Skip to main content

Recent developments in maximum flow algorithms

Invited lecture

  • Conference paper
  • First Online:
Algorithm Theory — SWAT'98 (SWAT 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1432))

Included in the following conference series:

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, 1993.

    Google Scholar 

  2. R. K. Ahuja and J. B. Orlin. A Fast and Simple Algorithm for the Maximum Flow Problem. Oper. Res., 37:748–759, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. K. Ahuja, J. B. Orlin, and R. E. Tarjan. Improved Time Bounds for the Maximum Flow Problem. SIAM J. Comput., 18:939–954, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Alon. Generating Pseudo-Random Permutations and Maximum Flow Algorithms. Information Processing Let., 35:201–204, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  5. R. J. Anderson and J. C. Setubal. Goldberg's Algorithm for the Maximum Flow in Perspective: a Computational Study. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 1–18. AMS, 1993.

    Google Scholar 

  6. A. A. BenczÚr and D. R. Karger. Approximating s-t Minimum Cuts in Õ(n 2) Time. In Proc. 28th Annual ACM Symposium on Theory of Computing, pages 47–56, 1996.

    Google Scholar 

  7. J. Cheriyan and T. Hagerup. A randomized maximum flow algorithm. SIAM Journal on Computing, 24:203–226, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Cheriyan, T. Hagerup, and K. Mehlhorn. An o(n 3)-time Maximum Flow Algorithm. SIAM J. Comput., 25:1144–1170, 1996.

    MathSciNet  Google Scholar 

  9. B. V. Cherkassky. Algorithm for Construction of Maximal Flows in Networks with Complexity of OV 2√E) Operations. Mathematical Methods of Solution of Economical Problems, 7:112–125, 1977. (In Russian).

    Google Scholar 

  10. B. V. Cherkassky and A. V. Goldberg. On Implementing Push-Relabel Method for the Maximum Flow Problem. Algorithmica, 19:390–410, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. B. Dantzig. Application of the Simplex Method to a Transportation Problem. In T. C. Koopmans, editor, Activity Analysis and Production and Allocation, pages 359–373. Wiley, New York, 1951.

    Google Scholar 

  12. U. Derigs and W. Meier. Implementing Goldberg's Max-Flow Algorithm — A Computational Investigation. ZOR — Methods and Models of Operations Research, 33:383–403, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in Networks with Power Estimation. Soviet Math. Dokl., 11:1277–1280, 1970.

    MATH  Google Scholar 

  14. E. A. Dinic. Metod porazryadnogo sokrashcheniya nevyazok i transportnye zadachi. In Issledovaniya po Diskretnoi Matematike. Nauka, Moskva, 1973. In Russian. Title translation: Excess Scaling and Transportation Problems.

    Google Scholar 

  15. J. Edmonds and R. M. Karp. Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems. J. Assoc. Comput. Mach., 19:248–264, 1972.

    MATH  Google Scholar 

  16. S. Even and R. E. Tarjan. Network Flow and Testing Graph Connectivity. SIAM J. Comput, 4:507–518, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. R. Ford, Jr. and D. R. Fulkerson. Maximal Flow Through a Network. Canadian Journal of Math., 8:399–404, 1956.

    MathSciNet  MATH  Google Scholar 

  18. L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press, Princeton, NJ, 1962.

    MATH  Google Scholar 

  19. H. N. Gabow. Scaling Algorithms for Network Problems. J. of Comp. and Sys. Sci., 31:148–168, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  20. Z. Galil and A. Naamad. An O(EV log2 V) Algorithm for the Maximal Flow Problem. J. Comput. System Sci., 21:203–217, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  21. Z. Galil and X. Yu. Short Length Version of Menger's Theorem. In Proc. 27th Annual ACM Symposium on Theory of Computing, pages 499–508, 1995.

    Google Scholar 

  22. A. V. Goldberg. A New Max-Flow Algorithm. Technical Report MIT/LCS/TM-291, Laboratory for Computer Science, M.I.T., 1985.

    Google Scholar 

  23. A. V. Goldberg. Efficient Graph Algorithms for Sequential and Parallel Computers. PhD thesis, M.I.T., January 1987. (Also available as Technical Report TR-374, Lab. for Computer Science, M.I.T., 1987).

    Google Scholar 

  24. A. V. Goldberg and S. Rao. Beyond the Flow Decomposition Barrier. In Proc. 38th IEEE Annual Symposium on Foundations of Computer Science, pages 2–11, 1997.

    Google Scholar 

  25. A. V. Goldberg and S. Rao. Flows in Undirected Unit Capacity Networks. In Proc. 38th IEEE Annual Symposium on Foundations of Computer Science, pages 32–35, 1997.

    Google Scholar 

  26. A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow Problem. J. Assoc. Comput. Mach., 35:921–940, 1988.

    MathSciNet  MATH  Google Scholar 

  27. A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Successive Approximation. Math. of Oper. Res., 15:430–466, 1990.

    MathSciNet  MATH  Google Scholar 

  28. D. R. Karger. Global Min-Cuts in RNC, and Other Ramifications of a Simple Min-Cut Algorithm. In Proc. 4th ACM-SIAM Symposium on Discrete Algorithms, 1993.

    Google Scholar 

  29. D. R. Karger. Minimum Cuts in Near-Linear Time. In Proc. 28th Annual ACM Symposium on Theory of Computing, pages 56–63, 1996.

    Google Scholar 

  30. D. R. Karger. Using Random Sampling to Find Maximum Flows in Uncapacitated Undirected Graphs. In Proc. 29th Annual ACM Symposium on Theory of Computing, pages 240–249, 1997.

    Google Scholar 

  31. D. R. Karger. Better Random Sampling Algorithms for Flows in Undirected Graphs. In Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, pages 490–499, 1998.

    Google Scholar 

  32. D. R. Karger and M. Levine. Finding Maximum Flows in Undirected Graphs Seems Easier than Bipratire Matching. In Proc. 30th Annual ACM Symposium on Theory of Computing, 1997.

    Google Scholar 

  33. D. R. Karger and C. Stein. A New Approach to the Minimum Cut Problem. J. Assoc. Comput. Mach., 43, 1996.

    Google Scholar 

  34. D.R. Karger. Random Sampling in Cut, Flow, and Network Design Problems. In Proc. 26th Annual ACM Symposium on Theory of Computing, pages 648–657, 1994. Submitted to Math. of Oper. Res.

    Google Scholar 

  35. A. V. Karzanov. O nakhozhdenii maksimal'nogo potoka v setyakh spetsial'nogo vida i nekotorykh prilozheniyakh. In Matematicheskie Voprosy Upravleniya Proizvodstvom, volume 5. Moscow State University Press, Moscow, 1973. In Russian; title translation: On Finding Maximum Flows in Networks with Special Structure and Some Applications.

    Google Scholar 

  36. A. V. Karzanov. Determining the Maximal Flow in a Network by the Method of Preflows. Soviet Math. Dok., 15:434–437, 1974.

    MATH  Google Scholar 

  37. V. King, S. Rao, and R. Tarjan. A Faster Deterministic Maximum Flow Algorithm. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms, pages 157–164, 1992.

    Google Scholar 

  38. V. King, S. Rao, and R. Tarjan. A Faster Deterministic Maximum Flow Algorithm. J. Algorithms, 17:447–474, 1994.

    Article  MathSciNet  Google Scholar 

  39. E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Reinhart, and Winston, New York, NY., 1976.

    MATH  Google Scholar 

  40. H. Nagamochi and T. Ibaraki. A Linear-Time Algorithm for Finding a Sparse k-Connected Spanning Subgraph of a k-Connected Graph. Algorithmica, 7:583–596, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  41. H. Nagamochi and T. Ibaraki. Computing Edge-Connectivity in Multigraphs and Capacitated Graphs. SIAM J. Disc. Math., 5:54–66, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  42. Q. C. Nguyen and V. Venkateswaran. Implementations of Goldberg-Tarjan Maximum Flow Algorithm. In D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS Implementation Challenge, pages 19–42. AMS, 1993.

    Google Scholar 

  43. J. B. Orlin. A Faster Strongly Polynomial Minimum Cost Flow Algorithm. Oper. Res., 41:338–350, 1993.

    MATH  MathSciNet  Google Scholar 

  44. S. Phillips and J. Westbrook. Online Load Balancing and Network Flow. In Proc. 25th Annual ACM Symposium on Theory of Computing, pages 402–411, 1993.

    Google Scholar 

  45. J. C. Picard and H. D. Ratliff. Minimum Cuts and Related Problems. Networks, 5:357–370, 1975.

    MathSciNet  MATH  Google Scholar 

  46. D. D. Sleator and R. E. Tarjan. A Data Structure for Dynamic Trees. J. Comput. System Sci., 26:362–391, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  47. C. Wallacher. A Generalization of the Minimum-Mean Cycle Selection Rule in Cycle Canceling Algorithms. Technical report, Preprints in Optimization, Institute für Angewandte Mathematik, Technische UniversitÄt Braunschweig, Germany, 1991.

    Google Scholar 

  48. C. Wallacher and U. Zimmermann. A Combinatorial Interior Point Method for Network Flow Problems. Technical report, Preprints in Optimization, Institute für Angewandte Mathematik, Technische UniversitÄt Braunschweig, Germany, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stefan Arnborg Lars Ivansson

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldberg, A.V. (1998). Recent developments in maximum flow algorithms. In: Arnborg, S., Ivansson, L. (eds) Algorithm Theory — SWAT'98. SWAT 1998. Lecture Notes in Computer Science, vol 1432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054350

Download citation

  • DOI: https://doi.org/10.1007/BFb0054350

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64682-2

  • Online ISBN: 978-3-540-69106-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics