further detail in [13]. 

To exchange homomorphic inverses, our protocol makes use of "verifiable" 
encryptions of these inverses under the third party's public key: such an en- 
cryption can be verified to contain the homomorphic inverse, without leaking 
any information that  makes it easier to compute the inverse. For this, we adapt 
Bellare and Goldwasser's [4] key escrow technique. 

Our protocol also employs a novel strategy to deal with the asynchrony prob- 
lem discussed above, allowing the exchange to be "aborted" under certain con- 
ditions. This same strategy is also used in the companion paper [3] to design a 
protocol for contract signing that has the nice property that  a cheating third 
party will eventually be caught. 

The rest of the paper is organized as follows. [n w we present a formal 
security model for the problem of exchanging digital signatures fairly. In w 
we show how to reduce the promise of a digital signature to the promise of a 
homomorphic inverse. In w we show how to verifiably encrypt a homomorphic 
inverse. Finally, in w we present our optimistic protocol for the fair exchange 
of digital signatures. 

A full length version of this paper is available [2]. 

2 A Formal Security Model for Fair Signature Exchange 

We have two players A and B, and a trusted third party T that  acts as a server: 
it receives a request from a client, updates its internal state, and sends a response 
back to the client. T has a public key known to A and B, and is always assumed 
to be honest and (eventually) available. We assume the client/server channel is 
private, and that  server responses are authenticated, but do not assume that  the 
client requests are authent ica ted)  

The two players agree upon the signatures they want to exchange, and then 
exchange messages back and forth. Between the time that  a player receives a 

1 This can be implemented by having the client encrypt its request together with a 
session key under the third party's public key; the server encrypts and authenticates 
its response using the given session key; this implementation will have the desired 
properties provided the third party's encryption scheme is secure against adaptive 
chosen ciphertext attack. 
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message and generates its response, it may send requests to T, obtaining the 
corresponding responses within a finite, but unbounded, amount of time. 

We define security in terms of fawness and completeness. 
To define fairness, we let an adversary play the role of a corrupt player, 

and give it complete control over the network, arbitrarily interacting with T, 
and arbitrarily delaying A's requests to T. Intuitively, fairness means that  it 
is infeasible for the adversary to get the honest player's signature, without the 
honest player getting the adversary's signature. 

Completeness means that  if neither player is corrupt, and no messages are 
lost, then the exchange is successful. 

We now make the above notions a bit more precise. 

B e h a v i o r  o f  T. T is a polynomial-time interactive Turing machine that  follows 
the program prescribed for it by the protocol. T acts as a server, repeatedly 
accepting a request, updating its internal state, and generating a response. For 
simplicity, we assume that  each request is processed atomically. T has a public 
key/private key pair (PKT, SKT) that is generated by a key generation algorithm 
prescribed by the protocol. 

B e h a v i o r  o f  a n  h o n e s t  p layer .  An honest player is a polynomial-time interac- 
tive Turing machine that follows the program prescribed for it by the protocol. 
It interacts with its environment through a sequence of rounds: in one round it 
receives a message, updates its internal state, and generates a response. 

Before generating a response, it may access T (perhaps several times). To do 
this, the player must explicitly signal its intention to contact T, and then wait 
on an externally generated signal before proceeding. 

The initial state of an honest player is determined by a set of inputs: 
PKT,PK, m,o, Ph~,m '. Here, a is a signature on message m under the pub- 
lic key PK that  the player intends to give in exchange for a signature on m' 
under the public key PK'. 

After a bounded number of rounds, an honest player stops and writes on a 
private tape an output a ' .  The player also externally signals that it has termi- 
nated. 

De f in i t i on  o f  fa i rness .  Fix a particular signature scheme S,  and consider the 
following game. The components in the game are an adversary, called B*, which 
is a polynomial-time interactive Turing machine, an honest player, called A, as 
well as T, T's key generation algorithm, and ~ ' s  key generation algorithm. 

G a m e  A 

A1 Run L"s key generation algorithm, giving the secret key to a signing oracle 
S and the public key PK to B*. Also generate T's public and private keys, 
giving SKT to T and PKT to B*. 

A2 B* interacts arbitrarily with T and S, obtaining signatures on adaptively 
chosen messages. 
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A3 B* selects messages m and m ~, and an arbitrary public key P/~  for a signa- 
ture scheme (possibly different from S) .  The message m must be different 
from those given to S in A2. Now, S produces a signature a on m, and A is 
initialized with inputs: PKT, PK, m, a, PK', m ~. The signature a is not seen 
by B*. 

A4 B* interacts with T, S and A in an arbitrary fashion, subject to the following 
restrictions: 
(1) B* may not query S with m. 
(2) When A signals its intention to contact T, B* must eventually signal A 

to let it proceed, after which B* refrains from contacting T until A is 
finished (i.e., generates a response or a signal). 

(3) Unless A has signaled termination, B* must eventually supply another 
input message. 

Eventually, A terminates and outputs a string o J, and B* also terminates, 
and outputs  a string ~. We say that  B* wins the game ifcr' is not a valid signature 
for m ~ under PK ~, but ~r is a valid signature for m under PK. We define fairness 
to mean that  B* cannot feasibly win this game. 

R e m a r k s .  Restriction (2) captures our intuitive requirement that  A can always 
reach T, but may be arbitrarily delayed. Despite restriction (3), real world "time 
outs" can be modeled quite simply: in the real world, if A is waiting for a message, 
then a low-level communication protocol will eventually time out and give A the 
message "?"; in our formal model, B* just  gives A this message directly. Also, 
note that  in our definition, the player in the exchange protocol is not necessarily 
the holder of the signing key. 

D e f i n i t i o n  o f  c o m p l e t e n e s s .  We define another game similar to that  above, in 
which the adversary gets access to two signing oracles, S and S', and initializes 
two honest players A and B, who interact directly with each other. The adversary 
in this case can interact with T, but cannot interfere with the interaction of A 
and B, except insofar as the adversary still has the power to schedule both 
A's and B's interactions with T. We omit the details of this game, which are 
straightforward. The real-world situation that this game models is that  where 
that  all messages are delivered without being seen or modified by the adversary, 
and neither player "times out" waiting for a message. 

We define completeness to mean that  it is infeasible for the adversary in the 
above game to prevent A and B from successfully exchanging their signatures. 

3 R e d u c i n g  S i g n a t u r e s  t o  H o m o m o r p h i c  I n v e r s e s  

In this section, we show how to reduce a "promise" of a signature to the 
"promise" of a particular homomorphie inverse. In this extended abstract, we 
only deal with RSA, Schnorr and DSS signatures. In the full version of the paper, 
we deal with the others mentioned in the introduction. 

As a simple, motivating example, consider the standard hash-and-invert RSA 
signature (which is provably secure in the random hash function model [5]). Here, 
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the signature on a message is simply the eth root of the hash of the message, 
viewed as a number  modulo a given composite number.  In this case, reduction 
is trivial: the promised homomorphic inverse is simply this eth root. 

Reduction schemes for other signature schemes are not so trivial. So as to 
be able to uniformly treat  several signature schemes, we start  with a formal 
definition of our requirements. 

3.1 D e f i n i t i o n  o f  a s e c u r e  r e d u c t i o n  

Let S be a signature scheme. A reduction scheme for S consists of three ef- 
ficient algorithms, a reduction algorithm reduce, a verification algorithm verify, 
and a recovery algorithm recover, and also associates to every public key P K  an 
efficiently computable group homomorphism/9 : G1 --~ G2. 

- reduce takes as input PK, ra, (r, where P K  is a public key for S ,  m is a 
message, and a is signature on m under PK. The output  consists of d E G~, 
c E {0, 1}*, and s E/9 - l (d ) .  The string c encodes additional information that  
is used by the verification and recovery algorithms, reduce may fail on some 
"bad signatures," as long as these occur rarely (we need this for DSS). 

- verify takes as input PK, m, d, c, and either accepts or rejects. 
- recover takes as input PK, m, c, and s E G1, and outputs  a string ~. 

A secure reduction scheme should satisfy three properties: 

C o m p l e t e n e s s .  If  reduce(PK, m, or) = (d, c, s), then verify(PK, m, d, c) accepts. 

S o u n d n e s s .  It is infeasible for an adversary to find PK, m, d, c such that  the 
verify(Pg, m, d, e) accepts, but recover(PK, m, c, s) is not a valid signature on m 
for all s E/9-1(d). 

Sec recy .  I t  is infeasible for an adversary to win the following game: 

G a m e  B 

B1 Run ~"s key generation algorithm, giving the secret key to a signing oracle 
S and the public key P K  to the adversary. 

B2 The adversary makes arbi trary queries to S. 
B3 The adversary generates a message m different from those given to S in B2. 

Now S generates a signature (r on m under PK, and the adversary is given 
d, c, where (d, c, s) = reduce(PK, m, ~). 

B4 The adversary continues to query S on messages different from m. 

The adversary wins the game if it can output  a valid signature on m. 

R e m a r k s .  Clearly, our definition of a secure reduction scheme implies that  the 
underlying signature scheme is secure against adaptive chosen-message attacks. 
A stronger definition could be formulated wherein the reduction scheme is "just 
as secure" as the underlying signature scheme, however secure it happens to be. 
Unfortunately, not all of our proofs achieve this. It  is also possibly to consider 
more general reduction schemes; for example, the reduction procedure could be 
interactive. We do not consider these here. 
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3.2 S c l m o r r  S i g n a t u r e s  

In the Schnorr  s ignature  scheme, to genera te  a public key, one selects pr imes  p 
and q such tha t  q I P -  l ,  and a genera tor  g for the subgroup  of Zp of order  q. One 
then  chooses x E Zq at  r a n d o m  and computes  h = g=. The  public key consists 
of  p, q, g, h, and the pr ivate  key is x. To  sign a message m,  the signer chooses 
r E Zq at  r andom,  and computes  z -- cx + r, where c = H ( g r , m )  E Z a and H 
is a hash function.  T h e  s igna ture  is (c, z). To verify a s ignature ,  one checks tha t  
c = H ( g  ~ h -c ,  m) .  

The  Schnorr  s ignature  scheme is p rovab ly  secure in the r a n d o m  hash funct ion 
model  (if the discrete l oga r i thm p rob lem is hard) .  

The  following reduct ion f rom Schnorr  s ignatures  to discrete logar i thms was 
observed in [13], in the context  of  verifiable s ignature  sharing.  The  reduct ion 
a lgor i thm takes as input  a s ignature  (c, z) on a message m,  and ou tpu t s  u = g~, c, 
where the promised inverse is z = logg u. 

The  verification a lgor i thm checks t h a t  c = h(uh -c ,  m) .  Given z, the recovery 
a lgor i thm ou tpu t s  (c, z). 

Comple teness  and soundness  are clear. Secrecy follows f rom the fact  tha t  
one can s imulate  the o u t p u t  of  the reduct ion a lgor i thm wi thou t  a s ignature:  the 
s imula tor  chooses r E Zq at  r andom,  computes  w = gr and  c = H ( w ,  m) ,  and 
sets u = wh c. 

3.3 DS S  Signatures 

Key generat ion for DSS is identical  to t ha t  for the Schnorr  scheme. The  s t anda rd  
prescribes tha t  q has a length of 160 bits. To  sign a message m,  the signer chooses 
k E Zq at  r andom,  and computes  r = (gk) rood q and s = k - l ( H ( m ) + x r ) ,  where 
H is a hash funct ion with  ou tpu t s  in Zq. The  s ignature  is (r, s). A s ignature  
is verified by checking t h a t  r = ( g " ' h  "~) m o d  q, where ul  = H ( m ) s  -1 ,  and 
u2 = rs -1 .  Note t ha t  s ignatures  wi th  s = 0 are invalid, bu t  these effectively 
never  arise. For our reduct ion scheme, we must  also rule out  r = 0, which also 
effectively never arises. 

We now give a reduct ion  scheme reducing a promise  of  a DSS s ignature  to a 
promise  of  discrete logar i thm.  

The  reduct ion a lgor i thm works as follows. We have a s ignature  (r,  s) on a 
message m. Let ul ,  u2 be  defined as above,  and define c = r - l H ( r n ) .  We ou tpu t  

a = g=l, f l  = h==,a, = gV,fl, = h v , z  = v + eul ,  

where v E Zq is chosen a t  r andom,  e = H ' ( P K , ~ , f l ,  cd, f l ' ,c) ,  and H '  is a hash 
function.  

The  promised inverse is u2 = log h ft. 
T h e  verification a lgor i thm runs as follows. We first check tha t  ~q = flq = 1 

and fl ~ 1; we then compu te  r = (c~fl) m o d  q, and check tha t  r r 0, Finally, 
we compute  c = r - i l l ( m ) ,  e = H ' ( a , f l ,  a ' ,  f l ' ,c) ,  and check t h a t  g 5 = a ' a  ~ and 

h ~ = /~ 'Zr  
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What  is happening here is that  we are giving a and fl, and a non-interactive 
proof that  logg c~ = clog h 13 (see [9]). 

The recovery procedure takes u2 = logh fl, computes r = (a/3) mod q and 
s = r/u2, and outputs (r, s). 

To prove secrecy, we have to make a strong security assumption about DSS: 
given signatures on several messages, not only is it difficult for an adversary 
to compute a signature on a new message, it is difficult to compute a different 
signature on any of the given messages. 

One can heuristically justify this assumption using the "generic algorithm" 
model in [23], assuming also that  H is collision free. Proving that  DSS satisfies 
this stronger form of security in this model is relatively straightforward; more- 
over, this is the only model that  we know of in which it is possible to prove that 
DSS is secure to begin with. 

L e m m a  1. Under the strong security assumption for DSS, above reduction 
scheme is secure in the random hash function model for H ~. 

The proof is in Appendix A. 
Remark. It has been brought to our attention that  there are simpler reduction 

schemes for DSS; however, our reduction is still perhaps of some interest, as the 
promised discrete logarithm is relative to a fixed base, whereas in the simpler 
schemes it is relative to a random base; using a fixed base can lead to greater 
efficiency and also facilitates the use of certzfied encryptions discussed at the end 
of w and in more detail in the full-length version of this paper. 

4 V e r i f i a b l e  E n c r y p t i o n  o f  H o m o m o r p h i c  I n v e r s e s  

Suppose we a have a surjective group homomorphism 0 : G1 --* G2. We have 
a publicly known group element d E G2 and a secret s E 0-1(d).  We want 
to encrypt s under the public key of a third party in such a way that  it can 
be publicly verified that  when decrypted, an inverse of d is obtained. However, 
we want to ensure that this verification procedure itself does not reveal any 
information that helps invert d. We also immutably bind to the encryption an 
label x E {0, 1}*, which will be used by the third party to determine if this 
decryption is authorized. 

More formally, a verifiable encryption scheme consists of a key generation 
algorithm, a prover P,  a verifier V, a decryption algorithm D, and a recovery 
algorithm R. P and V have as a common inputs d E G2 and x E {0, 1}*, along 
with the public encryption key. P also has a private input s E O-l(d). At the end 
of the protocol, V either accepts and outputs a string c~, or rejects. The string ot 
is a ciphertext that  can be given to D, along with the label x; the output  from 
D can be given to R to obtain s. 

A secure verifiable encryption scheme satisfies the following properties: 

C o m p l e t e n e s s .  If both P and V are honest, then for all s, d, and x, with 
O(s) = d, V accepts. 
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Soundness .  For all d and x, and for arbitrary P*, if V accepts and outputs ~, 
then with overwhelming probability, 8( R( D(a, x) ) ) = d. 
Zero  Knowledge .  Consider the following game played against an adversary: 

Ganle  C 

C1 The key generation algorithm is run, the private key is given to D and the 
public key is given to the adversary. 

C2 The adversary makes arbitrary queries D(~',  x'). 
C3 The adversary generates s, d, x with 8(s) = d, and gives P the input s, d, x, 

along with the public encryption key. 
C4 The adversary makes arbitrary queries to D and P, but after its first query 

to P, it may not query D with label x. 

A simulator is a machine that plays the roles of the key generation algorithm, 
the decryption oracle D, and the prover P,  but is only given d and x - -and  not s. 
In the random hash function model, the simulator also responds to the random 
function queries. Zero knowledge means there exists a simulator such that the 
adversary cannot feasibly distinguish between the real game and the simulated 
game. 

Note that in the definition of zero knowledge, the power of the simulator 
is quite limited: it must respond to queries on-line, and is not allowed to do 
anything like "rewind" the adversary. 

We now give our verifiable encryption scheme, which is already optimized 
somewhat to reduce the amount of data transmitted. 

First, we assume that  we have a public-key encryption function E secure 
against adaptive chosen ciphertext attack [20]. More precisely, the public key 
defines a function E(t,  y); to encrypt a string y, one chooses a random string l, 
of length, say, k, and computes E(t, y). 

Second, we assume we have hash functions H1, H:, and/ /3 .  H1 takes a string 
r, of length, say l, and outputs a pair (t, #)  E {0, l} k x G1. H2 is a hash function 
that  maps a pair (a ,d ' )  E Range(E) x G2 to a short string. //3 just hashes 
bit strings to shorter bit strings (but long enough to resist collisions). Also, a 
security parameter N is defined. 

The protocol is a simple "cut and choose" scheme (but with exponential--not 
linear--security), and runs as follows. 

P r o t o c o l  D 

The following steps are executed N times in parallel. 

D1 P chooses r E {0, 1} t at random, computes (t, s') = Hi(r),  and sends h - 
H2(E(t,  (s', H3(x))), 8(s')) to V. 

D2 V chooses b E {0, 1} at random, and sends b to P. 
D3 If b = 0, P sends r to V. If b -- 1, P sends c~ = E(t , (s ' ,H3(x)))  and 

s " = s ' + s t o  V. 
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D4 If b = 0, V computes ( t , s ' )  = Hi(r) and checks that  h = 
H2(E(t ,  (s', H3(x))), O(s')). If b = 1, Y checks that  h = H~(a, O(s H) - d ) .  
If these checks fail, V rejects. 

V rejects if it rejects in any of the N rounds. Otherwise, it accepts and 
outputs the set of all of the ciphertexts c~ in those rounds with b = 1. Actually, 
to ensure completeness, V should pick a random string of N bits, not all zero. 

Decryption is straightforward: when D is given an label x and a set of cipher- 
texts {c~}, each ciphertext is decrypted, and the first component of the cleartext 
is returned if the second component of the cleartext matches Ha(x). The re- 
covery algorithm takes the given values s ~, and computes s = s ~ - s ~ for the 
corresponding s ~1 in protocol D, and outputs s if O(s) = d for one of these values, 

Lemma2. In the random hash function model for H1, H2, and H3 the above 
scheme is a secure verifiable encryptzon scheme. 

The proof is in Appendix B. 

4.1 An Example Implementation: Discrete Logarithms 

Assume that  H~ and H3 have 160-bits of output,  and that  the input length ! of 
H1 is 160 bits. Note that  the probability that an honest verifier is "cheated" in 
any one interaction is roughly 2-N;  therefore, N -- 40 should be sufficient for 
most applications. One could make the protocol non-interactive using standard 
techniques involving hash functions, but then much larger values of N, say N = 
80, would be required to avoid off-line attacks. 

For our encryption function, we take the OAE encryption function of Bellare 
and Rogaway [6], based on the RSA problem. Assume a composite modulus 
of 1024 bits and an encryption exponent of 3. OAE is secure against chosen 
ciphertext attacks in the random hash function model (although the proofs in 
[6] have to be adapted slightly to prove this). 

Apropos DSS, for the discrete logarithm problem, assume the group G2 is 
$ the subgroup of order q in Zp, where p is a 1024-bit prime, and q is a 160-bit 

prime. Let g be the given generator for G2. In our notation, the group G1 is the 
additive group Zq, and 0 sends a E Zq to g~. 

The expected amount of data  transmitted is about 4 KBytes. 
Both P and V perform 40 160-bit exponentiations in Z~, all to the base g, 

plus the multiplications for OAE. Using techniques of Lim and Lee [17], each 
party can do this using under 2000 modular multiplications. This bound already 
includes the precomputation time for the base g. If g is actually fixed for one of 
the parties, this bound can be reduced to about 1000 modular multiplications. 

4.2 An Example Implementation: RSA Inverses 

Assume the same encryption function as above. 
For the RSA inverse problem, assume a 1024-bit composite modulus M and 

encryption exponent e with ( r  e) = 1. In our notation, G1 = G2 = Z ~ ,  and 



601 

9(a) = a e. Typically, e = 3 or e = 216 + 1. One could also take e = 2, in which 
case G2 = (Z~)  2. 

The expected amount  of data  t ransmit ted is about  7 KBytes. 
For e = 3, each par ty  needs no more than 160 modular  multiplications, and 

for e - 216 + 1, this number is under 800. 

5 T h e  F a i r  E x c h a n g e  P r o t o c o l  

Now that  we have all the necessary tools, we can easily describe our fair exchange 
protocol. 

Suppose A holds a signature crA on message mA under public key PKA, and 
B holds a signature cr B on message m B under public key PKB 

We make use of our scheme for reducing signatures to homomorphic inverses. 
Let 0A be the relevant homomorphism for A's signature, and 8B be that  for B ' s  
signature. We write desc(0B) for a string that  describes the relevant groups and 
an algorithm for computing the homomorphism using some standard encoding. 

We also make use of our scheme for verifiable encryption of homomorphic 
inverses under T ' s  public key. Recall that  when T decrypts such a verified en- 
cryption, it always does this subject to a label bound to the encryption at the 
t ime the encryption was created. 

We also make use of a one-way function f .  
The third par ty  T maintains a set S of tuples, whose structure is described 

below. We describe the protocol assuming A makes the first move. 

P r o t o c o l  E 

E1 A computes reduce(PKA, mA,  O'A) = (dA, CA, 8A), and sends dA, CA to B. 
E2 B checks that  verify(PKa, ma, dA, CA) accepts; if not, B halts. Otherwise, B 

computes reduce(PKB, mB, aB) = (dB, cB, SB), and sends dB, CB to A. 
E3 A checks that  verify(PKB, mB,de,  ca) accepts; if not, A halts. Otherwise, 

A chooses r E Domain(f)  at random and computes v = f(r).  A and B 
then engage in the verifiable encryption protocol, with A as prover and B 
as verifier, so tha t  A gives to be B a verified encryption a of SA with label 
(v, dB, desc(0B)). 

E4 If  B rejects the proof in E3, then B halts. Otherwise, B and A engage in the 
verifiable encryption protocol, with B as prover and A as verifier, so that  B 
gives to A a verified encryption/3 of sn with label v. 

E5 If  A rejects the proof in F4, then A invokes sub-protocol abort. Otherwise, 
A sends sa to B.  

E6 B checks that  On(sA) = dA. If  not, B invokes sub-protocol B-resolve. Other- 
wise, B sends SB to A, outputs  recover(PKA, ma, ca, SA), and halts. 

E/ A checks that  OB(SB) = dB. If  not, A invokes sub-protocol A-resolve. Other- 
wise, A outputs  recover(PKB, roB, ca, SB), and halts. 
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Sub-protocol  abort 

A sends r, dB, desc(0B) to T, who does the following: 

if (deposit, f(r), dB, SB, desc(0B)) E S then 
send ss to A, from which A recovers aB 

else if (no-abort, f(r)) e S then 
send A the message "abort not allowed" 

else 
add (abort, f(r)) to S 
send A the message "exchange aborted" 

Sub-protocol  B-resolve 

B sends ~, v, 8B, desc(0B) to T, who does the following: 

if (abort, v) E S then 
send B the message "exchange aborted" 

else 
add (deposit, v, eR(dB), SR, desc(0B)) to S; 
decrypt a subject to the label (v,OB(sB), desc(0B)), 
and send result to B, from which B recovers aa. 

Sub-protocol  A-resolve 

A sends A-resolve,/3, r to T, who does the following: 

if (abort,f(r)) E S 
send A the message "exchange aborted" 

else 
add (no-abort, f(r)) to S; 
decrypt/3 subject to the label f(r), 
and send result to A, from which A recovers o" B 

Our main result is the following. 

