Skip to main content

Models and motion planning

  • Conference paper
  • First Online:
Algorithm Theory — SWAT'98 (SWAT 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1432))

Included in the following conference series:

Abstract

We study the consequences of two of the realistic input models proposed in the literature, namely unclutteredness and small simple-cover complexity, for the motion planning problem. We show that the complexity of the free space of a bounded-reach robot with f degrees of freedom is O(n f/2) in the plane, and O(n 2f/3) in three dimensions, for both uncluttered environments and environments of small simple-cover complexity. We also give an example showing that these bounds are tight in the worst case. Our bounds fit nicely between the θ(nf) bound for the maximum free-space complexity in the general case, and the θ(n) bound for low-density environments.

This research was partially supported by the Netherlands' Organization for Scientific Research (NWO).

Supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pankaj K. Agarwal, M. J. Katz, and M. Sharir. Computing depth orders and related problems. Comput. Geom. Theory Appl., 5:187–206, 1995.

    MathSciNet  Google Scholar 

  2. H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. NÄher, S. Schirra, and C. Uhrig. Approximate motion planning and the complexity of the boundary of the union of simple geometric figures. Algorithmica, 8:391–406, 1992.

    Article  MathSciNet  Google Scholar 

  3. J. M. Bañon. Implementation and extension of the ladder algorithm. In Proc. IEEE Internat. Conf. Robot. Autom., pages 1548–1553, 1990.

    Google Scholar 

  4. M. de Berg, M. J. Katz, A. F. van der Stappen, and J. Vleugels. Realistic input models for geometric algorithms. To appear; a preliminary version appeared in Proc. 13th Annu. ACM Sympos. Comput. Geom., pages 294–303, 1997.

    Google Scholar 

  5. Mark de Berg. Linear size binary space partitions for fat objects. In Proc. 3rd Annu. European Sympos. Algorithms, volume 979 of Lecture Notes Comput. Sci., pages 252–263. Springer-Verlag, 1995.

    Google Scholar 

  6. A. Efrat and M. J. Katz. On the union of κ-curved objects. In Proc. 14th Annu. ACM Sympos. Comput. Geom., 1998. to appear.

    Google Scholar 

  7. A. Efrat, M. J. Katz, F. Nielsen, and M. Sharir. Dynamic data structures for fat objects and their applications. In Proc. 5th Workshop Algorithms Data Struct., pages 297–306, 1997.

    Google Scholar 

  8. M. J. Katz. 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc shooting amidst convex fat objects. Comput. Geom. Theory Appl., 8:299–316, 1997.

    MATH  Google Scholar 

  9. M. J. Katz, M. H. Overmars, and M. Sharir. Efficient hidden surface removal for objects with small union size. Comput. Geom. Theory Appl., 2:223–234, 1992.

    MathSciNet  Google Scholar 

  10. J. Matoušek. Epsilon-nets and computational geometry. In J. Pach, editor, New Trends in Discrete and Computational Geometry, volume 10 of Algorithms and Combinatorics, pages 69–89. Springer-Verlag, 1993.

    Google Scholar 

  11. J. Matoušek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl. Fat triangles determine linearly many holes. SIAM J. Comput., 23:154–169, 1994.

    Article  MathSciNet  Google Scholar 

  12. J. S. B. Mitchell, D. M. Mount, and S. Suri. Query-sensitive ray shooting. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 359–368, 1994.

    Google Scholar 

  13. M. H. Overmars and A. F. van der Stappen. Range searching and point location among fat objects. J. Algorithms, 21:629–656, 1996.

    Article  MathSciNet  Google Scholar 

  14. J. T. Schwartz and M. Sharir. On the “piano movers” problem I: the case of a two-dimensional rigid polygonal body moving amidst polygonal barriers. Commun. Pure Appl. Math., 36:345–398, 1983.

    MathSciNet  Google Scholar 

  15. Otfried Schwarzkopf and Jules Vleugels. Range searching in low-density environments. Inform. Process. Lett., 60:121–127, 1996.

    Article  MathSciNet  Google Scholar 

  16. A. F. van der Stappen, D. Halperin, and M. H. Overmars. The complexity of the free space for a robot moving amidst fat obstacles. Comput. Geom. Theory Appl., 3:353–373, 1993.

    Google Scholar 

  17. A. F. van der Stappen and M. H. Overmars. Motion planning amidst fat obstacles. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 31–40, 1994.

    Google Scholar 

  18. A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels. Motion planning in environments with low obstacle density. Report UU-CS-1997-19, Dept. Comput. Sci., Utrecht Univ., Utrecht, Netherlands, 1997.

    Google Scholar 

  19. Jules Vleugels. On Fatness and Fitness—Realistic Input Models for Geometric Algorithms. Ph.d. thesis, Dept. Comput. Sci., Utrecht Univ., Utrecht, the Netherlands, March 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stefan Arnborg Lars Ivansson

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Berg, M., Katz, M.J., Overmars, M., Frank van der Stappen, A., Vleugels, J. (1998). Models and motion planning. In: Arnborg, S., Ivansson, L. (eds) Algorithm Theory — SWAT'98. SWAT 1998. Lecture Notes in Computer Science, vol 1432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054357

Download citation

  • DOI: https://doi.org/10.1007/BFb0054357

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64682-2

  • Online ISBN: 978-3-540-69106-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics