Skip to main content

A linear time algorithm to recognize clustered planar graphs and its parallelization

  • Conference paper
  • First Online:
LATIN'98: Theoretical Informatics (LATIN 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1380))

Included in the following conference series:

  • 151 Accesses

Abstract

We develop a linear time algorithm for the following problem: Given a graph G and a hierarchical clustering of the vertices such that all clusters induce connected subgraphs, determine whether G may be embedded into the plane such that no cluster has a hole.

This is an improvement to the O(n 2)-algorithm of Q.W. Feng et al. [6] and the algorithm of Lengauer [12] that operates in linear time on a replacement system. The size of the input of Lengauer's algorithm is not necessarily linear with respect to the number of vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Abrahamson, N. Dadoun, D. Kirkpatrick, T. Przyticka, A Simple Parallel Tree Contraction Algorithm, Journal of Algorithms 10 (1988), pp. 287–302.

    Article  Google Scholar 

  2. T. Biedl, G. Kant, A better heuristic for Orthogonal Graph Drawing, ESA 94, LLNCS 855, pp. 24–35.

    Google Scholar 

  3. K. Booth, G. Lueker, Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms, Journal of Computer and Systems Sciences 13(1976), pp. 335–379.

    MathSciNet  Google Scholar 

  4. R. Cole, Paralle J Merge Sort, 27. IEEE-FOCS (1986), pp. 511–516.

    Google Scholar 

  5. P. Eades, Q.W. Feng, X. Lin, Straight Line Drawing Algorithms for Hierarchical Graphs and Clustered Graphs, Graph Drawing, GD'96, LLNCS 1190, pp. 113–128.

    Google Scholar 

  6. Q.W. Feng, R. Cohen, P. Eades, Planarity for Clustered Graphs, ESA'95, LLNCS 979, pp. 213–226.

    Google Scholar 

  7. A. Gibbons, W. Rytter, Efficient Parallel Algorithms, Cambridge University Press, Cambridge, 1989.

    Google Scholar 

  8. D. Harel, On Visual Formalisms, Communications of the ACM 21 (1988), pp. 549–568.

    MathSciNet  Google Scholar 

  9. T. Kameda, Visualizing Abstract Objects and Relations, World Scientific Series in Computer Science, 1989.

    Google Scholar 

  10. G. Kant, Drawing Planar Graphs using the lmc-Ordering, 33rd FOCS (1991), pp. 793–801.

    Google Scholar 

  11. T. Lengauer, Combinatorial Algorithms for Integrated Circuit Lyout, Applicable Theory in Computer Science, Teubner/Wiley, Stuttgart/New York, 1990.

    Google Scholar 

  12. T. Lengauer, Hierarchical Planarity Testing Algorithm, Journal of the ACM 36 (1989), pp. 474–509.

    Article  MATH  MathSciNet  Google Scholar 

  13. Y. Maon, B. Schieber, U. Vishkin, Parallel Ear Decomposition Search (EDS) and st-Numberings in Graphs, Theoretical Computer Science 47 (1986), pp. 277–296.

    Article  MathSciNet  Google Scholar 

  14. R. Möhring, Algorithmic Aspects of the Substitution Decomposition in Optimization over Relations, Set Systems and Boolean Functions, Ann. Oper. Res., 4 (1985), pp. 195–225.

    Article  MathSciNet  Google Scholar 

  15. T. Nishizeki, N. Chiba, Planar Graphs: Theory and Algorithms, Annals of Discrete Mathematics 32, North Holland, 1988.

    Google Scholar 

  16. V. Ramachandran, J. Reif, Planarity Testing in Parallel, Journal of Computer and Systems Sciences 49 (1994), pp. 517–561.

    Article  MathSciNet  Google Scholar 

  17. Y. Shiloach, U. Vishkin, An O(log n) Parallel Connectivity Algorithm, Journal of Algorithms 3 (1982), pp. 57–67.

    Article  MathSciNet  Google Scholar 

  18. W.T. Tutte, How to Draw a Graph, Proceedings London Mathematical Society 3, pp. 743–768.

    Google Scholar 

  19. C. Williams, J. Rasure, C. Hansen, The State of the Art of Visual Languages for Visualization, Visualization 92 (1992), pp. 202–209.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Cláudio L. Lucchesi Arnaldo V. Moura

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dahlhaus, E. (1998). A linear time algorithm to recognize clustered planar graphs and its parallelization. In: Lucchesi, C.L., Moura, A.V. (eds) LATIN'98: Theoretical Informatics. LATIN 1998. Lecture Notes in Computer Science, vol 1380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054325

Download citation

  • DOI: https://doi.org/10.1007/BFb0054325

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64275-6

  • Online ISBN: 978-3-540-69715-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics