
Adapting Function Points to Object Oriented 
Information Systems* 

G. Antoniol 1, F. Calzolari 1, L. Cristoforetti  1, R. Fiutem 1 and G. Caldiera 2 

1 I.T.C.-I.R.S.T., Via alla Cascata, 1-38050 Povo (Trento), Italy 
tel. +39 461 314-444 

e-mail : antoniol, calzolar, cristofo, fiutem@irst, itc. it 

University of Maryland, Dept. of Computer Science, 
College Park, Maryland 20742, USA 

tel. § 301 405-2707 
e-mail: gcaldiera@cs.umd.edu 

Abstract .  The object oriented paradigm has become widely used to 
develop large information systems. This paper presents a method for 
estimating the size and effort of developing object oriented software. The 
approach is analogous to function points, and it is based on counting rules 
that pick up the elements in a static object model and combine them in 
order to produce a composite measure. Rules are proposed for counting 
"Object Oriented Function Points" from an object model, and several 
questions are identified for empirical research. 
A key aspect of this method is its flexibility. An organization can experi- 
ment with different counting policies, to find the most accurate predictors 
of size, effort, etc. in its environment. 
"Object Oriented Function Points" counting has been implemented in a 
J a ~  tool, and results on size estimation obtained from a pilot project 
with an industrial partner are encouraging. 

Keywords:  Object oriented design metrics, function points, size esti- 
mation. 

1 Introduction 

C o s t  a n d  effor t  e s t ima t ion  is an i m p o r t a n t  a spec t  of  t h e  m a n a g e m e n t  o f  

so f t wa r e  d e v e l o p m e n t  pro jec t s  and it  could  be  a c r i t i ca l  p o in t  for  c o m -  
p l e x  i n f o r m a t i o n  sys tems.  Exper ience  shows how diff icul t  is to  p r o v i d e  
an  a c c u r a t e  es t imat ion:  in l i t e ra ture  [18] an  average  e r r o r  of  100% is con-  

s i de r e d  t o  be  "good" and  an average er ror  of  32% to  b e  " o u t s t a n d i n g " .  
M os t  r e sea rch  on es t imat ing  size and  effor t  has  dea l t  w i t h  t r a d i t i o n a l  
a p p l i c a t i o n s  a nd  t rad i t iona l  software d e v e l o p m e n t  p rac t i ces ,  whi le  few 
works  ha ve  been  e x p e r i m e n t e d  for ob jec t  o r i en ted  ( O O )  so f tware  deve l -  

o p m e n t .  

This research was funded by SODALIA Spa, Trento, Italy under Contract n. 346 
between SODALIA and Istituto Trentino di Cultura, Trento, Italy. 



60 

This paper presents a method for estimating the size and development 
effort of object oriented software, supported by a tool, implemented in 
Java. The proposed approach, that  we call "Object Oriented Function 
Points" (OOFP), is based on an adaptation for object oriented paradigm 
of the classical Function Point (FP) methodology [2]. 
As shown in Figure 1, we will measure Object Oriented Function Points, 
and correlate them with actual system size and development effort to 
identify estimation models tailored for a specific environment.  One of 
the advantages of this approach is tha t  different est imation models can 
be developed for different stages of a software project, as soon as the 
software artifact becomes more detailed while the project goes on. 
The OOFP_Counter, the Java tool that  implements the  proposed ap- 
proach, provides a way to finely tune the counting rules by setting several 
parameters related to which counting policy is bet ter  sui ted for a given 
software project. 

This paper is organized as follows: Section 2 explains how we map main 
concepts of function points to object oriented software. The rules for 
counting Object Oriented Function Points are then described in Sec- 
tion 3, with emphasis on different counting policies tha t  can be adopted. 
Section 4 presents the OOFP_Counter, the tool developed to automatize 
the counting process. This tool has been used to produce results for an 
industrial pilot project, focused on size estimation, reported in Section 5. 
Finally, conclusions are drawn. 

2 Object Oriented Function Points  

Since they have been proposed in 1979 [1], function points (FP) have 
become a well known and widely used software metric. Despite some 
concerns [10, 11, 12, 17], practitioners have found FPs to be useful in 
the data processing domain, for which they were invented. 
Function points are available at the specification phase since they are 
based on the user's view of software functionality. FPs are generally con- 
sidered to be independent from the technology used to implement the 
solution. The key features of function points are tha t  they are available 
early, and they are a measure of the problem independent  from any par- 
ticular implementation. The International Function Point Users Group 
(IFPUG) publishes guidelines to standardize their definition [6]. 
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Fig.  1. Measures in the software development process. 

Several variants have been proposed to extend FPs use to other domains 
(see [5] for a survey). Since OO paradigm had become widely adopted to 
design large information systems, different at tempts have been proposed 
to adapt function points concepts to object oriented software, in order to 
exploit the understanding gained with function points in their traditional 
domain. 

In the object oriented approach, an object model uses classes and their 
inter-relationships to represent the structure of a system. While the de- 
velopment proceeds the object model evolves: in addition to the problem- 
related classes, the model includes design- and implementation-oriented 
classes with new inheritance relationships. These changes do not con- 
cern the user, but reflects the developer's view of the system. A measure 
derived from the object model should be now a better predictor of de- 
velopment size and effort. 

The OOFP approach enables a smooth transition from the user's view to 
the developer's view, and the same methodology can be used to measure 
the object model at each stage, as shown in Figure 1. 

2 .1  M a p p i n g  f u n c t i o n  p o i n t s  t o  o b j e c t  o r i e n t e d  s o f t w a r e  

Object model, dynamic model, and functional model may be used to 
represent information about object oriented software [14]. The object 
model is usually the first to be developed, and it is the only one that  de- 
scribes the system using specifically object-oriented concepts. We focus 
our attention to object model to map traditional FP concepts to OOFP, 
translating logical files and transactions to classes and methods. A Logi- 
cal File (LF) in the function point approach is a collection of related user 
identifiable data. Since a class encapsulates a collection of data items, 
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it seems to be the natural candidate for mapping logical files into the 
OO paradigm. Objects that are instances of a class in the OO world 
correspond to records of a logical file in data processing applications. 

In the FP method the application boundary identifies Internal Logical 
Files (ILFs) (logical files maintained by the application) and External 
Interface Files (EIFs) (referenced by the application but  maintained by 
other applications). In the 0 0  counterpart, we could consider external 
classes encapsulating non-system components, such as other applications, 
external services, and library functions. Classes within the application 
boundary correspond to ILFs. Classes outside the application boundary 
correspond to EIFs. In the OO paradigm operations are performed by 
methods (which are usually at a more fine-grained level than transac- 
tions). Since object models rarely contain the information needed to tell 
whether  a method performs an input or an output or is dealing with an 
enquiry, we simply treat them as generic Service Requests (SRs), issued 
by objects to other objects to delegate some operations. 

Issues such as inheritance and polymorphism affect the structure of the 
object model, and how the model should be counted. This problem will 
be addressed in Section 3.1. 

2 .2  R e l a t e d  w o r k  

Several authors have proposed methods for adapting function points to 
object oriented software. In [15] classes are treated as files, and services 
delivered by objects to clients as transactions, while in [19] each class 
is considered as an internal file, and messages sent across the system 
boundary are treated as transactions. Sneed [16] proposed object points 
as a measure of size for OO software. Object points are derived from the 
class structures, the messages and the processes or use cases, weighted 
by complexity adjustment factors. 
A draft proposal by IFPUG [7] treats classes as files, and methods as 
transactions. Fetcke [3] defines rules for mapping a "use case" model [9] 
to concepts from the IFPUG Counting Practices manual,  but no at tempt 
has been made to relate the results to other metrics, such as traditional 
function points, lines of code, or effort. 

The key aspect of our approach is its flexibility. For example, Fetcke [3] 
defines that aggregation and inheritance should be handled in a partic- 
ular way. We define several options (one of which is Fetcke's approach) 
and leave it to the user to experiment which parameter  settings produce 
the most accurate predictors of size, effort, etc. in its environment. Thus 
we have a method which can be tailored to different organizations or 
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environments. Moreover, the measurement is not affected by subjective 
ratings of complexity factors, like those introduced in classical function 
point analysis. 
Finally, the OOFP_Counter will automatically count OOFPs,  for a given 
setting of parameters. 

3 Measurement  Proces s  

OOFPs are assumed to be a function of objects comprised in a given 
object model D (D can be that  produced at design stage or extracted 
from the source code) and they can be calculated as: 

where: 

OOFP = OOFPILF + OOFPEIF -b OOFPsR 

OOFPxLF ---- ~ WILF(DETo, RETo) 
oE A  

OOFPEIF = ~ W~LF(DETo, RETo) 
of~A 

OOFPsn = ~ Wsn(DETo, FTRo) 
oEA 

A denotes the set of objects belonging to the application considered and 
o is a generic object in D. Dets, Rets and Ftrs are elementary measures 
to be calculated on LFs and SRs and used to determine their complexity 

0 0 1 ~  

In 

i 

I 

Fig.  2. OOFP computation process. 
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through the complexity matrixes W. Such meaasures are further detailed 
in Sections 3.2 and 3.3. 
Counting OOFPs is a four steps process: 

1. The object model is analyzed to identify the units that  are to be 
counted as logical files. 

2. The complexity of each logical file and service request is determined. 
Structural items are mapped to complexity levels of low, average, or 
high. 

3. The complexity scores are translated into values. 
4. The values are summed to produce the final OOFP result. 

Figure 2 outlines the counting process. The counting rules used in these 
steps are described in Sections 3.1 to 3.3, while Section 4.1 explores the 
effect of counting classes in different ways. 

3 .1  I d e n t i f y i n g  log i ca l  files 

Classes are generally mapped into logical files. However, relationships 
between classes (aggregations and generalization/specializations in par- 
ticular) can sometimes require to count a group of classes as a single 
logical file. Different choices of how to deal with aggregations and gen- 
eralization/specialization relationships lead to different ways to identify 
logical files. In what follows we are going to present the four different 
choices we identified: a simple example taken from [4] will support ex- 
planation. 

1. S ing le  Class: count each separate class as a logical file, regardless 
of its aggregation and inheritance relationships (Figure 3). 

2. Aggrega t i ons :  count an entire aggregation structure as a single 
logical file, recursively joining lower level aggregations (Figure 4). 

3. G e n e r a l i z a t i on / Spec l a l l z a t i on :  given an inheritance hierarchy, 
consider as a different logical file the collection of classes comprised 
in the entire path from the root superclass to each leaf subclass, i.e. 
inheritance hierarchies are merged down to the leaves of the hierar- 
chy (Figure 5). 

4. Mixed :  combination of option 2 and 3 (Figure 6). 

Merging superclasses into subclasses makes intuitive sense. It seems right 
to count leaf classes, with their full inherited structure, since this is how 
they are instantiated. 
Dividing a user-identifiable class into an aggregation of sub-classes is an 
implementation choice. Thus from the point of view of the function point 
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Fig. 3. Single class ILFs. 

Fig. 4. Aggregations ILFs. 

measurement philosophy, the OOFP value should not be affected. From 
this perspective, the aggregation structure should be merged into a single 
class and counted as a single logical file. 
Merging aggregations or not seems to depend on whether the user's or de- 
signer's perspective is chosen. However, a hybrid solution can be adopted 
as well, flagging on the design which aggregations must be considered as 
a unique entity and thus must be merged. 

3 .2  C o m p l e x i t y  o f  L o g i c a l  F i l e s  

For each logical file it is necessary to compute the number  of DETs 
(Data Element Types) and RETs (Record Element Types). Counting 
rules depend on whether it is a simple logical file, corresponding to a 
single class, or a composite logical file, corresponding to a set of classes. 
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For simple logical files: 

- One R E T  is counted for the logical file as a whole, because it repre- 
sents a "user recognizable group of logically re la ted da ta"  [6]. 

F ig .  5. Generalization/Specialization ILFs. 

Fig.  6. Mixed ILFs. 

- Simple attributes,  such as integers and strings, are considered as 
DETs ,  as they are a "unique user recognizable, non-recursive field 
of the  ILF or EIF" [6]. 

- Complex  at tr ibutes are counted as RETs.  A complex a t t r ibu te  is 
one whose type is a class (i.e. "a user recognizable subgroup of d a t a  
e lements  within an ILF or EIF" [6]) or a reference to another  class. 

- A single-valued association is considered as a D E T  ( I F P U G  suggests 
count ing a DET for each piece of da ta  tha t  exists because the  user 
requires a relationship with another  ILF or EIF  to be maintained[6]).  

- A multiple-valued association is considered as a RET,  because an 
entire  group of references to objects is main ta ined  in one a t t r ibute .  

- Aggregations are treated simply as associations. 
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For composite logical files: 
- Using the rules for simple logical files, except for the handling of 

aggregations, DETs and RETs are counted separately for each class 
within the composite. 

- In a composite logical file aggregations represent a subgroup. One 
RET,  assigned to the container class, is counted for each aggregation, 
whatever its cardinality. One more RET is also counted for the logical 
file as a whole. 

- The individual DETs and RETs are summed to give an overall total 
for the composite logical file. 

When  the DETs and RETs of a logical file have been counted, tables 
(derived from those given in the IFPUG Counting Practices Manual 

Release 4.0 [6] for ILFs and EIFs) are used to classify it as having low, 
average, or high complexity. 

3.3 C o m p l e x i t y  o f  S e r v i c e  R e q u e s t s  

Each method in each class is considered: abstract methods are not counted. 
while concrete methods are only counted once (in the class in which they 
are declared), even if they are inherited by several subclasses. 
If a method is to be counted, the data types referenced in it are classified 
as simple items (analogous to DETs in traditional function points) for 
simple data items referenced as arguments of the method,  and complex 
items (analogous to File Types Referenced (FTRs) in tradit ional function 
points) for complex arguments [2]. 
Again tables axe used to classify the method as having low, average, 
or high complexity. Notice that  sometimes the signature of the method 
provides the only information on DETs and FTRs. In such a case, the 
method is assumed to have average complexity. 

3 . 4  A n  E x a m p l e  

The counting procedure for each individual class gives the DETs and 
RETs shown in Fignre 7, while Table 1 shows ILF and SR contribution 
to OOFP counting. Since service requests (methods) are only counted 
once, it does not matter how the classes are aggregated into logical files. 
Because the signatures are unknown for the methods in the example, 
each method is assumed to have average complex_ity. 
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Fig. 7. DET/RET computation for LFs on the example system. 

Values in third and fifth columns show the results of applying IFPUG 
4.0 complexity tables with each variant. The value 7 is ra ted  as Low and 
it is weighted 4. For more details about how counting rules have been 
applied the interested reader could refer to [2]. 

ILF ILF OOFP SR SR OOFP Total OOFF 
Single Class 5 35 7 28 63 
Aggregation 4 28 7 28 56 
Generalization/Specialization 4 28 7 28 56 
Mixed 3 21 7 28 49 

Table 1. ILF and SR complexity contribution. 

The highest OOFP count comes when each class is counted as a sin- 
gle ILF. All the other variants have the effect of reducing the OOFP 
value, as they reduce the number of ILFs. Although there is an increase 
in DETs/RETs  in the merged ILFs, it is not enough to raise the ILF 
complexity to higher values. 
For this example, and for the pilot project that  will be presented in 
Section 5, the complexity of each ILF and SR are always determined to 
be low. The tables used to determine complexity are based on those from 
the IFPUG Counting Practices Manual [6], in which quite large numbers 
of RETs and DETs are needed to reach average or high complexit3" (for 
example, to obtain an average complexity weight an ILF needs a DET 
value between 20 and 50 and a RET value between 2 and 5). On the data  
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available to us so far, we suspect that recalibration of the OOFP tables 
for logical files might improve the accuracy of OOFP as a predictor of 
size, but further experimentation is needed on this topic. 

4 The  OOFP_Counter  Tool  

We have developed the OOFP_Counter tool, presented in Figure 8, to 
automate the OOFP counting process. This tool has been implemented 
using Java. 
The OOFP_Counter inputs Abstract Object Language (AOL) specifi- 
cation of the object oriented model. AOL is a general-purpose design 
description language capable of expressing concepts of OO design. It  has 
been adopted in order to keep the tool independent of the specific CASE 
tool used. AOL is based on the Unified Modeling Language [13], which 
represents de facto a standard in object oriented design. 
The OOFP_Counter tool parses AOL specification and produces an ab- 
stract syntax tree representing the object model. The parser also resolves 
references to identifiers, and performs some simple consistency checking 
(e.g. names referenced in associations have been defined). 
To improve portability, the AOL parser and the OOFP counter, the  two 
parts of the OOFP_Counter tool have been implemented in Jax~a. 
For the project presented in Section 5, OMT/STP [8] has been used as 
CASE tool; an automatic translator to convert from OMT/STP output  
to AOL specifications has been implemented. 

i o o ,  

OCFP Coun~r 

Fig. 8. The OOFP_Counter tool. 
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4 . 1  P a r a m e t e r s  S e t t i n g  

The OOFP_Counter works on the abstract syntax tree and implements 
the OOFP Counting Rules described in section 3. It is possible to set 
several parameters, that may influence the counting policy: 

- ILF counting strategy (see Section 3.1) 
- External classes inclusion 
- Private methods counting; 
- Private attributes counting; 
- Values of DET, RET, and FTP~ thresholds between low, average, 

and high complexity. 

