
Optimistic Fair Exchange of Digital Signatures
(E x t e n d e d A b s t r a c t)

N. Asokan Victor Shoup Michael Waidner

IBM Zfirich Research Laboratory, S~umerstr. 4, 8803 Rfischlikon, Switzerland
{aso, sho, wmi} @zurich. ibm. corn

A b s t r a c t . We present a new protocol that allows two players to ex-
change digital signatures over the Internet in a fair way, so that either
each player gets the other's signature, or neither player does. The ob-
vious application is where the signatures represent items of value, for
example, an electronic check or airline ticket. The protocol can also be
adapted to exchange encrypted data. The protocol relies on a trusted
third party, but is "optimistic," in that the third party is only needed
in cases where one player attempts to cheat or simply crashes. A key
feature of our protocol is that a player can always force a timely and fair
termination, without the cooperation of the other player.

1 I n t r o d u c t i o n

As more business is conducted over the Internet, the fair exchange problem
assumes increasing importance. For example, suppose player A is willing to give
an electronic check to player B in exchange for an electronic airline ticket. The
problem is this: how can A and B exchange these items so that either each player
gets the other 's item, or neither player does.

Both electronic checks and electronic airline tickets are implemented as digital
signatures. Presumably, many other items to be exchanged over the Internet will
be so implemented. Therefore, it seems fruitful to focus our at tention on the fair
exchange of digital signatures.

In this paper, we present a new protocol for the fair exchange of commonly
used digital signatures, including RSA [21], DSS [16], Schnorr [22], Fiat-Shamir
[12], GQ [t5], and Ong-Schnorr [19] signatures, as well as the payment tran-
scripts used in Brands ' [7] off-line, anonymous cash scheme. The protocol can
also be used to exchange data (such as stock quotes or an audio or visual s tream)
encrypted under a key derived from an RSA inverse or discrete logarithm. This
scenario was suggested by Franklin and Reiter [13], where it was also suggested
that the "quality" of the data be certified or guaranteed by an independent
authority.

Our protocol uses a trusted third party, but only in a limited fashion: the
third par ty is only needed in cases where one player a t tempts to cheat or simply
crashes; therefore, in the vast majori ty of transactions, the third par ty will not
need to be involved at all. Following [1], we call our protocol optimistic; in
addition to [1], optimistic protocols for several variants of the fair exchange
problem are discussed in [8,18].

592

Of course, one could use an on-line trusted third party [10,11,14] in every
transaction to act as a mediator, but the optimistic approach greatly reduces
the load on the third party, which in turn reduces the cost and insecurity involved
in replicating the service in order to maintain availability. It also makes it more
feasible to distribute the third party, eliminating the single point of failure.

Our protocol also enjoys the following properties:

(1) To use it, one need not modify the signature scheme or message format at
all. Thus, it will inter-operate with existing or proposed schemes for elec-
tronic checks, coins, tickets, receipts, etc., without any modification to these
schemes.

(2) It works in an asynchronous communication model: there are no synchronized
clocks, and one player cannot force the other to wait for any length of t ime- -
a fair and timely termination can always be forced by contacting the third
party.

(3) It is quite practical. A typical exchange requires only a few rounds of interac-
tion, transmission of a few KBytes of data, and a couple thousand modular
multiplications.

(4) The protocol can be proved secure (modulo standard intractability assump-
tions) in the random hash function model [5], where a hash function is re-
placed by a "black box" that outputs random bit strings.

(5) The two players may remain anonymous, if desired.

We stress the practical importance of property (1): it allows a general-purpose
fair exchange service to be deployed without the cooperation of the institutions
responsible for the items being exchanged (banks, airlines, etc.). Indeed, it seems
quite unrealistic to expect these institutions to redesign their schemes and all
of the relevant software to accommodate a fair exchange protocol if this has not
already been designed for. Our protocol can accommodate any common signature
scheme without modification. Previous optimistic protocols for fair exchange do
not allow for this: these protocols either require that the item being exchanged
have a special structure to facilitate the exchange protocol, or they partially
sacrifice fairness, with one player ending up with just an affidavit from the third
party that the other player owes him something. In our protocol, the two players
get the real th ing--not a substitute or affidavit.

Property (2) is perhaps even more important. Previous optimistic fair ex-
change protocols employ a "time-out" mechanism that either leaves one player
"hanging" for an unacceptably long time (if the time-out is too long), or exposes
the other player to an unacceptable risk of being cheated (if the time-out is too
short). Not only can this be a great inconvenience, it can also lead to a real loss
in the case of time-sensitive data like stock quotes. In our protocol, this cannot
happen so long as the third party is available.

1.1 O v e r v i e w

At a high level, our protocol works as follows. Suppose the two players hold
signatures on agreed-upon messages.

593

Each player first reduces a "promise" of a signature to "promise" of a par-
ticular homomorphic inverse (either a discrete logarithm or RSA inverse). A
good reduction scheme should not make it any easier to compute the signature,
while simultaneously guaranteeing that the promised signature can be recovered
from the promised inverse. Good reduction schemes exist for all of the signature
schemes mentioned above. Essentially the same notion of reduction was used in
[13] (although their reduction scheme for DSS is actually insecure).

After this reduction phase, the players perform a fair exchange of homomor-
phic inverses. As mentioned above, this sub-protocol can be used in exchanging
data encrypted under a key derived (perhaps via a hash function) from a homo-
morphic inverse. This idea is explored in further detail in [13].

To exchange homomorphic inverses, our protocol makes use of "verifiable"
encryptions of these inverses under the third party's public key: such an en-
cryption can be verified to contain the homomorphic inverse, without leaking
any information that makes it easier to compute the inverse. For this, we adapt
Bellare and Goldwasser's [4] key escrow technique.

Our protocol also employs a novel strategy to deal with the asynchrony prob-
lem discussed above, allowing the exchange to be "aborted" under certain con-
ditions. This same strategy is also used in the companion paper [3] to design a
protocol for contract signing that has the nice property that a cheating third
party will eventually be caught.

The rest of the paper is organized as follows. [n w we present a formal
security model for the problem of exchanging digital signatures fairly. In w
we show how to reduce the promise of a digital signature to the promise of a
homomorphic inverse. In w we show how to verifiably encrypt a homomorphic
inverse. Finally, in w we present our optimistic protocol for the fair exchange
of digital signatures.

A full length version of this paper is available [2].

2 A Formal Security Model for Fair Signature Exchange

We have two players A and B, and a trusted third party T that acts as a server:
it receives a request from a client, updates its internal state, and sends a response
back to the client. T has a public key known to A and B, and is always assumed
to be honest and (eventually) available. We assume the client/server channel is
private, and that server responses are authenticated, but do not assume that the
client requests are authent ica ted)

The two players agree upon the signatures they want to exchange, and then
exchange messages back and forth. Between the time that a player receives a

1 This can be implemented by having the client encrypt its request together with a
session key under the third party's public key; the server encrypts and authenticates
its response using the given session key; this implementation will have the desired
properties provided the third party's encryption scheme is secure against adaptive
chosen ciphertext attack.

594

message and generates its response, it may send requests to T, obtaining the
corresponding responses within a finite, but unbounded, amount of time.

We define security in terms of fawness and completeness.
To define fairness, we let an adversary play the role of a corrupt player,

and give it complete control over the network, arbitrarily interacting with T,
and arbitrarily delaying A's requests to T. Intuitively, fairness means that it
is infeasible for the adversary to get the honest player's signature, without the
honest player getting the adversary's signature.

Completeness means that if neither player is corrupt, and no messages are
lost, then the exchange is successful.

We now make the above notions a bit more precise.

B e h a v i o r o f T. T is a polynomial-time interactive Turing machine that follows
the program prescribed for it by the protocol. T acts as a server, repeatedly
accepting a request, updating its internal state, and generating a response. For
simplicity, we assume that each request is processed atomically. T has a public
key/private key pair (PKT, SKT) that is generated by a key generation algorithm
prescribed by the protocol.

B e h a v i o r o f a n h o n e s t p layer . An honest player is a polynomial-time interac-
tive Turing machine that follows the program prescribed for it by the protocol.
It interacts with its environment through a sequence of rounds: in one round it
receives a message, updates its internal state, and generates a response.

Before generating a response, it may access T (perhaps several times). To do
this, the player must explicitly signal its intention to contact T, and then wait
on an externally generated signal before proceeding.

The initial state of an honest player is determined by a set of inputs:
PKT,PK, m,o, Ph~,m '. Here, a is a signature on message m under the pub-
lic key PK that the player intends to give in exchange for a signature on m'
under the public key PK'.

After a bounded number of rounds, an honest player stops and writes on a
private tape an output a ' . The player also externally signals that it has termi-
nated.

De f in i t i on o f fa i rness . Fix a particular signature scheme S, and consider the
following game. The components in the game are an adversary, called B*, which
is a polynomial-time interactive Turing machine, an honest player, called A, as
well as T, T's key generation algorithm, and ~ ' s key generation algorithm.

G a m e A

A1 Run L"s key generation algorithm, giving the secret key to a signing oracle
S and the public key PK to B*. Also generate T's public and private keys,
giving SKT to T and PKT to B*.

A2 B* interacts arbitrarily with T and S, obtaining signatures on adaptively
chosen messages.

595

A3 B* selects messages m and m ~, and an arbitrary public key P/~ for a signa-
ture scheme (possibly different from S) . The message m must be different
from those given to S in A2. Now, S produces a signature a on m, and A is
initialized with inputs: PKT, PK, m, a, PK', m ~. The signature a is not seen
by B*.

A4 B* interacts with T, S and A in an arbitrary fashion, subject to the following
restrictions:
(1) B* may not query S with m.
(2) When A signals its intention to contact T, B* must eventually signal A

to let it proceed, after which B* refrains from contacting T until A is
finished (i.e., generates a response or a signal).

(3) Unless A has signaled termination, B* must eventually supply another
input message.

Eventually, A terminates and outputs a string o J, and B* also terminates,
and outputs a string ~. We say that B* wins the game ifcr' is not a valid signature
for m ~ under PK ~, but ~r is a valid signature for m under PK. We define fairness
to mean that B* cannot feasibly win this game.

R e m a r k s . Restriction (2) captures our intuitive requirement that A can always
reach T, but may be arbitrarily delayed. Despite restriction (3), real world "time
outs" can be modeled quite simply: in the real world, if A is waiting for a message,
then a low-level communication protocol will eventually time out and give A the
message "?"; in our formal model, B* just gives A this message directly. Also,
note that in our definition, the player in the exchange protocol is not necessarily
the holder of the signing key.

D e f i n i t i o n o f c o m p l e t e n e s s . We define another game similar to that above, in
which the adversary gets access to two signing oracles, S and S', and initializes
two honest players A and B, who interact directly with each other. The adversary
in this case can interact with T, but cannot interfere with the interaction of A
and B, except insofar as the adversary still has the power to schedule both
A's and B's interactions with T. We omit the details of this game, which are
straightforward. The real-world situation that this game models is that where
that all messages are delivered without being seen or modified by the adversary,
and neither player "times out" waiting for a message.

We define completeness to mean that it is infeasible for the adversary in the
above game to prevent A and B from successfully exchanging their signatures.

3 R e d u c i n g S i g n a t u r e s t o H o m o m o r p h i c I n v e r s e s

In this section, we show how to reduce a "promise" of a signature to the
"promise" of a particular homomorphie inverse. In this extended abstract, we
only deal with RSA, Schnorr and DSS signatures. In the full version of the paper,
we deal with the others mentioned in the introduction.

As a simple, motivating example, consider the standard hash-and-invert RSA
signature (which is provably secure in the random hash function model [5]). Here,

596

the signature on a message is simply the eth root of the hash of the message,
viewed as a number modulo a given composite number. In this case, reduction
is trivial: the promised homomorphic inverse is simply this eth root.

Reduction schemes for other signature schemes are not so trivial. So as to
be able to uniformly treat several signature schemes, we start with a formal
definition of our requirements.

3.1 D e f i n i t i o n o f a s e c u r e r e d u c t i o n

Let S be a signature scheme. A reduction scheme for S consists of three ef-
ficient algorithms, a reduction algorithm reduce, a verification algorithm verify,
and a recovery algorithm recover, and also associates to every public key P K an
efficiently computable group homomorphism/9 : G1 --~ G2.

- reduce takes as input PK, ra, (r, where P K is a public key for S , m is a
message, and a is signature on m under PK. The output consists of d E G~,
c E {0, 1}*, and s E/9 - l (d) . The string c encodes additional information that
is used by the verification and recovery algorithms, reduce may fail on some
"bad signatures," as long as these occur rarely (we need this for DSS).

- verify takes as input PK, m, d, c, and either accepts or rejects.
- recover takes as input PK, m, c, and s E G1, and outputs a string ~.

A secure reduction scheme should satisfy three properties:

C o m p l e t e n e s s . If reduce(PK, m, or) = (d, c, s), then verify(PK, m, d, c) accepts.

S o u n d n e s s . It is infeasible for an adversary to find PK, m, d, c such that the
verify(Pg, m, d, e) accepts, but recover(PK, m, c, s) is not a valid signature on m
for all s E/9-1(d).

Sec recy . I t is infeasible for an adversary to win the following game:

G a m e B

B1 Run ~"s key generation algorithm, giving the secret key to a signing oracle
S and the public key P K to the adversary.

B2 The adversary makes arbi trary queries to S.
B3 The adversary generates a message m different from those given to S in B2.

Now S generates a signature (r on m under PK, and the adversary is given
d, c, where (d, c, s) = reduce(PK, m, ~).

B4 The adversary continues to query S on messages different from m.

The adversary wins the game if it can output a valid signature on m.

R e m a r k s . Clearly, our definition of a secure reduction scheme implies that the
underlying signature scheme is secure against adaptive chosen-message attacks.
A stronger definition could be formulated wherein the reduction scheme is "just
as secure" as the underlying signature scheme, however secure it happens to be.
Unfortunately, not all of our proofs achieve this. It is also possibly to consider
more general reduction schemes; for example, the reduction procedure could be
interactive. We do not consider these here.

597

3.2 S c l m o r r S i g n a t u r e s

In the Schnorr s ignature scheme, to genera te a public key, one selects pr imes p
and q such tha t q I P - l , and a genera tor g for the subgroup of Zp of order q. One
then chooses x E Zq at r a n d o m and computes h = g=. The public key consists
of p, q, g, h, and the pr ivate key is x. To sign a message m, the signer chooses
r E Zq at r andom, and computes z -- cx + r, where c = H (g r , m) E Z a and H
is a hash function. T h e s igna ture is (c, z). To verify a s ignature , one checks tha t
c = H (g ~ h -c , m) .

The Schnorr s ignature scheme is p rovab ly secure in the r a n d o m hash funct ion
model (if the discrete l oga r i thm p rob lem is hard) .

The following reduct ion f rom Schnorr s ignatures to discrete logar i thms was
observed in [13], in the context of verifiable s ignature sharing. The reduct ion
a lgor i thm takes as input a s ignature (c, z) on a message m, and ou tpu t s u = g~, c,
where the promised inverse is z = logg u.

The verification a lgor i thm checks t h a t c = h(uh -c , m) . Given z, the recovery
a lgor i thm ou tpu t s (c, z).

Comple teness and soundness are clear. Secrecy follows f rom the fact tha t
one can s imulate the o u t p u t of the reduct ion a lgor i thm wi thou t a s ignature: the
s imula tor chooses r E Zq at r andom, computes w = gr and c = H (w , m) , and
sets u = wh c.

3.3 DS S Signatures

Key generat ion for DSS is identical to t ha t for the Schnorr scheme. The s t anda rd
prescribes tha t q has a length of 160 bits. To sign a message m, the signer chooses
k E Zq at r andom, and computes r = (gk) rood q and s = k - l (H (m) + x r) , where
H is a hash funct ion with ou tpu t s in Zq. The s ignature is (r, s). A s ignature
is verified by checking t h a t r = (g " ' h "~) m o d q, where ul = H (m) s -1 , and
u2 = rs -1 . Note t ha t s ignatures wi th s = 0 are invalid, bu t these effectively
never arise. For our reduct ion scheme, we must also rule out r = 0, which also
effectively never arises.

We now give a reduct ion scheme reducing a promise of a DSS s ignature to a
promise of discrete logar i thm.

The reduct ion a lgor i thm works as follows. We have a s ignature (r, s) on a
message m. Let ul , u2 be defined as above, and define c = r - l H (r n) . We ou tpu t

a = g=l, f l = h==,a, = gV,fl, = h v , z = v + eul ,

where v E Zq is chosen a t r andom, e = H ' (P K , ~ , f l , cd, f l ' ,c) , and H ' is a hash
function.

The promised inverse is u2 = log h ft.
T h e verification a lgor i thm runs as follows. We first check tha t ~q = flq = 1

and fl ~ 1; we then compu te r = (c~fl) m o d q, and check tha t r r 0, Finally,
we compute c = r - i l l (m) , e = H ' (a , f l , a ' , f l ' ,c) , and check t h a t g 5 = a ' a ~ and

h ~ = /~ 'Zr

598

What is happening here is that we are giving a and fl, and a non-interactive
proof that logg c~ = clog h 13 (see [9]).

The recovery procedure takes u2 = logh fl, computes r = (a/3) mod q and
s = r/u2, and outputs (r, s).

To prove secrecy, we have to make a strong security assumption about DSS:
given signatures on several messages, not only is it difficult for an adversary
to compute a signature on a new message, it is difficult to compute a different
signature on any of the given messages.

One can heuristically justify this assumption using the "generic algorithm"
model in [23], assuming also that H is collision free. Proving that DSS satisfies
this stronger form of security in this model is relatively straightforward; more-
over, this is the only model that we know of in which it is possible to prove that
DSS is secure to begin with.

L e m m a 1. Under the strong security assumption for DSS, above reduction
scheme is secure in the random hash function model for H ~.

The proof is in Appendix A.
Remark. It has been brought to our attention that there are simpler reduction

schemes for DSS; however, our reduction is still perhaps of some interest, as the
promised discrete logarithm is relative to a fixed base, whereas in the simpler
schemes it is relative to a random base; using a fixed base can lead to greater
efficiency and also facilitates the use of certzfied encryptions discussed at the end
of w and in more detail in the full-length version of this paper.

4 V e r i f i a b l e E n c r y p t i o n o f H o m o m o r p h i c I n v e r s e s

Suppose we a have a surjective group homomorphism 0 : G1 --* G2. We have
a publicly known group element d E G2 and a secret s E 0-1(d). We want
to encrypt s under the public key of a third party in such a way that it can
be publicly verified that when decrypted, an inverse of d is obtained. However,
we want to ensure that this verification procedure itself does not reveal any
information that helps invert d. We also immutably bind to the encryption an
label x E {0, 1}*, which will be used by the third party to determine if this
decryption is authorized.

More formally, a verifiable encryption scheme consists of a key generation
algorithm, a prover P, a verifier V, a decryption algorithm D, and a recovery
algorithm R. P and V have as a common inputs d E G2 and x E {0, 1}*, along
with the public encryption key. P also has a private input s E O-l(d). At the end
of the protocol, V either accepts and outputs a string c~, or rejects. The string ot
is a ciphertext that can be given to D, along with the label x; the output from
D can be given to R to obtain s.

