
Adapting Function Points to Object Oriented
Information Systems*

G. Antoniol 1, F. Calzolari 1, L. Cristoforetti 1, R. Fiutem 1 and G. Caldiera 2

1 I.T.C.-I.R.S.T., Via alla Cascata, 1-38050 Povo (Trento), Italy
tel. +39 461 314-444

e-mail : antoniol, calzolar, cristofo, fiutem@irst, itc. it

University of Maryland, Dept. of Computer Science,
College Park, Maryland 20742, USA

tel. § 301 405-2707
e-mail: gcaldiera@cs.umd.edu

Abstract . The object oriented paradigm has become widely used to
develop large information systems. This paper presents a method for
estimating the size and effort of developing object oriented software. The
approach is analogous to function points, and it is based on counting rules
that pick up the elements in a static object model and combine them in
order to produce a composite measure. Rules are proposed for counting
"Object Oriented Function Points" from an object model, and several
questions are identified for empirical research.
A key aspect of this method is its flexibility. An organization can experi-
ment with different counting policies, to find the most accurate predictors
of size, effort, etc. in its environment.
"Object Oriented Function Points" counting has been implemented in a
J a ~ tool, and results on size estimation obtained from a pilot project
with an industrial partner are encouraging.

Keywords: Object oriented design metrics, function points, size esti-
mation.

1 Introduction

C o s t a n d effor t e s t ima t ion is an i m p o r t a n t a spec t of t h e m a n a g e m e n t o f

so f t wa r e d e v e l o p m e n t pro jec t s and it could be a c r i t i ca l p o in t for c o m -
p l e x i n f o r m a t i o n sys tems. Exper ience shows how diff icul t is to p r o v i d e
an a c c u r a t e es t imat ion: in l i t e ra ture [18] an average e r r o r of 100% is con-

s i de r e d t o be "good" and an average er ror of 32% to b e " o u t s t a n d i n g " .
M os t r e sea rch on es t imat ing size and effor t has dea l t w i t h t r a d i t i o n a l
a p p l i c a t i o n s a nd t rad i t iona l software d e v e l o p m e n t p rac t i ces , whi le few
works ha ve been e x p e r i m e n t e d for ob jec t o r i en ted (O O) so f tware deve l -

o p m e n t .

This research was funded by SODALIA Spa, Trento, Italy under Contract n. 346
between SODALIA and Istituto Trentino di Cultura, Trento, Italy.

60

This paper presents a method for estimating the size and development
effort of object oriented software, supported by a tool, implemented in
Java. The proposed approach, that we call "Object Oriented Function
Points" (OOFP), is based on an adaptation for object oriented paradigm
of the classical Function Point (FP) methodology [2].
As shown in Figure 1, we will measure Object Oriented Function Points,
and correlate them with actual system size and development effort to
identify estimation models tailored for a specific environment. One of
the advantages of this approach is tha t different est imation models can
be developed for different stages of a software project, as soon as the
software artifact becomes more detailed while the project goes on.
The OOFP_Counter, the Java tool that implements the proposed ap-
proach, provides a way to finely tune the counting rules by setting several
parameters related to which counting policy is bet ter sui ted for a given
software project.

This paper is organized as follows: Section 2 explains how we map main
concepts of function points to object oriented software. The rules for
counting Object Oriented Function Points are then described in Sec-
tion 3, with emphasis on different counting policies tha t can be adopted.
Section 4 presents the OOFP_Counter, the tool developed to automatize
the counting process. This tool has been used to produce results for an
industrial pilot project, focused on size estimation, reported in Section 5.
Finally, conclusions are drawn.

2 Object Oriented Function Points

Since they have been proposed in 1979 [1], function points (FP) have
become a well known and widely used software metric. Despite some
concerns [10, 11, 12, 17], practitioners have found FPs to be useful in
the data processing domain, for which they were invented.
Function points are available at the specification phase since they are
based on the user's view of software functionality. FPs are generally con-
sidered to be independent from the technology used to implement the
solution. The key features of function points are tha t they are available
early, and they are a measure of the problem independent from any par-
ticular implementation. The International Function Point Users Group
(IFPUG) publishes guidelines to standardize their definition [6].

61

Iystem Requirernents~._~ OO Analysis Definition ~ [j [

#FP #OOFP

USER <

OO Design }-~Implementation}

#OOFP Code

DESIGNER < ~ PROGRAMMER

Fig. 1. Measures in the software development process.

Several variants have been proposed to extend FPs use to other domains
(see [5] for a survey). Since OO paradigm had become widely adopted to
design large information systems, different at tempts have been proposed
to adapt function points concepts to object oriented software, in order to
exploit the understanding gained with function points in their traditional
domain.

In the object oriented approach, an object model uses classes and their
inter-relationships to represent the structure of a system. While the de-
velopment proceeds the object model evolves: in addition to the problem-
related classes, the model includes design- and implementation-oriented
classes with new inheritance relationships. These changes do not con-
cern the user, but reflects the developer's view of the system. A measure
derived from the object model should be now a better predictor of de-
velopment size and effort.

The OOFP approach enables a smooth transition from the user's view to
the developer's view, and the same methodology can be used to measure
the object model at each stage, as shown in Figure 1.

2 .1 M a p p i n g f u n c t i o n p o i n t s t o o b j e c t o r i e n t e d s o f t w a r e

Object model, dynamic model, and functional model may be used to
represent information about object oriented software [14]. The object
model is usually the first to be developed, and it is the only one that de-
scribes the system using specifically object-oriented concepts. We focus
our attention to object model to map traditional FP concepts to OOFP,
translating logical files and transactions to classes and methods. A Logi-
cal File (LF) in the function point approach is a collection of related user
identifiable data. Since a class encapsulates a collection of data items,

62

it seems to be the natural candidate for mapping logical files into the
OO paradigm. Objects that are instances of a class in the OO world
correspond to records of a logical file in data processing applications.

In the FP method the application boundary identifies Internal Logical
Files (ILFs) (logical files maintained by the application) and External
Interface Files (EIFs) (referenced by the application but maintained by
other applications). In the 0 0 counterpart, we could consider external
classes encapsulating non-system components, such as other applications,
external services, and library functions. Classes within the application
boundary correspond to ILFs. Classes outside the application boundary
correspond to EIFs. In the OO paradigm operations are performed by
methods (which are usually at a more fine-grained level than transac-
tions). Since object models rarely contain the information needed to tell
whether a method performs an input or an output or is dealing with an
enquiry, we simply treat them as generic Service Requests (SRs), issued
by objects to other objects to delegate some operations.

Issues such as inheritance and polymorphism affect the structure of the
object model, and how the model should be counted. This problem will
be addressed in Section 3.1.

2 .2 R e l a t e d w o r k

Several authors have proposed methods for adapting function points to
object oriented software. In [15] classes are treated as files, and services
delivered by objects to clients as transactions, while in [19] each class
is considered as an internal file, and messages sent across the system
boundary are treated as transactions. Sneed [16] proposed object points
as a measure of size for OO software. Object points are derived from the
class structures, the messages and the processes or use cases, weighted
by complexity adjustment factors.
A draft proposal by IFPUG [7] treats classes as files, and methods as
transactions. Fetcke [3] defines rules for mapping a "use case" model [9]
to concepts from the IFPUG Counting Practices manual, but no at tempt
has been made to relate the results to other metrics, such as traditional
function points, lines of code, or effort.

The key aspect of our approach is its flexibility. For example, Fetcke [3]
defines that aggregation and inheritance should be handled in a partic-
ular way. We define several options (one of which is Fetcke's approach)
and leave it to the user to experiment which parameter settings produce
the most accurate predictors of size, effort, etc. in its environment. Thus
we have a method which can be tailored to different organizations or

63

environments. Moreover, the measurement is not affected by subjective
ratings of complexity factors, like those introduced in classical function
point analysis.
Finally, the OOFP_Counter will automatically count OOFPs, for a given
setting of parameters.

3 Measurement Proces s

OOFPs are assumed to be a function of objects comprised in a given
object model D (D can be that produced at design stage or extracted
from the source code) and they can be calculated as:

where:

OOFP = OOFPILF + OOFPEIF -b OOFPsR

OOFPxLF ---- ~ WILF(DETo, RETo)
oE A

OOFPEIF = ~ W~LF(DETo, RETo)
of~A

OOFPsn = ~ Wsn(DETo, FTRo)
oEA

A denotes the set of objects belonging to the application considered and
o is a generic object in D. Dets, Rets and Ftrs are elementary measures
to be calculated on LFs and SRs and used to determine their complexity

0 0 1 ~

In

i

I

Fig. 2. OOFP computation process.

64

through the complexity matrixes W. Such meaasures are further detailed
in Sections 3.2 and 3.3.
Counting OOFPs is a four steps process:

1. The object model is analyzed to identify the units that are to be
counted as logical files.

2. The complexity of each logical file and service request is determined.
Structural items are mapped to complexity levels of low, average, or
high.

3. The complexity scores are translated into values.
4. The values are summed to produce the final OOFP result.

Figure 2 outlines the counting process. The counting rules used in these
steps are described in Sections 3.1 to 3.3, while Section 4.1 explores the
effect of counting classes in different ways.

3 .1 I d e n t i f y i n g log i ca l files

Classes are generally mapped into logical files. However, relationships
between classes (aggregations and generalization/specializations in par-
ticular) can sometimes require to count a group of classes as a single
logical file. Different choices of how to deal with aggregations and gen-
eralization/specialization relationships lead to different ways to identify
logical files. In what follows we are going to present the four different
choices we identified: a simple example taken from [4] will support ex-
planation.

1. S ing le Class: count each separate class as a logical file, regardless
of its aggregation and inheritance relationships (Figure 3).

2. Aggrega t i ons : count an entire aggregation structure as a single
logical file, recursively joining lower level aggregations (Figure 4).

3. G e n e r a l i z a t i on / Spec l a l l z a t i on : given an inheritance hierarchy,
consider as a different logical file the collection of classes comprised
in the entire path from the root superclass to each leaf subclass, i.e.
inheritance hierarchies are merged down to the leaves of the hierar-
chy (Figure 5).

4. Mixed : combination of option 2 and 3 (Figure 6).

Merging superclasses into subclasses makes intuitive sense. It seems right
to count leaf classes, with their full inherited structure, since this is how
they are instantiated.
Dividing a user-identifiable class into an aggregation of sub-classes is an
implementation choice. Thus from the point of view of the function point

65

Fig. 3. Single class ILFs.

Fig. 4. Aggregations ILFs.

measurement philosophy, the OOFP value should not be affected. From
this perspective, the aggregation structure should be merged into a single
class and counted as a single logical file.
Merging aggregations or not seems to depend on whether the user's or de-
signer's perspective is chosen. However, a hybrid solution can be adopted
as well, flagging on the design which aggregations must be considered as
a unique entity and thus must be merged.

3 .2 C o m p l e x i t y o f L o g i c a l F i l e s

For each logical file it is necessary to compute the number of DETs
(Data Element Types) and RETs (Record Element Types). Counting
rules depend on whether it is a simple logical file, corresponding to a
single class, or a composite logical file, corresponding to a set of classes.

66

For simple logical files:

- One R E T is counted for the logical file as a whole, because it repre-
sents a "user recognizable group of logically re la ted da ta" [6].

F ig . 5. Generalization/Specialization ILFs.

Fig. 6. Mixed ILFs.

- Simple attributes, such as integers and strings, are considered as
DETs , as they are a "unique user recognizable, non-recursive field
of the ILF or EIF" [6].

- Complex at tr ibutes are counted as RETs. A complex a t t r ibu te is
one whose type is a class (i.e. "a user recognizable subgroup of d a t a
e lements within an ILF or EIF" [6]) or a reference to another class.

- A single-valued association is considered as a D E T (I F P U G suggests
count ing a DET for each piece of da ta tha t exists because the user
requires a relationship with another ILF or EIF to be maintained[6]).

- A multiple-valued association is considered as a RET, because an
entire group of references to objects is main ta ined in one a t t r ibute .

- Aggregations are treated simply as associations.

67

For composite logical files:
- Using the rules for simple logical files, except for the handling of

aggregations, DETs and RETs are counted separately for each class
within the composite.

- In a composite logical file aggregations represent a subgroup. One
RET, assigned to the container class, is counted for each aggregation,
whatever its cardinality. One more RET is also counted for the logical
file as a whole.

- The individual DETs and RETs are summed to give an overall total
for the composite logical file.

When the DETs and RETs of a logical file have been counted, tables
(derived from those given in the IFPUG Counting Practices Manual

Release 4.0 [6] for ILFs and EIFs) are used to classify it as having low,
average, or high complexity.

3.3 C o m p l e x i t y o f S e r v i c e R e q u e s t s

Each method in each class is considered: abstract methods are not counted.
while concrete methods are only counted once (in the class in which they
are declared), even if they are inherited by several subclasses.
If a method is to be counted, the data types referenced in it are classified
as simple items (analogous to DETs in traditional function points) for
simple data items referenced as arguments of the method, and complex
items (analogous to File Types Referenced (FTRs) in tradit ional function
points) for complex arguments [2].
Again tables axe used to classify the method as having low, average,
or high complexity. Notice that sometimes the signature of the method
provides the only information on DETs and FTRs. In such a case, the
method is assumed to have average complexity.

3 . 4 A n E x a m p l e

The counting procedure for each individual class gives the DETs and
RETs shown in Fignre 7, while Table 1 shows ILF and SR contribution
to OOFP counting. Since service requests (methods) are only counted
once, it does not matter how the classes are aggregated into logical files.
Because the signatures are unknown for the methods in the example,
each method is assumed to have average complex_ity.

68

DET=I
RET=I

I
-'~ Room
~ roomNumbcr
| Enter
| SetSide
I C ~tsia~

DET=O DET=2
RET=2 RET=2

M a p S i t e

Ent~ '

DET--O DET=I
RET=I RET=I

Fig. 7. DET/RET computation for LFs on the example system.

Values in third and fifth columns show the results of applying IFPUG
4.0 complexity tables with each variant. The value 7 is ra ted as Low and
it is weighted 4. For more details about how counting rules have been
applied the interested reader could refer to [2].

ILF ILF OOFP SR SR OOFP Total OOFF
Single Class 5 35 7 28 63
Aggregation 4 28 7 28 56
Generalization/Specialization 4 28 7 28 56
Mixed 3 21 7 28 49

Table 1. ILF and SR complexity contribution.

The highest OOFP count comes when each class is counted as a sin-
gle ILF. All the other variants have the effect of reducing the OOFP
value, as they reduce the number of ILFs. Although there is an increase
in DETs/RETs in the merged ILFs, it is not enough to raise the ILF
complexity to higher values.
For this example, and for the pilot project that will be presented in
Section 5, the complexity of each ILF and SR are always determined to
be low. The tables used to determine complexity are based on those from
the IFPUG Counting Practices Manual [6], in which quite large numbers
of RETs and DETs are needed to reach average or high complexit3" (for
example, to obtain an average complexity weight an ILF needs a DET
value between 20 and 50 and a RET value between 2 and 5). On the data

69

available to us so far, we suspect that recalibration of the OOFP tables
for logical files might improve the accuracy of OOFP as a predictor of
size, but further experimentation is needed on this topic.

4 The OOFP_Counter Tool

We have developed the OOFP_Counter tool, presented in Figure 8, to
automate the OOFP counting process. This tool has been implemented
using Java.
The OOFP_Counter inputs Abstract Object Language (AOL) specifi-
cation of the object oriented model. AOL is a general-purpose design
description language capable of expressing concepts of OO design. It has
been adopted in order to keep the tool independent of the specific CASE
tool used. AOL is based on the Unified Modeling Language [13], which
represents de facto a standard in object oriented design.
The OOFP_Counter tool parses AOL specification and produces an ab-
stract syntax tree representing the object model. The parser also resolves
references to identifiers, and performs some simple consistency checking
(e.g. names referenced in associations have been defined).
To improve portability, the AOL parser and the OOFP counter, the two
parts of the OOFP_Counter tool have been implemented in Jax~a.
For the project presented in Section 5, OMT/STP [8] has been used as
CASE tool; an automatic translator to convert from OMT/STP output
to AOL specifications has been implemented.

i o o ,

OCFP Coun~r

Fig. 8. The OOFP_Counter tool.

70

4 . 1 P a r a m e t e r s S e t t i n g

The OOFP_Counter works on the abstract syntax tree and implements
the OOFP Counting Rules described in section 3. It is possible to set
several parameters, that may influence the counting policy:

- ILF counting strategy (see Section 3.1)
- External classes inclusion
- Private methods counting;
- Private attributes counting;
- Values of DET, RET, and FTP~ thresholds between low, average,

and high complexity.

Parameter setting might be guided by some philosophy. For example,
from a traditional function point perspective one would wish to count
only user-visible abstractions, ignoring all implementat ion aspects. This
might mean selecting the Mixed strategy for grouping classes into logical
files, counting only those methods which are publicly visible and re-
lated to classes at the system boundary, and giving full weight to classes
whether they are reused or not.
From a designer's point of view, one might want to take account of all
implementation details, in an a t tempt to get an accurate estimate of
development effort. This might mean counting each class as a separate
logical file, including all methods and attributes, and reducing the weight
given to reused classes.
Different parameter settings could be tried on a purely experimental
basis in order to identify that company specific profile that gives the
best overall performance for estimating size or effort.

5 An Industrial Case Study

The described methodology has been applied in an industrial environ-
ment. Our first study is of the relationship between the OOFP measure
of a system and its final size in lines of code (LOC), measured as the
number of non-blank lines, including comments. Size estimation is im-
portant , since it is needed for most effort estimation models, thus we can
make use of existing models that relate size to effort.
Eight completed (sub-)systems were measured, for which both an OO
design model and the final code were available. All were developed in
the same environment, using the C + + language. Table 2 shows the size
of each system, spreading from about 5,000 to 50,000 lines of code.

71

Table 2 also shows the OOFP count for each system, using each of the
four different strategies for identifying logical files.

System LOC Single Class Aggregation
(SC) (AB)

A 5089 63
B 6121 476
C 15031 284
D 16182 1071
E 21335 562
F 31O11 518
G 42044 1142
H 52505 2093

63
469
284

1057
513
403

1100
1947

Generalization Mixed
(GB) (MB)

35 35
462 455
270 270

1057 1043
548 499
483 368

1124 1072
1872 1737

Tab le 2. System sizes and OOFPs.

The four OOFP series are strongly correlated each other, with all corre-
lations within the .992 - .998 range (Pearson), the lowest corresponding
to SC vs MB. As shown in Table 2, differences between the me thods
become appreciable only for the projects with large LOC values.
Several regression techniques were considered to model the L O C - O O F P
association. Given the reduced size of the database, a leave-one-out cross-
validation procedure was used to achieve unbiased est imates of predictive
accuracy for the different models. Model error was expressed in te rms of
normal i zed mean squared error (NMSE): each model was t ra ined on n - 1
points of the data base L (sample size is currently n = 8) and tes ted on
the withheld datum; NMSE is obtained over L normalizing over the
sample variance of the observed values (#~ = m e a n (y)) .

The small size of the database and a l imited knowledge of LOC mea-
sures validity required the use of simple models capable to handle non
obvious outliers in the response variable LOC. In this study, the basic
least squares linear fit was compared with resistant techniques. Regres-
sion estimates based on least square minimization are in fact sensitive
to outliers in the response variable when the error dis tr ibut ion is not
Gaussian. Robust regression techniques may improve the least-squares
fit and handle model inadequacies due to unusual observations.
First linear models (1ms) based on the minimization of the sum of squares
of the residuals were developed for each ILF selection method . Least ab-
solute deviation, based on L1 error was also applied (11s) . The regressor
is build minimizing the sum of the absolute values of the residuals to re-
sist the effect of large error values.

72

Method N M S E N M A E /~2 bo bl
lm-SC 0.391 0.661 0.730 7992.5 23.0
lm-SC-1 0.539 0.811 0.901 0000.0 29.4
lm-AB 0.434 0.656 0.691 8504.7 23.8
lm-GB 0.380 0.601 0.728 7435.1 25.2
lm-MB 0.464 0.681 0.680 8187.4 25.8

ll-SC 0.547 0.812 - 9139.1 21.58
ll-AB 0.629 0.855 - 8601.1 23.48
l l-GB 0.389 0.693 - 8688.4 24.36
ll-MB 0.457 0.734 - 8083.0 26.61

rreg-SC 0.399 0.672 - 7875.2 23.0
rreg-AB 0.431 0.661 - 8255.3 24.0
rreg-GB 0.368 0.599 - 7331.7 25.5
rreg-MB 0.443 0.664 - 7861.9 26.4

rlm-SC 0.402 0.670 - 8001.9 23.0
rlm-SC-1 0.633 0.860 - 0000.0 29.3
rlm-AB 0.440 0.660 - 8517.5 23.8
r l m - G B 0.377 0.600 - 7521.5 25.6
rlm-MB 0.456 0.676 - 8161.6 26.3

Table 3. Model performance for linear regressors (lms and l ls) and robustified methods
(rregs and rhns). The normalized mean squared error (NMSE) and the normalized
mean absolute error (NMAE) are estimated by cross-validation.

A family of M-estimators was therefore considered (r r e g s and r lms) .

The basic idea of M-smoothers is to control the influence of outliers by
the use of a non-quadratic local loss funct ion which gives less weight
to "extreme" observations. Non-linear modell ing was also a t t empted ,
expecting instability and lack of convergence due to the sample size.

Est imated model accuracy for each model ~ = bo + b lx of each exper-
imented family is collected in Table 3, paramet r ized over ILF selection
methods and type of regressor. The model coefficients bo and bl are indi-
cated as computed from the full da ta set. Es t ima ted R-squared measure
is also included for the linear models for comparison with other results
separately obtained on these data.

73

A point of concern is the inclusion of an intercept t e rm bo in model:
it is reasonable to suppose the existence of suppor t code unreferred to

Method NMSE Comments
rreg-default-GB 0.368 -
rreg-andrews-GB 0.367 -
rreg-bisquare-GB 0.367 -
rreg-fair-GB 0.480 converged after 50 steps)
rreg-hampel-GB 0.381 -
irreg-huber-GB 0.378 -
rreg-logistic-GB 0.357 c = 1.25
r r eg - log l s t l c -GB-0 .8 0.337 c = 0.80
rreg-talworth-GB 0.380 -
rreg-welsch-GB 0.380 -

Table 4. Model performances for different weighting functions of the M-estimator rreg.
Results are given for the GB selection method only.

the functionalities being counted, and prediction is improved whi th the
term. However, the intercept term is not significant in a non-predictive
fit of the data. More important, the fact that the intercept t e rm is alw~.s
larger t han the first LOC value might indicate poor fit for small O O F P
values. I t would be interesting to apply a Bayesian procedure to select
the intercept from given priors.
The est imates for different weighting functions of the M-est imator are
listed in Table 4.
The best predictive accuracy (NMSE= 0.337) was achieved by the rreg-
logistic-GB model with tuning parameter u -- .8, corresponding to the
linear predictor LOC --" 7183.4 + 25.6 GB.
As shown in Figure 9, the rreg-logistic-GB model is very close to the
basic linear model lm-GB, whose equation is L O C = 7435.1 + 25.2 GB.
As the GB method is consistently better for all models and for bo th the
predictive error measures NMSE and NMAE, these results indicate tha t
t he choice of ILF selection method may influence prediction. Lowess,
supersmoother and predictive splines have been also tes ted and showed
instabili ty of convergence due to the small sample size.
Al though more experimental work is needed, obtained results are en-
couraging for size estimation.

74

6 Conclus ions

This paper shows how the concepts of function points can be applied to
object oriented software.
We presented a methodology for estimating the size and effort of object
oriented software. The method is based on an adapta t ion of t radi t ional
function points to object oriented paradigm. Mapping from FP concepts
to OO concepts have been defined, and the OOFPs counting process

LOC = 7163.4 + 25.6 GB j

i i t I J
0 500 1000 1500

GB

Fig. 9. The rreg-logistic-GB model (c=0.8) compared with the linear model lm-GB.

has been described. The OOFP_Counter tools has been developed to
automate the counting process. Results obtained from a pilot s tudy in
an industrial environment have been reported.
The results for size estimation are encouraging, and they can be used
with many effort estimation models.
Future work will investigate the effect of recalibrating the complexity
tables and analyzing the statistical correlation between the collected
measeres (DETs, RETs, FTRs) and program size. Other relationships,
beyond just OOFP and code size, will be studied; those between OOFP
and traditional FP, and O O F P versus effort, are of par t icular interest.

75

7' Acknowledgement

The authors are indebted with Cesare Furlanello who performed most of
the statistical analysis in the pilot study.

References

1. A. J. Albrecht. Measuring application development productivity. In
Proc. IBM Applications Development Symposium, pages 83-92. IBM,
Oct. 1979.

2. G. Caldiera, C. Lokan, G. Antoniol, R. Fiutem, S. Curtis, G.L.
Commare, and E. Mambella. Estimating Size and Effort for Object
Oriented Systems. In Proc. ~th Australian Conference on Software
Metrics, 1997.

3. T. Fetcke, A. Abran, and T.-H. Nguyen. Mapping the OO-Jacobson
approach to function point analysis. In Proc. IFPUG lg97 Spring
Conference, pages 134-142. IFPUG, Apr. 1997.

4. E. Gamma, P~. Helm, 1~. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object Oriented Software. Addison-Wesley,
1995.

5. T. Hastings. Adapting function points to contemporary software
systems: A review of proposals. In Proc. 2nd Australian Conference
on Software Metrics. Australian Software Metrics Association, 1995.

6. IFPUG. Function Point Counting Practices Manual, Release ~.0.
International Function Point Users Group, Westerville, Ohio, 1994.

7. IFPUG. Function Point Counting Practices: Case Study 3 - Object-
Oriented Analysis, Object-Oriented Design (Draft). International
Function Point Users Group, Westerville, Ohio, 1995.

8. Interactive Development Environments. Software Through Pictures
manuals, 1996.

9. I. Jacobson, M. Christerson, P. Jonsson, and G. C)vergaard. Ob-
ject Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley, 1992.

10. D. Jeffery and J. Stathis. Function point sizing: Structure, validity
and applicability. Empirical Software Engineering, 1(1):11-30, 1996.

11. B. Kitchenham and K. K~ins/il~. Inter-item correlations among func-
tion points. In Proc. 15th International Conference on Software En-
gineering, pages 477-480. IEEE, May 1993.

12. B. Kitchenham, S. Pfleeger, and N. Fenton. Towards a framework
for software measurement validation. IEEE Transactions on Soft-
ware Engineering, 21(12):929-944, Dec. 1995.

76

13. Rational Software Corporation. Unified Modeling Language, Version
1.0, 1997.

14. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object Oriented Modelling and Design. Prentice-Hall, 1991.

15. M. Schooneveldt. Measuring the size of object oriented systems. In
Proc. 2nd Australian Conference on Software Metrics. Australian
Software Metrics Association, 1995.

16. H. Sneed. Estimating the Costs of Object-Oriented Software. In
Proceedings of Software Cost Estimation Seminar, 1995.

17. J. Verner, G. Tate, B. Jackson, and R. Hayward. Technology depen-
dence in Function Point Analysis: a case study and critical review. In
Proc. 11th International Conference on Software Engineering, pages
375-382. IEEE, 1989.

18. S. Vicinanza, T. Mukhopadhyay, and M. Prietula. Software-effort
estimation: an exploratory study of expert performance. Information
Systems Research, 2(4):243-262, Dec. 1991.

19. S. Whitmire. Applying function points to object-oriented software
models. In Software Engineering Productivity Handbook, pages 229-
244. McGraw-Hill, 1993.

