Abstract
We develop a linear time algorithm for the following problem: Given a graph G and a hierarchical clustering of the vertices such that all clusters induce connected subgraphs, determine whether G may be embedded into the plane such that no cluster has a hole.
This is an improvement to the O(n 2)-algorithm of Q.W. Feng et al. [6] and the algorithm of Lengauer [12] that operates in linear time on a replacement system. The size of the input of Lengauer's algorithm is not necessarily linear with respect to the number of vertices.
Preview
Unable to display preview. Download preview PDF.
References
K. Abrahamson, N. Dadoun, D. Kirkpatrick, T. Przyticka, A Simple Parallel Tree Contraction Algorithm, Journal of Algorithms 10 (1988), pp. 287–302.
T. Biedl, G. Kant, A better heuristic for Orthogonal Graph Drawing, ESA 94, LLNCS 855, pp. 24–35.
K. Booth, G. Lueker, Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms, Journal of Computer and Systems Sciences 13(1976), pp. 335–379.
R. Cole, Paralle J Merge Sort, 27. IEEE-FOCS (1986), pp. 511–516.
P. Eades, Q.W. Feng, X. Lin, Straight Line Drawing Algorithms for Hierarchical Graphs and Clustered Graphs, Graph Drawing, GD'96, LLNCS 1190, pp. 113–128.
Q.W. Feng, R. Cohen, P. Eades, Planarity for Clustered Graphs, ESA'95, LLNCS 979, pp. 213–226.
A. Gibbons, W. Rytter, Efficient Parallel Algorithms, Cambridge University Press, Cambridge, 1989.
D. Harel, On Visual Formalisms, Communications of the ACM 21 (1988), pp. 549–568.
T. Kameda, Visualizing Abstract Objects and Relations, World Scientific Series in Computer Science, 1989.
G. Kant, Drawing Planar Graphs using the lmc-Ordering, 33rd FOCS (1991), pp. 793–801.
T. Lengauer, Combinatorial Algorithms for Integrated Circuit Lyout, Applicable Theory in Computer Science, Teubner/Wiley, Stuttgart/New York, 1990.
T. Lengauer, Hierarchical Planarity Testing Algorithm, Journal of the ACM 36 (1989), pp. 474–509.
Y. Maon, B. Schieber, U. Vishkin, Parallel Ear Decomposition Search (EDS) and st-Numberings in Graphs, Theoretical Computer Science 47 (1986), pp. 277–296.
R. Möhring, Algorithmic Aspects of the Substitution Decomposition in Optimization over Relations, Set Systems and Boolean Functions, Ann. Oper. Res., 4 (1985), pp. 195–225.
T. Nishizeki, N. Chiba, Planar Graphs: Theory and Algorithms, Annals of Discrete Mathematics 32, North Holland, 1988.
V. Ramachandran, J. Reif, Planarity Testing in Parallel, Journal of Computer and Systems Sciences 49 (1994), pp. 517–561.
Y. Shiloach, U. Vishkin, An O(log n) Parallel Connectivity Algorithm, Journal of Algorithms 3 (1982), pp. 57–67.
W.T. Tutte, How to Draw a Graph, Proceedings London Mathematical Society 3, pp. 743–768.
C. Williams, J. Rasure, C. Hansen, The State of the Art of Visual Languages for Visualization, Visualization 92 (1992), pp. 202–209.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dahlhaus, E. (1998). A linear time algorithm to recognize clustered planar graphs and its parallelization. In: Lucchesi, C.L., Moura, A.V. (eds) LATIN'98: Theoretical Informatics. LATIN 1998. Lecture Notes in Computer Science, vol 1380. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054325
Download citation
DOI: https://doi.org/10.1007/BFb0054325
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64275-6
Online ISBN: 978-3-540-69715-2
eBook Packages: Springer Book Archive