A secure verifiable encryption scheme satisfies the following properties:

C o m p l e t e n e s s . If both P and V are honest, then for all s, d, and x, with
O(s) = d, V accepts.

599

Soundness . For all d and x, and for arbitrary P*, if V accepts and outputs ~,
then with overwhelming probability, 8(R(D(a, x))) = d.
Zero Knowledge . Consider the following game played against an adversary:

Ganle C

C1 The key generation algorithm is run, the private key is given to D and the
public key is given to the adversary.

C2 The adversary makes arbitrary queries D(~', x').
C3 The adversary generates s, d, x with 8(s) = d, and gives P the input s, d, x,

along with the public encryption key.
C4 The adversary makes arbitrary queries to D and P, but after its first query

to P, it may not query D with label x.

A simulator is a machine that plays the roles of the key generation algorithm,
the decryption oracle D, and the prover P, but is only given d and x - -and not s.
In the random hash function model, the simulator also responds to the random
function queries. Zero knowledge means there exists a simulator such that the
adversary cannot feasibly distinguish between the real game and the simulated
game.

Note that in the definition of zero knowledge, the power of the simulator
is quite limited: it must respond to queries on-line, and is not allowed to do
anything like "rewind" the adversary.

We now give our verifiable encryption scheme, which is already optimized
somewhat to reduce the amount of data transmitted.

First, we assume that we have a public-key encryption function E secure
against adaptive chosen ciphertext attack [20]. More precisely, the public key
defines a function E(t, y); to encrypt a string y, one chooses a random string l,
of length, say, k, and computes E(t, y).

Second, we assume we have hash functions H1, H:, and/ /3 . H1 takes a string
r, of length, say l, and outputs a pair (t, #) E {0, l} k x G1. H2 is a hash function
that maps a pair (a ,d ') E Range(E) x G2 to a short string. //3 just hashes
bit strings to shorter bit strings (but long enough to resist collisions). Also, a
security parameter N is defined.

The protocol is a simple "cut and choose" scheme (but with exponential--not
linear--security), and runs as follows.

P r o t o c o l D

The following steps are executed N times in parallel.

D1 P chooses r E {0, 1} t at random, computes (t, s') = Hi(r), and sends h -
H2(E(t, (s', H3(x))), 8(s')) to V.

D2 V chooses b E {0, 1} at random, and sends b to P.
D3 If b = 0, P sends r to V. If b -- 1, P sends c~ = E(t , (s ' ,H3(x))) and

s " = s ' + s t o V.

600

D4 If b = 0, V computes (t , s ') = Hi(r) and checks that h =
H2(E(t , (s', H3(x))), O(s')). If b = 1, Y checks that h = H~(a, O(s H) - d) .
If these checks fail, V rejects.

V rejects if it rejects in any of the N rounds. Otherwise, it accepts and
outputs the set of all of the ciphertexts c~ in those rounds with b = 1. Actually,
to ensure completeness, V should pick a random string of N bits, not all zero.

Decryption is straightforward: when D is given an label x and a set of cipher-
texts {c~}, each ciphertext is decrypted, and the first component of the cleartext
is returned if the second component of the cleartext matches Ha(x). The re-
covery algorithm takes the given values s ~, and computes s = s ~ - s ~ for the
corresponding s ~1 in protocol D, and outputs s if O(s) = d for one of these values,

Lemma2. In the random hash function model for H1, H2, and H3 the above
scheme is a secure verifiable encryptzon scheme.

The proof is in Appendix B.

4.1 An Example Implementation: Discrete Logarithms

Assume that H~ and H3 have 160-bits of output, and that the input length ! of
H1 is 160 bits. Note that the probability that an honest verifier is "cheated" in
any one interaction is roughly 2-N; therefore, N -- 40 should be sufficient for
most applications. One could make the protocol non-interactive using standard
techniques involving hash functions, but then much larger values of N, say N =
80, would be required to avoid off-line attacks.

For our encryption function, we take the OAE encryption function of Bellare
and Rogaway [6], based on the RSA problem. Assume a composite modulus
of 1024 bits and an encryption exponent of 3. OAE is secure against chosen
ciphertext attacks in the random hash function model (although the proofs in
[6] have to be adapted slightly to prove this).

Apropos DSS, for the discrete logarithm problem, assume the group G2 is
$ the subgroup of order q in Zp, where p is a 1024-bit prime, and q is a 160-bit

prime. Let g be the given generator for G2. In our notation, the group G1 is the
additive group Zq, and 0 sends a E Zq to g~.

The expected amount of data transmitted is about 4 KBytes.
Both P and V perform 40 160-bit exponentiations in Z~, all to the base g,

plus the multiplications for OAE. Using techniques of Lim and Lee [17], each
party can do this using under 2000 modular multiplications. This bound already
includes the precomputation time for the base g. If g is actually fixed for one of
the parties, this bound can be reduced to about 1000 modular multiplications.

4.2 An Example Implementation: RSA Inverses

Assume the same encryption function as above.
For the RSA inverse problem, assume a 1024-bit composite modulus M and

encryption exponent e with (r e) = 1. In our notation, G1 = G2 = Z ~ , and

601

9(a) = a e. Typically, e = 3 or e = 216 + 1. One could also take e = 2, in which
case G2 = (Z~) 2.

The expected amount of data t ransmit ted is about 7 KBytes.
For e = 3, each par ty needs no more than 160 modular multiplications, and

for e - 216 + 1, this number is under 800.

5 T h e F a i r E x c h a n g e P r o t o c o l

Now that we have all the necessary tools, we can easily describe our fair exchange
protocol.

Suppose A holds a signature crA on message mA under public key PKA, and
B holds a signature cr B on message m B under public key PKB

We make use of our scheme for reducing signatures to homomorphic inverses.
Let 0A be the relevant homomorphism for A's signature, and 8B be that for B ' s
signature. We write desc(0B) for a string that describes the relevant groups and
an algorithm for computing the homomorphism using some standard encoding.

We also make use of our scheme for verifiable encryption of homomorphic
inverses under T ' s public key. Recall that when T decrypts such a verified en-
cryption, it always does this subject to a label bound to the encryption at the
t ime the encryption was created.

We also make use of a one-way function f .
The third par ty T maintains a set S of tuples, whose structure is described

below. We describe the protocol assuming A makes the first move.

P r o t o c o l E

E1 A computes reduce(PKA, mA, O'A) = (dA, CA, 8A), and sends dA, CA to B.
E2 B checks that verify(PKa, ma, dA, CA) accepts; if not, B halts. Otherwise, B

computes reduce(PKB, mB, aB) = (dB, cB, SB), and sends dB, CB to A.
E3 A checks that verify(PKB, mB,de, ca) accepts; if not, A halts. Otherwise,

A chooses r E Domain(f) at random and computes v = f(r). A and B
then engage in the verifiable encryption protocol, with A as prover and B
as verifier, so tha t A gives to be B a verified encryption a of SA with label
(v, dB, desc(0B)).

E4 If B rejects the proof in E3, then B halts. Otherwise, B and A engage in the
verifiable encryption protocol, with B as prover and A as verifier, so that B
gives to A a verified encryption/3 of sn with label v.

E5 If A rejects the proof in F4, then A invokes sub-protocol abort. Otherwise,
A sends sa to B.

E6 B checks that On(sA) = dA. If not, B invokes sub-protocol B-resolve. Other-
wise, B sends SB to A, outputs recover(PKA, ma, ca, SA), and halts.

E/ A checks that OB(SB) = dB. If not, A invokes sub-protocol A-resolve. Other-
wise, A outputs recover(PKB, roB, ca, SB), and halts.

602

Sub-protocol abort

A sends r, dB, desc(0B) to T, who does the following:

if (deposit, f(r), dB, SB, desc(0B)) E S then
send ss to A, from which A recovers aB

else if (no-abort, f(r)) e S then
send A the message "abort not allowed"

else
add (abort, f(r)) to S
send A the message "exchange aborted"

Sub-protocol B-resolve

B sends ~, v, 8B, desc(0B) to T, who does the following:

if (abort, v) E S then
send B the message "exchange aborted"

else
add (deposit, v, eR(dB), SR, desc(0B)) to S;
decrypt a subject to the label (v,OB(sB), desc(0B)),
and send result to B, from which B recovers aa.

Sub-protocol A-resolve

A sends A-resolve,/3, r to T, who does the following:

if (abort,f(r)) E S
send A the message "exchange aborted"

else
add (no-abort, f(r)) to S;
decrypt/3 subject to the label f(r),
and send result to A, from which A recovers o" B

Our main result is the following.

T h e o r e m 3 . Assuming that f is one-way, that the underlying reduction and
verifiable encryption schemes are secure (in lhe random hash function model),
then the above fair exchange protocol is secure (in the random hash function
model).

The proof is in Appendix C. The intuition for the proof of fairness is that
at no point does the adversary obtain any useful information about the honest
player's signature before it becomes essentially inevitable that the honest player
will obtain the adversary's signature.

603

R e m a r k s . (1) Using standard techniques, 8 A and SB can be blinded, so that
if both A and B are honest, T obtains no useful information. (2) In principle,
when a tuple is added to S, it must stay there forever; in practice, an "aging"
mechanism can be introduced, allowing old tuples to be eventually flushed. (3)
The technique of using verifiable encryptions could be replaced, under some
circumstances, by a more efficient technique of cerhfied encryptions. With this
technique, a player using a fixed signing key could obtain a number of certified
encryptions f rom a third par ty off-line, before the player knows what messages
will be signed. Details are in the full version of the paper.

Appendix A: Proof of Lemma 1

Completeness. Clear.

Soundness. Let u2 satisfying h u2 = / 3 be given. Set r = (a/3) mod q, s = ru21,
ul = U (m) s -1, and c = r - i l l (m) . The verification procedure verifies a non-
interactive proof that logg a = c log h j3. This proof is sound assuming H I is a
random function, so assume this identity holds. This, together with the identity
ul = cu2, implies that gUl = a, proving that (r, s) is a valid signature.

Secrecy. Suppose that an adversary can win Game B, obtaining a signature on
a message m chosen in B3. Under the strong security assumption for DSS, this
signature must be the same as that generated in B3, which implies the adversary
can compute u2 = lOgh ft.

We show how to use this adversary to compute discrete logarithms efficiently,
assuming H ' is a random function. Let w be a random element of order q in Zp
whose discrete logari thm to the base g we wish to compute. We choose x C Zq at
random, and compute h = g=, and use h as a public key for the signature scheme.
Since we know x, we can generate signatures for the adversary as necessary in
B2 and B4. Now in 133, we are given a message m by the adversary. We do not
sign this message; instead, we compute r = w mod q, and set c = r - i l l (m) .
Then we compute fl = w zl(=+c) and a = ~o/fl. It is easily verified tha t a and
fl have precisely the same distribution as in the actual reduction algorithm, so
this part of the simulation is perfect. Also, since H ' is a random function, we
can easily simulate the proof that logg a = clog h fl, since the corresponding
interactive proof is zero knowledge against an honest verifier. Thus, we have
perfectly simulated the output of the reduction algorithm. Now if the adversary
computes u2 = log h fl, then we obtain logg ,) = (x + c)u2.

A p p e n d i x B : P r o o f o f L e m m a 2

Completeness. Clear.

Soundness. This is a s tandard argument, relying only on the presumption tha t
it is impossible to find collisions in H2.

604

Zero Knowledge. We now describe the simulator P ' that responds to the queries
made to P and the random hash functions. At any stage in Game C, responses to
the hash function queries are simply made in a random, but consistent, fashion.
In stage C3, the simulator receives inputs d, x. In stage C4, the simulator responds
to queries made to P as follows.

In step D1, P~ just outputs N random strings, representing N outputs of H2,
whose inputs are yet to be determined. In step 03, P~ does the following in each
of the N rounds, depending on the value of b given in D2.

If b = 0, P ' picks r E {0, 1} t at random, and sets (t, s') = Hi(r). Then it sets
= E(t, (s', H3(x))). Now P' has to "backpatch" H2, making the output of H2

at the point (~, O(s')) equal to the corresponding string output in step D1. It is
easily verified that this can almost certainly be done consistently (and if not, we
simply quit).

If b = 1, P' chooses s" E G1 at random, and creates a "dummy" ciphertext
c~ under E of (0, H3(x)). Again, we have to backpatch H2, this time at the point
(c~, ~(s") - d), and again it is easy to see that this backpatching can almost
certainly be done consistently.

That completes the description of the simulator. We next claim that if the
adversary can distinguish a simulated Game C from a real Game C, we can
use this adversary to break the underlying encryption scheme. To see this, note
that in the simulated game, if the adversary ever presents one of the dummy
ciphertexts for decryption in stage C4, with label x' ~ x, then we do not have
to give the underlying decryption algorithm for E the ciphertext, since the de-
cryption algorithm D would almost certainly refuse to give the adversary the
cleartext anyway. Then, using a standard argument, the adversary could be used
to distinguish an encryption of (0, Ha(x)) from an encryption of (s', H3(x)), thus
breaking the underlying encryption scheme.

A p p e n d i x C: P r o o f o f T h e o r e m 3

Completeness is clear. To prove fairness, we start with an adversary that can
win Game A. Consider first the case where A is the honest player, and call the
adversary B*.

We begin by defining a truncated version of Game A, call it Game A ~, defined
by the following two early-stopping rules:

(1) Suppose that F4 has just completed with A accepting the proof in verifiable
encryption protocol. Then we stop the game at this point, and say that B*
loses.

(2) Suppose that A has begun to engage in the encryption protocol in E3 with a
given label, and A has not executed the abort sub-protocol. If these conditions
hold, and B* sends a request to T for B-resolve with arguments that yield a
matching label, we stop the game just before T responds, and say B* loses.

We claim that if B* can win Game A, then he can also win Game A ~. To
see why, consider stopping rule (1). Once A accepts the verifiable encryption,

605

it is effectively inevitable that A would obtain SB, and hence ~B, in Game A:
either directly in step E6, or via sub-protocol A-resolve. In the latter case, since
f is one-way, the adversary cannot block the A-resolve by having an abort tuple
placed in S via sub-protocol abort.

Now consider stopping rule (2). Since A has not aborted the transaction (and
only A can do this as f is one-way), then performing the B-resolve in Game A
would result in a deposit tuple being placed on S that contains an inverse of SB.
Then A will eventually get sB, and hence aB, either from B* directly in step E6,
or from T via abort or A-resolve, which again B* cannot prevent since it cannot
invert v.

So assume B* can win Game A(We now make another transformation: we
replace the A's prover in the verifiable encryption protocol in E3 (and any ran-
dom hash functions) with the corresponding zero-knowledge simulator. Because
of the way we truncated Game A, we are guaranteed that T's decryption function
will never be called with a matching label at any time after the prover starts.

Call this Game A". By the zero-knowledge property, it follows that B* can
also win Game A". Moreover, when we play Game A" against the adversary,
we do not need the SA output from the reduction algorithm to run the prover
simulation, and it is not in the adversary's view, so we can drop it altogether.
The result is an adversary that breaks the supposed secrecy of A's reduction
scheme.

That concludes the proof for the case where A is the honest player. Now
assume B is the honest player, and call the adversary A*. We use a very similar
argument. We first define a truncated Game A' via three early-stopping rules:

(1) If A* sends B a valid inverse in El, we stop, and say that A* loses.
(2) If B has completed step B , accepting the proof in the verifiable encryption,

and A* has not performed a successful abort with v, and then A* performs
an A-resolve with v, then we stop the game just before T responds, and say
that A* loses.

(3) If B has just accepted the proof E3, but A* has already performed a suc-
cessful A-resolve with v, then we stop, and say that A* loses.

As before, we show that if A* can win Game A, it can also win Game A'.
Clearly, if we stop on rule (1), then in Game A, B would recover ~rA, and so A*
would lose. Also, if we stop on rules (2) or (3), then in Game A, T would add a
no-abort tuple that would prevent A* from aborting the transaction at any point
in the future, thus allowing B to obtain SA, and hence trA, via B-resolve should
it need to. The rest of the proof goes exactly the same, mutat i s mutandis , as in
the case above where A was honest.

R e f e r e n c e s

1. N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange.
In 4th ACM Con]erence on Computer and Communication Security, pages 6-17,
1997.

606

2. N. Asokan, V. Shoup, and M. Waldner. Optimistic fair exchange of dig-
ital signatures. IBM Research Report RZ 2973, available on-line at
www. cs . wisc . edu/ -shoup, 1997.

3. N. Asokan, V. Shoup, and M. Waidner. Asynchronous protocols for optimistic
fair exchange. In Prdc. IEEE Symp. on Research in Security and Privacy, 1998.
Available on-line at www. cs . wisc. edu/-shoup.

4. M. Bellare and S. Goldwasser. Encapsulated key escrow. Preprint, 1996.
5. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for design-

ing efficient protocols. In First A CM Conference on Computer and Communica-
tions Security, 1993.

6. M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Advances in
Cryptology--Crypto '94, pages 92-111, 1994.

7. S. Brands. Untraceable off-line cash in wallets with observers. In Advances in
Cryptology-Crypto '93, pages 302-318, 1993.

8. H. Biirk and A. Pfitzmann. Value exchange systems enabling security and unob-
servabifity. Computers and Security, 9:715-721, 1990.

9. D. Chaum and T. Pederson. Wallet databases with observers. In Advances in
Cryptology-Crypto '92, pages 89-105, 1992.

10. B. Cox, J. D. Tygar, and M. Sirbu. NetBill security and transaction protocol. In
First USENIX Workshop on Electronic Commerce, pages 77-88, 1995.

11. R. H. Deng, L. Gong, A. A. Lazar, and W. Wang. Practical protocols for certified
electronic mail. J. of Network and Systems Management, 4(3), 1996.

12. A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification
and signature problems. In Advances in Cryptology--Crypto '86, pages 186-194,
1986.

13. M. K. Franklin and M. K. Reiter. Verifiable signature sharing. In Advances ~n
Cryptology-Eurocrypt '95, pages 50-63, 1995.

14. M. K. Franklin and M. K. Reiter. Fair exchange with a semi-trusted third party.
In 4th ACM Conference on Computer and Communicatsons Security, pages 1-5,
1997.

15. L. Guillou and J. Quisquater. A "paradoxical" identity-based signature scheme
resulting from zero-knowledge. In Advances in Cryptology-Crypto '88, pages 216-
231, 1988.

16. D. W. Kravitz. Digital signature algorithm, 1993. U. S. Patent No. 5,231,668.
17. C. H. Lim and P. J. Lee. More flexible exponentiat ion with precomputation. In

Advances in Cryptology-Crypto '94, pages 95-107, 1994.
18. S. Micali. Certified e-mail with invisible post offices. Unpublished manuscript,

1997 (presented at the 1997 RSA Security Conference).
19. H. Ong and C. Schnorr. Fast signature generation with a Fiat Shamir-like scheme.

In Advances in Cryptology-Eurocrypt '90, pages 432-440, 1990.
20. C. Rackoff and D. Simon. Noninteractive zero-knowledge proof of knowledge and

chosen ciphertext attack. In Advances in Cryptology-Crypto '91, pages 433-444,
1991.

21. R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, pages
120-126, 1978.

22. C. Schnorr. Efficient signature generation by smart cards. J. Cryptology, 4:161-
174, 1991.

23. V. Shoup. Lower bounds for discrete logarithms and related problems. In Advances
in Cryptology-Eurocrypt '97, 1997.

