
A u t o m a t i n g Handover in Dynamic Workflow
Environments *

Chengfei Liu 1.* and Maria E Orlowska 2 and Hui Li 2

1 School of Computing Sciences, University of Technology, Sydney, NSW 2007,
Australia

Department of Computer Science and Electrical Engineering, The University of
Queensland, Qld 4072, Australia

Abs t rac t . Workflow technology has been widely used in business pro-
cess modelling, automation and reengineering. In order to meet the fast-
changing business requirements, to remain competitive in the market, an
enterprise may constantly refine the workflow models of its business pro-
cesses. The most challenging issue in evolution of a workflow model is the
handover of its running instances from the old specification to the new
specification. Such a handover depends on the semantics of a workflow
model as well as the execution information of its running instances. A
handover policy, therefore, needs to be specified for this purpose. In this
paper, we propose a simple yet effective handover policy specification
language. Using this language, a designer can easily specify a handover
policy which reflect exactly what a workflow administrator needs to react
to when a workflow model evolves. Criteria for the correct specification of
handover policies are also addressed. Finally, a framework for automating
handover of workfiow instances is presented.

1 I n t r o d u c t i o n

Recent years have seen widespread use of workflow technology in business pro-
cess modelling, automat ion and reengineering. Next only to the Internet related
technology and products, the workflow technology and products [5, 11] are ar-
guably the most influential new breed of software systems from the perspective
of achieving significant impact on enterprises. Many enterprises have shifted
their data-centric approach in the context of the information systems technol-
ogy and solutions to a process-centric one. Work flow technology has matured to
some extent, and current products are able to support a range of applications.
However, many limitations remain in current workflow technology, especially for
supporting more demanding applications and more dynamic environment.

The work reported in this paper has been funded in part by the Cooperative Research
Centres Program through the Department of the Prime Minister and Cabinet of the
Commonwealth Government of Australia.

*~ Work done partially while the author was at the Distributed Systems Centre, Bris w
bane, Australia

160

In a fast-changing environment, an enterprise may constantly refine its work-
flow models to remain competitive in the market, to meet customers' new re-
quirements, to change business strategies, to improve performance and quality
of services, to benefit from changes in technology, etc. Two aspects are related
to the evolution of a workflow model. First, the old specification of a workflow
model needs to be changed to a new specification correctly. This is the static
aspect of the evolution. Second, as a business process tends to be long lasting,
whenever a workflow model changes its specification, there may exist a set of run-
ning instances of the old specification. How to handover these running instances
is an interesting and challenging issue.

Whether or not the running instances shall evolve according to the new
specification and how they evolve depend on an evolution policy which is specific
to the business process which the workftow model represents for. We call this
evolution policy as a h a n d o v e r policy. Currently, workflow evolution has not
been sufficiently supported by workflow products. Only very primitive policies
are supported by some workflow products such as F o r t e C o n d u c t o r [4]. Other
workflow products such as I n C o n c e r t [6] support dynamic workflow adaptation
at the instance level [14]. Schema evolution has been widely addressed in the field
of Object-Oriented Databases and Software Processes [1, 16, 7]. However, little
work has been done in addressing the problem of workflow evolution, particularly
the dynamic aspect. In their paper [3] Casati et al. have presented a workflow
modification language that supports modification of a workflow model (schema).
They have also discussed the case evolution policies and have devised three main
policies to manage case evolution: a b o r t - to abort all running instances and to
start new created instances following new specifications, f l u s h - to finish all
running instances first and then to allow new instances to start following new
specifications, and p r o g r e s s i v e - to allow different instances to take different
decisions. Though the progressive policy is further discussed in their paper, the
fine granularity of the case evolution policy specitications has not been addressed.

We view a workflow model evolution as a process which consists of three steps:
(1). to modify a workflow model from its old specification to its new specification.
(2). to specify a handover policy for handing over the running instances of the
workflow model to be evolved. (3). to apply the handover policy. A workflow
model modification can be done by applying a series of modification primitives
using a workflow model modification language. In our study, we focus on the
handover policy which is formulated based on the old and new specifications of
a workflow model. When specifying a handover policy, we assume that a specifier
has knowledge of both old and new specifications of the workflow model as well
as their difference. Step 1 and Step 2 are performed at build-time, while only
Step 3 is performed at run-time.

The rest of the paper is organized as follows. In Section 2, we brief spec-
ification of workfiow models. In Section 3, we design a handover specification
language for specifying what a workflow administrator needs to react to the
running instances when a workflow evolution occurs. Correct specification of
handover policies is addressed in Section 4. In facilitating handover of workflow

161

instances, a framework for implementing the handover specification language is
presented in Section 5. Section 6 concludes the paper with indication of our
future work.

2 Workflow Model Specification

As the specification of a handover policy for an evolution of a workflow model is
based on the old and new specifications of the workfiow model, we first review
the workflow modelling work. Several workflow modelling techniques have been
proposed in the literature [12,2, 8, 13], some of them even target the transac-
tional aspects of workflows. In [13], a graphical workflow specification language
is proposed for workflow conceptual modelling. As shown in Figure 1, the lan-
guage includes four types of modeling objects: task, condition, synchronizer,
and flow. The flows are used to link the first three types of objects to build the
specification of a workflow model.

�9 V
Task Condition Synchronizer Flow

Fig. 1. Modelling Objects of Workflows

- Task - A task is a logical step or description of a piece of work that con-
tributes towards the accomplishment of a workflow model. It can represent
both automated activities and human activities. Tasks are performed by
assigned processing entities. A workflow specification is basically used to
specify the coordination requirements among tasks. Sometimes properties of
tasks may also be specified in capturing more aspects (e.g., transactional as-
pects) of a workflow model. However, the actual semantics of tasks is beyond
the scope of workfiow specifications.

- Condition - A condition is used to represent alternative paths in a workflow
specification depending on a conditional value.

- Synchronizer - At certain points in workflows, it is essential to wait for the
completion of more than one execution path to proceed further. A synchro-
nizer is used for this purpose.

- Flow - A flow defines the connection between any two objects, other than
flows, in the workflow specification. It shows the flow of control or data from
one object to another.

A workfiow model can be represented as a workflow graph using these mod-
elling objects, where nodes of the graph can be tasks, conditions and synchroniz-
ers and links of the graph are flows. Restriction is placed in constructing a correct

162

workflow graph. Only a limited yet relatively complete set of constructs are sup-
ported by the language. They are Sequential, Exclusive OR-Split (Alternative),
Exclusive OR-Join, AND-Split (Parallel), AND-Join (Synchronization), Nest-
ing, Iteration, Start/Stop. Besides, a set of correctness constraints of workflow
graphs have also been identified and verification algorithms have been proposed
for verifying the syntactical correctness of workflow graphs specified using this
language [15,13]. For instance, all or none of the flows proceeding a synchronizer
activate for all possible instances of a workflow. Only one or none of the flows
leading to a task or a condition activates for all possible instances of a workfiow.
The first rule eliminates the possibility of a synchronizer deadlock. The second
rule eliminates the possibility of an unintentional multiple execution.

In this study, we use this graphical language to specify workfiow models and
assume that workflow graphs of both the old and new specifications of workflow
models specified using this language are syntactically correct. As handover is
difficult to make inside an iteration block, we treat an iteration block as a single
task.

3 H a n d o v e r P o l i c y S p e c i f i c a t i o n

A handover policy is specified to handover current running instances of a work-
flow model which is to be changed. It is used to model the dynamic aspect of
workflow evolution. In this section, we design a handover specification language.
The objectives of the language is effective yet simple. As when a handover policy
is applied to an evolution of a workfiow model (i.e., from its old specification
to its new specification), the running instances may be executing at any task of
the old specification. What is worse, different instances can take different paths
to the same task. Therefore, different instances may require different handover
strategies. No matter how complex the situation can be, the language should be
expressive enough for specifying all a workflow administrator wants to specify.
Obviously, if all the possibilities need to be specified explicitly, it can be cum-
bersome, even not applicable to large workflow models. Therefore, simplification
of specification must be considered. Fortunately, in practice, a workflow admin-
istrator is only interested in some key points where turning actions need to be
taken. Using some default and grouping specification, the specification of a han-
dover policy can be greatly simplified. In the following, we discuss the handover
specification language.

3.1 Syntax of the Language

Associated with every workflow model evolution is one and only one handover
policy. A handover policy is defned by a set of handover statements. Three
handover aspects of a running instance are described in each handover statement:

- current position - indicating current executing task of a running instance;
- history - indicating the traversed paths of a running instance by conditional

value;

163

- action - indicating the action to be taken.

A BNF definition of the handover policy specification language is given below:

<handever policy specification> ::= {<handover statement>}
<handover statement> ::= <on clause> <do clause>

<on clause> ::= ON <position specification>

<do clause> ::= DO <action specification> I
IF <condition> DO <action specification> [ELSE <do clause>]

Pos i t i on spec i f ica t ion A position of a running instance is specified by the cur-
rent executing task of that instance. In general, the exact point that the scheduler
can interact is the completion point of the executing task of an instance. For the
purpose of simplified specification, multiple tasks can be grouped to share a com-
mon do clause. Two ways of grouping are used: tasks without order and tasks
with order. Position specification is further defined as follows:

<position specification> ::= <task name>
I "{"<task name> {,<task name>}"}"
I <task name> TO <task name>

A c t i o n s p e c i f i c a t i o n In supporting handover of a running instance, two impor-
tant actions must be supported. One action is rollback. It is used to semantically
undo some work so that the running instance can comply with the new workflow
specification. A destination task must be given for a rollback action. The other
is change-over. It is used to migrate the execution of a running instance (or a
path of it) to follow the new specification. A destination task may or may not
be given for a change-over action. If a destination task is not specified in the
change-over action, the task which has the same name as in the current (old)
specification in the new specification is chosen as the default destination task.
There is another action called go-ahead which may not be explicitly specified.
If no handover statement is defined on a task, the default handover action after
the execution of the task is going ahead. As such, the specification of a handover
policy can be greatly simplified. Only the turning points need to be specified.
This coincides how a workflow administrator behaves to cope with a handover.

Action specification is defined as follows:

<action specification> ::= ROLLBACK T0 <task>
i CHANGE 0VER [T0 <task>]
i G0 AHEAD

C o n d i t i o n a l t u r n i n g s Sometimes, a turning action at the current task is de-
cided based on the history (i.e., the traversed paths) of a running instance. This
is supported by the conditional turning by representing the history information
in a conditional wlue. Besides the history information, other semantic infor-
mation (e.g., time) can also be specified in the condition to facilitate flexible
handover.

164

3.2 Handover Policy Examples

We use the PC assembling workfiow example introduced in [3] to illustrate how
a handover policy can be specified using our handover specification language.
As shown in Figure 2, the old assembly process starts by preparing in parallel a
cabinet (either a Tower or a Minitower) and a motherboard (including CPU and
disk controller). Then the motherboard is inserted into the cabinet. After the
FDD is inserted, a condition on Container is checked to determine whether a cd-
rom needs to be inserted. Finally, the hard disk and video ram are inserted. The
assembly process changes with the requirement that the cd-rom is replaced by
NiceLab's cd-rom 4x and audio card. Based on the different decisions, different
handover policies can be specified as follows.

- S
(~ Ccnt~ner ffi Tower

\ /

Container = Tower

~ t a ine r . Mlnltower

Old specification New specification

Fig. 2. Old and New Specifications of PC Assembling Workflow Model

165

Example 1. Specification of concurrent to completion policy, i.e., all running
instances are allowed to terminate following the old specification, while new
instances can be started following the new specification. This policy can be
expressed by the following single statement.

ON Start TO Plug-Video-Ram DO GO AHEAD.

Example 2. Specification of Abort policy, i.e., all running instances are aborted,
and the newly created instances will start following the new specification.

ON Start TO Plug-Video-Ram DO ROLLBACK TO Start.

Example 3. Change over the running instances if executing before the condition
checking on Container, otherwise go ahead.

ON Insert-FDD-l.44M DO CHANGE-OVER.

Example 4. Change over before the condition checking on Container if the in-
stance will satisfy the condition Container -= Tower; Rollback to the end of the
task Insert-FDD-l.~M if the instance takes the path affected by the change.

ON Insert-FDD-l.44M IF Container = Tower DO CHANGE-OVER;

ON Insert-CD-Rom DO ROLLBACK TO Insert-FDD-l.44M;

ON ~Add-I.6GB-HD, Plug-Video-Ram)

IF Container = Tower DO ROLLBACK TO Insert-FDD-1.44M.

As shown by above examples, handover policies can be easily and directly
specified using the handover specification language. A specifier only needs to
explicitly specify the turning actions taken at turning points. In Example 4, a
handover policy which consists of three explicit handover statements is specified.
The instances executing along the path which is not affected by the change
take default action, i.e., go-ahead. This example shows that arbitrary handover
policies can be specified using the handover specification language.

4 C o r r e c t n e s s I s s u e o f H a n d o v e r P o l i c y S p e c i f i c a t i o n

With a handover specification language, workflow specifiers have the flexibility
to support fine-granularity of handover policies. However, it may also bring the
errors into specifications. As the correctness checking of a workflow model spec-
ification, it is also important to check whether a handover policy is specified
correctly. As the specification of a handover policy is different from the specifi-
cation of a workflow model, new correctness problems may exist for a handover
policy specification.

In order to study the correctness issues of handover policy specification, we
first introduce a so-called handover graph. Each handover policy can be defined
by a handover graph. The handover graph is constructed based on the workflow
graphs of both old and new specifications. Each handover statement is reflected

166

in the handover graph as follows:
(1). If a rollback action is defined on a task T, add a link from T to the task
to which it rolls back; add a special dead task Td and move all links originated
from T to Td. A dead task is a task which never gets executed.
(2). If a change-over action is defined on a task T, add a link from T to the task
to which it changes over; add a dead task Td and move all links originated from
T to Td.
(3). If a (default) go-ahead action is defined on a task T, keep the workflow
graph of the old specification unchanged for T.
(4). If a conditional turning is specified, add a condition task Tc with two links
originated from Tc specifying the two exclusive condition values. Depending on
the turning action change the graph accordingly.

Example 5. The handover graph for the policy defined in Example 4 is given in
Figure 3.

4 .1 S y n t a c t i c a l E r r o r T y p e s

As the handover graph for a workfiow model evolution is constructed based on
workflow graphs of the old and new specifications of the workflow model and
these workfiow graphs are assumed syntactically correct, a handover graph can
be erroneous only if the turning actions are specified incorrectly. Therefore, we
aim at errors resulted from incorrect specification of turning actions. The error
types which we have identified in specifying a handover policy include:

- cyclicness
If a cycle appears in the handover graph of a handover policy, the running
instances in the cycle will execute endlessly. Such a cycle must be avoided
during specification of a handover policy. In Example 4, if we change the
condition of either the first or the third handover statement to Container =
Minitower, a cycle will occur and the execution will never stop.

- deadlock
For a synchronizer node of the handover graph of a handover policy, if a dead
task appears in one incoming path but does not appear in another path, a
deadlock problem exists for the handover policy specification. For example,
if we change over one branch of a parallel construct while keeping another
branch go ahead, a deadlock will occur. Another example of deadlock can be
resulted from structure mismatch. If we want to change over branches of an
alternative construct to a parallel construct, a deadlock will happen to the
new specification.

- unintentional multiple execution
Similar to a workflow model specification, an unintentional multiple execu-
tion error may occur in a handover policy specification. One such example
may come from changing over multiple parallel branches directly or indi-
rectly to the same task of the new specification. Another example can be
changing over different branches of a parallel construct to different branches
of an alternative construct, respectively.

167

\

r

|, ~ qCo~r = Tower

Comaf~er = Towe~ ~ ' - - ~

Fig. 3. A Handover Graph

4.2 C o r r e c t n e s s Cri ter ia for H a n d o v e r Pol ic ies

In preventing handover policy specification errors, we define a set of correctness
constraints as follows.

Rule 6. At most one handover action may be executed for each task of a running
instance. In other words, if a cycle appears in the handover graph of a handover
policy, then the conjunction of conditions specified in all condition nodes along
the cycle must be false, i.e., the cycle is a pseudo cycle and no real cycle is
allowed in the handover graph.

Rule 7. Either all branches or no branches of a parallel construct of the old
specification are changed over to new specification. In other words, either all
dead tasks or no dead tasks can be connected to a sychronizer.

168

Rule 8. Branches of an alternative construct in the old specification cannot be
changed over to branches of a parallel construct in the new specification.

Rule 9. Branches of a parallel construct in the old specification cannot be changed
over to branches of an alternative construct in the new specification.

Rule 10. Branches of a parallel construct in the old specification cannot be
changed over directly or indirectly to the same task of the new specification.

These rules are verified for each handover policy specification before it is
applied to running instances, thus run-time handover errors can be greatly re-
duced.

5 F a c i l i t a t i n g H a n d o v e r P o l i c i e s

As automatic handover of running workflow instances has not been addressed by
existing workflow management systems, it is ideal to put forward a framework
which can facilitate handover based on current workflow technology. In this
section, we address some key technical points towards such a framework.

5.1 Required Data Structures

The data structure for workflow instances is designed as follows:

WFInst(InstID, State, History, ActivePath(SpeeID, CurrentPosition))

Where InstID is used for identifying a workflow instance. State records the cur-
rent state of the workflow instance, such as, executing, completed. Two additional
states migrating and migrated are introduced for handover purpose. The migrat-
ing state indicates that the workfiow instance is under a handover process, when
the handover process is finished, the state of the workflow instance is changed
to the migrated state (not turning back to the executing state). The migrated
state indicates that the instance needs to be treated specially in case rollback or
another handover (due to newer specification or version of its workflow model)
may be required to the instance later since it has undergone a handover process.
History records the log data of all traversed paths of the workflow instance. A
workflow instance may contain several active parallel paths. The number of paths
will increase after an AND-Split is reached and will decrease after a synchronizer
(AND-Join) is reached. Every active path has a SpecID and a CurrentPosition
associated with it. A SpecID is used for identifying the specification on which
the execution of that active path is based. During handover, it is possible that
one active path is running on the old specification while another is running on
the new specification. A CurrentPosition records the currently executing task of
that path.

In addition, a new data structure for policy specification is designed.

Policy(Specl D , NewSpecl D, Turning(Task, Condition, Action, Destination))

169

Where SpeclD and NewSpeclD are used for identifying the old and new workfiow
specifications on which a handover policy specification is based. As one and
only one policy is associated with each workflow model evolution, a policy can
be identified by a SpeclD. Several turnings can be described in a policy. Each
Turning records a task - after its completion the turning will take place, a
condition - the turning may take effect only under the condition, an action -
either rollback or change-over, and a destination - indicating the destination
task of the turning.

5.2 Applying a ttandover Policy

To apply a handover policy to a workflow specification, a workflow system com-
mand can be issued:

handover(Specl D)

This command will automatically change the state of all running instances of
the specification indicated by SpeclD to the state Migrating.

5.3 Scheduling a Handover Act ion

When a task t indicated by CurrentPosition in an active path p of a running
workflow instance w finishes its execution, the scheduler will schedule the next
step for executing. Two cases are scheduled differently:
(1) If the instance w is in a state other than Migrating, the scheduler will schedule
w (specifically the path p) as usual, i.e., to take the next step from t according
to the specification of p indicated by SpeclD. The scheduling information is
recorded in the History.
(2) If the state of the instance w is Migrating, the scheduler will first find the
policy defined on the specification of p indicated by SpeclD. After that, it tries
to match t with the Task in a Turning of the policy, if it matches one and
the Condition in the Turning is satisfied, then take the Action in the Turning.
Otherwise keep trying. If there is no one matches, take the default next step as
usual according to the specification of p indicated by SpeclD.

Taking a Rollback Act ion If a rollback action is scheduled, the path p of the
workflow instance w is rolled back to the point specified by Destination. The
rollback process may be undertaken with the help of partial compensation [8,
10, 9] which is another technical issue in workflow management systems. The
information of the rollback action and all the rollback steps need to be recorded
in the History. After the rollback action is completed, CurrentPosition is changed
to hold the Destination.

Taking a Change-Over Act ion If a change-over action is scheduled, the path
p of the workfiow instance w is changed to run on the new specification. The
point where the path continues in new specification is specified by Destination.

170

The information of w needs to be modified as follows:
(a) SpecID for the path p is changed to hold the new specification ID, i.e.,
NewSpecID.
(b) CurrentPosition for the path p is changed to hold the Destination.
(c) A log item indicating the change-over action needs to be added to the History.
(d) If all active paths of the workflow instance w are changed over to running
on the new specification, the state of w is changed to Migrated and the state
change is also recorded in the History.

6 C o n c l u s i o n a n d F u t u r e W o r k

It is an important yet challenging topic to handover running workflow instances
for enterprise computing. In this paper, we specifically addressed this topic. To
support flexibility and fine-granularity of handover policy specification, we de-
signed a simple yet effective handover policy specification language. Using this
language, a designer can easily and directly specify a handover policy which
reflect exactly what a workflow administrator needs to react to when a work-
flow model evolves. Correct specification of handover policies was also discussed.
A framework for automating handover of running workflow instances was pre-
sented. In the future, we will investigate algorithms for verifying the correctness
of handover policy specifications. As well we will extend our current two-version
support of workflow models (i.e., old specification and new specification) to
multi-version support (therefore multiple handovers of long-running instances).

R e f e r e n c e s

1. J. Banerjee, W. Kim, H-J. Kim, and H. Korth. Semantics and implementation of
schema evolution in object-oriented databases. In Proceedings of the ACM SIG-
MOD International Conference on Management o/Data, pages 311-322, 1987.

2. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual modeling of workflows.
In Proceedings of O0-ER conference, pages 341-354. Lecture Notes in Computer
Science, Vol. 1021, Springer, 1995.

3. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Workflow evolution. In Proceedings of
the 15th ER Int. Conf., pages 438-455. Lecture Notes in Computer Science, Vol.
1157, Springer, 1996.

4. Forte. Forte Conductor Process Development Guide. Forte Software, Inc., 1994.
5. Butler Group. Work flow: Integrating the Enterprise, June 1996.
6. InConcert. InConcert Technical Product Overview. InConcert Inc., January 1997.
7. M. Jaccheri and R. Conradi. Techniques for process model evolution in EPOS.

IEEE Transactions on Software Engineering, 19(12):1145-1156, December 1993.
8. D. Kuo, M. Lawley, C. Liu, and M. Orlowska. A general model for nested trans-

actional workflows. In Proceedings of the International Workshop on Advanced
Transaction Models and Architectures, pages 18-35, 1996.

9. F. Leymann. Supporting business transactions via partial backward recovery in
workflow management systems. In Proceedings of BTW'95, pages 51-70, 1995.

171

10. C. Liu and M. Orlowska. Confirmation: Increasing resource availability for trans-
actional workflows. Technical report, Distributed Systems Technology Centre,
September 1997.

11. Workflow Management Coalition Members. Glossary - A Workflow Management
Coalition Specification. Workflow Management Coalition, November 1994. Soft-
copy available via: http://www.aiai.ed.ac.uk/project/wfmc/.

12. M. Rusinkiewicz and A. Sheth. Specification and execution of transactional work-
flows. In W. Kim, editor, Modern Database Systems: The Object Model, Interop-
erability, and Beyond. Addison-Wesley, 1994.

13. W. Sadiq and M. E. Orlowska. On correctness issues in conceptual modeling of
workflows. In Proceedings of the 5th European Conference on Information System,
1997.

14. A. Sheth and K. Kochut. Workflow applications to research agenda: Scalable and
dynamic workflow coordination and collabration systems. In Proceedings of the
NATO ASI on Workflow Management Systems and Interoperability, August 1997.

15. A.H.M. ter Hofstede, Maria E. Orlowska, and J. Rajapakse. Verification problems
in conceptual workflow specification. In Proceedings of the 15th ER Int. Conf.,
pages 73-88. Lecture Notes in Computer Science, Vol. 1157, Springer, 1996.

16. R. Zicari. A framework for schema updates in an object-oriented database systems.
In Proceeding of 7th International Conference on Data Engineering, pages 2-13,
1991.