Parameter setting might be guided by some philosophy. For example, 
from a traditional function point perspective one would wish to count 
only user-visible abstractions, ignoring all implementat ion aspects. This 
might mean selecting the Mixed strategy for grouping classes into logical 
files, counting only those methods which are publicly visible and re- 
lated to classes at the system boundary, and giving full weight to classes 
whether they are reused or not. 
From a designer's point of view, one might want to take account of all 
implementation details, in an a t tempt  to get an accurate estimate of 
development effort. This might mean counting each class as a separate 
logical file, including all methods and attributes, and reducing the weight 
given to reused classes. 
Different parameter settings could be tried on a purely experimental 
basis in order to identify that  company specific profile that  gives the 
best overall performance for estimating size or effort. 

5 An Industrial Case Study 

The described methodology has been applied in an industrial environ- 
ment. Our first study is of the relationship between the OOFP measure 
of a system and its final size in lines of code (LOC), measured as the 
number  of non-blank lines, including comments. Size estimation is im- 
portant ,  since it is needed for most effort estimation models, thus we can 
make use of existing models that relate size to effort. 
Eight completed (sub-)systems were measured, for which both an OO 
design model and the final code were available. All were developed in 
the same environment, using the C + +  language. Table 2 shows the size 
of each system, spreading from about 5,000 to 50,000 lines of code. 



71 

Table 2 also shows the OOFP count for each system, using each of the 
four different strategies for identifying logical files. 

System LOC Single Class Aggregation 
(SC) (AB) 

A 5089 63 
B 6121 476 
C 15031 284 
D 16182 1071 
E 21335 562 
F 31O11 518 
G 42044 1142 
H 52505 2093 

63 
469 
284 

1057 
513 
403 

1100 
1947 

Generalization Mixed 
(GB) (MB) 

35 35 
462 455 
270 270 

1057 1043 
548 499 
483 368 

1124 1072 
1872 1737 

Tab le  2. System sizes and OOFPs.  

The  four OOFP series are strongly correlated each other, with all corre- 
lations within the .992 - .998  range (Pearson), the  lowest corresponding 
to SC vs MB. As shown in Table 2, differences between the  me thods  
become appreciable only for the projects with large LOC values. 
Several regression techniques were considered to model  the  L O C - O O F P  
association. Given the reduced size of the database, a leave-one-out cross- 
validation procedure was used to achieve unbiased est imates of predictive 
accuracy for the different models. Model error was expressed in te rms  of 
normal i zed  mean  squared error (NMSE): each model  was t ra ined on n -  1 
points  of the data base L (sample size is currently n = 8) and tes ted on 
the  withheld datum; NMSE is obtained over L normalizing over the 
sample variance of the observed values (#~ = m e a n ( y ) ) .  

The  small size of the database and a l imited knowledge of LOC mea- 
sures validity required the use of simple models capable to handle  non 
obvious outliers in the response variable LOC. In this study, the  basic 
least squares linear fit was compared with resistant techniques. Regres- 
sion estimates based on least square minimization are in fact sensitive 
to outliers in the response variable when the  error dis tr ibut ion is not 
Gaussian. Robust regression techniques may improve the  least-squares 
fit and handle model inadequacies due to unusual  observations. 
First  linear models (1ms) based on the minimization of the  sum of squares 
of the residuals were developed for each ILF selection method .  Least ab- 
solute deviation, based on L1 error was also applied (11s) . The  regressor 
is build minimizing the sum of the absolute values of the  residuals to re- 
sist the effect of large error values. 
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Method N M S E N M A E  /~2 bo bl 
lm-SC 0.391 0.661 0.730 7992.5 23.0 
lm-SC-1 0.539 0.811 0.901 0000.0 29.4 
lm-AB 0.434 0.656 0.691 8504.7 23.8 
lm-GB 0.380 0.601 0.728 7435.1 25.2 
lm-MB 0.464 0.681 0.680 8187.4 25.8 

ll-SC 0.547 0.812 - 9139.1 21.58 
ll-AB 0.629 0.855 - 8601.1 23.48 
l l-GB 0.389 0.693 - 8688.4 24.36 
ll-MB 0.457 0.734 - 8083.0 26.61 

rreg-SC 0.399 0.672 - 7875.2 23.0 
rreg-AB 0.431 0.661 - 8255.3 24.0 
rreg-GB 0.368 0.599 - 7331.7 25.5 
rreg-MB 0.443 0.664 - 7861.9 26.4 

rlm-SC 0.402 0.670 - 8001.9 23.0 
rlm-SC-1 0.633 0.860 - 0000.0 29.3 
rlm-AB 0.440 0.660 - 8517.5 23.8 
r l m - G B  0.377 0.600 - 7521.5 25.6 
rlm-MB 0.456 0.676 - 8161.6 26.3 

Table 3. Model performance for linear regressors (lms and l ls )  and robustified methods 
(rregs and rhns). The normalized mean squared error (NMSE) and the normalized 
mean absolute error (NMAE) are estimated by cross-validation. 

A family of M-estimators was therefore considered ( r r e g s  and r lms) .  

The basic idea of M-smoothers is to control the  influence of outliers by 
the use of a non-quadratic local loss funct ion which gives less weight 
to "extreme" observations. Non-linear modell ing was also a t t empted ,  
expecting instability and lack of convergence due to the  sample size. 

Est imated model accuracy for each model ~ = bo + b lx  of each exper- 
imented family is collected in Table 3, paramet r ized  over ILF  selection 
methods and type of regressor. The model coefficients bo and  bl are indi- 
cated as computed from the full da ta  set. Es t ima ted  R-squared measure 
is also included for the linear models for comparison with  other  results 
separately obtained on these data. 
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A point of concern is the inclusion of an intercept  t e rm bo in model: 
it is reasonable to suppose the existence of suppor t  code unreferred to 

Method NMSE Comments  
rreg-default-GB 0.368 - 
rreg-andrews-GB 0.367 - 
rreg-bisquare-GB 0.367 - 
rreg-fair-GB 0.480 converged after 50 steps) 
rreg-hampel-GB 0.381 - 
irreg-huber-GB 0.378 - 
rreg-logistic-GB 0.357 c = 1.25 
r r eg - log l s t l c -GB-0 .8  0.337 c = 0.80 
rreg-talworth-GB 0.380 - 
rreg-welsch-GB 0.380 - 

Table 4. Model performances for different weighting functions of the M-estimator rreg. 
Results are given for the GB selection method only. 

the  functionalities being counted, and prediction is improved whi th  the  
term.  However, the intercept term is not significant in a non-predictive 
fit of the  data. More important,  the fact that  the intercept t e rm is alw~.s 
larger t han  the first LOC value might indicate poor fit for small O O F P  
values. I t  would be interesting to apply a Bayesian procedure  to select 
the  intercept from given priors. 
The  est imates for different weighting functions of the  M-est imator  are 
listed in Table 4. 
The  best  predictive accuracy (NMSE= 0.337) was achieved by the  rreg- 
logistic-GB model with tuning parameter u -- .8, corresponding to the  
linear predictor LOC --" 7183.4 + 25.6 GB. 
As shown in Figure 9, the rreg-logistic-GB model is very close to the  
basic linear model lm-GB, whose equation is L O C  = 7435.1 + 25.2 GB.  
As the GB method  is consistently better for all models and for bo th  the  
predictive error measures NMSE and NMAE, these results indicate tha t  
t he  choice of ILF selection method may influence prediction. Lowess, 
supersmoother  and predictive splines have been also tes ted and showed 
instabili ty of convergence due to the small sample size. 
Al though more experimental work is needed, obtained results are en- 
couraging for size estimation. 
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6 Conclus ions  

This paper  shows how the concepts of function points can be applied to 
object  oriented software. 
We presented a methodology for estimating the size and effort of object  
oriented software. The method is based on an adapta t ion of t radi t ional  
function points to object oriented paradigm. Mapping from FP concepts 
to OO concepts have been defined, and the OOFPs  counting process 

LOC = 7163.4 + 25.6 GB j 

i i t I J 
0 500 1000 1500 

GB 

Fig. 9. The rreg-logistic-GB model (c=0.8) compared with the linear model lm-GB. 

has been described. The OOFP_Counter  tools has been developed to 
automate  the counting process. Results obtained from a pilot s tudy in 
an industrial environment have been reported.  
The results for size estimation are encouraging, and  they  can be used 
with many effort estimation models. 
Future work will investigate the  effect of recalibrating the  complexity 
tables and analyzing the statistical correlation between the  collected 
measeres (DETs, RETs, FTRs)  and program size. Other  relationships, 
beyond just OOFP and code size, will be studied; those between OOFP 
and traditional FP, and O O F P  versus effort, are of par t icular  interest. 
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