T h e o r e m 3 .  Assuming that f is one-way, that the underlying reduction and 
verifiable encryption schemes are secure (in lhe random hash function model), 
then the above fair exchange protocol is secure (in the random hash function 
model). 

The proof is in Appendix C. The intuition for the proof of fairness is that 
at no point does the adversary obtain any useful information about the honest 
player's signature before it becomes essentially inevitable that the honest player 
will obtain the adversary's signature. 



603 

R e m a r k s .  (1) Using standard techniques, 8 A and SB can be blinded, so that  
if both A and B are honest, T obtains no useful information. (2) In principle, 
when a tuple is added to S, it must stay there forever; in practice, an "aging" 
mechanism can be introduced, allowing old tuples to be eventually flushed. (3) 
The technique of using verifiable encryptions could be replaced, under some 
circumstances, by a more efficient technique of cerhfied encryptions. With this 
technique, a player using a fixed signing key could obtain a number of certified 
encryptions f rom a third par ty  off-line, before the player knows what messages 
will be signed. Details are in the full version of the paper. 

Appendix  A: Proof  of Lemma 1 

Completeness. Clear. 

Soundness. Let u2 satisfying h u2 = / 3  be given. Set r = (a/3) mod q, s = ru21, 
ul = U ( m ) s  -1, and c = r - i l l ( m ) .  The verification procedure verifies a non- 
interactive proof that  logg a = c log h j3. This proof  is sound assuming H I is a 
random function, so assume this identity holds. This, together with the identity 
ul = cu2, implies that  gUl = a,  proving that  (r, s) is a valid signature. 

Secrecy. Suppose that  an adversary can win Game B, obtaining a signature on 
a message m chosen in B3. Under the strong security assumption for DSS, this 
signature must  be the same as that  generated in B3, which implies the adversary 
can compute u2 = lOgh ft. 

We show how to use this adversary to compute discrete logarithms efficiently, 
assuming H '  is a random function. Let w be a random element of order q in Zp 
whose discrete logari thm to the base g we wish to compute. We choose x C Zq at 
random, and compute h = g=, and use h as a public key for the signature scheme. 
Since we know x, we can generate signatures for the adversary as necessary in 
B2 and B4. Now in 133, we are given a message m by the adversary. We do not 
sign this message; instead, we compute r = w mod q, and set c = r - i l l ( m ) .  
Then we compute fl = w zl(=+c) and a = ~o/fl. It  is easily verified tha t  a and 
fl have precisely the same distribution as in the actual reduction algorithm, so 
this part  of the simulation is perfect. Also, since H '  is a random function, we 
can easily simulate the proof that  logg a = clog h fl, since the corresponding 
interactive proof is zero knowledge against an honest verifier. Thus, we have 
perfectly simulated the output  of the reduction algorithm. Now if the adversary 
computes u2 = log h fl, then we obtain logg ,) = (x + c)u2. 

A p p e n d i x  B :  P r o o f  o f  L e m m a  2 

Completeness. Clear. 

Soundness. This is a s tandard argument,  relying only on the presumption tha t  
it is impossible to find collisions in H2. 
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Zero Knowledge. We now describe the simulator P '  that responds to the queries 
made to P and the random hash functions. At any stage in Game C, responses to 
the hash function queries are simply made in a random, but consistent, fashion. 
In stage C3, the simulator receives inputs d, x. In stage C4, the simulator responds 
to queries made to P as follows. 

In step D1, P~ just outputs N random strings, representing N outputs of H2, 
whose inputs are yet to be determined. In step 03, P~ does the following in each 
of the N rounds, depending on the value of b given in D2. 

If b = 0, P '  picks r E {0, 1} t at random, and sets (t, s') = Hi(r).  Then it sets 
= E(t, (s', H3(x))). Now P'  has to "backpatch" H2, making the output of H2 

at the point (~, O(s')) equal to the corresponding string output in step D1. It is 
easily verified that this can almost certainly be done consistently (and if not, we 
simply quit). 

If b = 1, P'  chooses s" E G1 at random, and creates a "dummy" ciphertext 
c~ under E of (0, H3(x)). Again, we have to backpatch H2, this time at the point 
(c~, ~(s") - d), and again it is easy to see that this backpatching can almost 
certainly be done consistently. 

That completes the description of the simulator. We next claim that if the 
adversary can distinguish a simulated Game C from a real Game C, we can 
use this adversary to break the underlying encryption scheme. To see this, note 
that in the simulated game, if the adversary ever presents one of the dummy 
ciphertexts for decryption in stage C4, with label x' ~ x, then we do not have 
to give the underlying decryption algorithm for E the ciphertext, since the de- 
cryption algorithm D would almost certainly refuse to give the adversary the 
cleartext anyway. Then, using a standard argument, the adversary could be used 
to distinguish an encryption of (0, Ha(x)) from an encryption of (s', H3(x)), thus 
breaking the underlying encryption scheme. 

A p p e n d i x  C:  P r o o f  o f  T h e o r e m  3 

Completeness is clear. To prove fairness, we start with an adversary that can 
win Game A. Consider first the case where A is the honest player, and call the 
adversary B*. 

We begin by defining a truncated version of Game A, call it Game A ~, defined 
by the following two early-stopping rules: 

(1) Suppose that F4 has just completed with A accepting the proof in verifiable 
encryption protocol. Then we stop the game at this point, and say that B* 
loses. 

(2) Suppose that A has begun to engage in the encryption protocol in E3 with a 
given label, and A has not executed the abort sub-protocol. If these conditions 
hold, and B* sends a request to T for B-resolve with arguments that yield a 
matching label, we stop the game just before T responds, and say B* loses. 

We claim that if B* can win Game A, then he can also win Game A ~. To 
see why, consider stopping rule (1). Once A accepts the verifiable encryption, 
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it is effectively inevitable that A would obtain SB, and hence ~B, in Game A: 
either directly in step E6, or via sub-protocol A-resolve. In the latter case, since 
f is one-way, the adversary cannot block the A-resolve by having an abort tuple 
placed in S via sub-protocol abort. 

Now consider stopping rule (2). Since A has not aborted the transaction (and 
only A can do this as f is one-way), then performing the B-resolve in Game A 
would result in a deposit tuple being placed on S that  contains an inverse of SB. 
Then A will eventually get sB,  and hence aB, either from B* directly in step E6, 
or from T via abort or A-resolve, which again B* cannot prevent since it cannot 
invert v. 

So assume B* can win Game A( We now make another transformation: we 
replace the A's prover in the verifiable encryption protocol in E3 (and any ran- 
dom hash functions) with the corresponding zero-knowledge simulator. Because 
of the way we truncated Game A, we are guaranteed that  T's  decryption function 
will never be called with a matching label at any time after the prover starts. 

Call this Game A". By the zero-knowledge property, it follows that B* can 
also win Game A". Moreover, when we play Game A" against the adversary, 
we do not need the SA output  from the reduction algorithm to run the prover 
simulation, and it is not in the adversary's view, so we can drop it altogether. 
The result is an adversary that  breaks the supposed secrecy of A's reduction 
scheme. 

That  concludes the proof for the case where A is the honest player. Now 
assume B is the honest player, and call the adversary A*. We use a very similar 
argument. We first define a truncated Game A' via three early-stopping rules: 

(1) If A* sends B a valid inverse in El, we stop, and say that A* loses. 
(2) If B has completed step B ,  accepting the proof in the verifiable encryption, 

and A* has not performed a successful abort with v, and then A* performs 
an A-resolve with v, then we stop the game just  before T responds, and say 
that  A* loses. 

(3) If B has just accepted the proof E3, but A* has already performed a suc- 
cessful A-resolve with v, then we stop, and say that  A* loses. 

As before, we show that  if A* can win Game A, it can also win Game A'. 
Clearly, if we stop on rule (1), then in Game A, B would recover ~rA, and so A* 
would lose. Also, if we stop on rules (2) or (3), then in Game A, T would add a 
no-abort tuple that  would prevent A* from aborting the transaction at any point 
in the future, thus allowing B to obtain SA, and hence trA, via B-resolve should 
it need to. The rest of the proof goes exactly the same, mutat i s  mutandis ,  as in 
the case above where A was honest. 
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