Skip to main content

Fast and efficient computation of additively weighted Voronoi cells for applications in molecular biology

  • Conference paper
  • First Online:
Algorithm Theory — SWAT'98 (SWAT 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1432))

Included in the following conference series:

Abstract

This paper is concerned with the efficient computation of additively weighted Voronoi cells for applications in molecular biology. We propose a projection map for the representation of these cells leading to a surprising insight into their geometry. We present a randomized algorithm computing one such cell amidst n other spheres in expected time O(n 2 log n). Since the best known upper bound on the complexity such a cell is O(n 2), this is optimal up to a logarithmic factor. However, the experimentally observed behavior of the complexity of these cells is linear in n. In this case our algorithm performs the task in expected time O(n log2 n). A variant of this algorithm was implemented and performs well on problem instances from molecular biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrade, M. V., & Stolfi, J. (1998). Exact Algorithms for Circles on the Sphere. To appear in Proc. 14th Annu. ACM Sympos. Comput. Geom.

    Google Scholar 

  2. Aurenhammer, F. (1987). Power diagrams: properties, algorithms and applications. SIAM J. Comput., 16, 78–96.

    Article  MATH  MathSciNet  Google Scholar 

  3. Aurenhammer, F. (1991). Voronoi diagrams: A survey of a fundamental geometric data structure. ACM Comput. Surv., 23, 345–405.

    Article  Google Scholar 

  4. de Berg, M., Dobrindt, K., & Schwarzkopf, O. (1995). On lazy randomized incremental construction. Discrete Comput. Geom., 14, 261–286.

    MathSciNet  Google Scholar 

  5. Boissonnat, J. D., & Dobrindt, K. T. G. (1996). On-line construction of the upper envelope of triangles and surface patches in three dimensions. Comput. Geom. Theory Appl., 5, 303–320.

    MathSciNet  Google Scholar 

  6. Chazelle, B. (1993). An optimal convex hull algorithm in any fixed dimension. Discrete Comput. Geom., 10, 377–409.

    MATH  MathSciNet  Google Scholar 

  7. Clarkson, K. L., & Shor, P. W. (1989). Applications of random sampling in computational geometry, II, Discrete Comput. Geom., 4, 387–421.

    Article  MathSciNet  Google Scholar 

  8. Gerstein, M., Tsai, J., & Levitt, M. (1995). The Volume of Atoms on the Protein Surface: Calculated from Simulation, using Voronoi Polyhedra. Journal of Molecular Biology, 249, 955–966.

    Article  Google Scholar 

  9. Geysen, H. M., Tainer, J. A., Rodda, S. J., Mason, T. J., Alexander, H., Getzoff, E. D., & Lerner, R. A. (1987). Chemistry of antibody binding to a protein. Science, 235, 1184–1190.

    Google Scholar 

  10. Goede, A., Prei\ner, R., & Frömmel, C. (1997). Voronoi Cell — A new method for the allocation of space among atoms. Journal of Computational Chemistry.

    Google Scholar 

  11. Gschwend, D. A. (1995). Dock, version 3.5. San Francisco: Department of Pharmaceutical Chemistry, University of California.

    Google Scholar 

  12. Guibas, L. J., & Sedgewick, R. (1978). A diochromatic framework for balanced trees. Proc. 19th Annu. Sympos. Foundations of Computer Science. (pp. 8–21).

    Google Scholar 

  13. Halperin, D., & Shelton, C. (1997). A perturbation scheme for spherical arrangements with application to molecular modeling, Proc. 13th Annu. ACM Sympos. Comput. Geom. (pp. 183–192).

    Google Scholar 

  14. Kirkpatrick, D. G. (1983). Optimal search in planar subdivisions. SIAM J. Comput., 12, 28–35.

    Article  MATH  MathSciNet  Google Scholar 

  15. Kleywegt, G. T., & Jones, T. A. (1994). Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallographica, D50, 178–185.

    Google Scholar 

  16. Kyte, J. (1995). Structure in Protein Chemistry. Garland Publishing.

    Google Scholar 

  17. Lawson, C. L. (1977). Software for C1 surface interpolation. In J. R. Rice (Ed.), Math. Software III (pp. 161–194). New York, NY: Academic Press.

    Google Scholar 

  18. Meijering, J. L. (1953). Interface area, edge length, and number of vertices in crystal aggregates with random nucleation: Philips Research Report.

    Google Scholar 

  19. Møller, J. (1992). Random Johnson-Mehl tesselations. Adv. Appl. Prob., 24, 814–844.

    Article  MATH  Google Scholar 

  20. Mulmuley, K. (1994). An Efficient Algorithm for Hidden Surface Removal, II. Journal of Computer and Systems Sciences, 49, 427–453.

    Article  MATH  MathSciNet  Google Scholar 

  21. Okabe, A., Boots, B., & Sugihara, K. (1992). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Chichester, UK: John Wiley & Sons.

    Google Scholar 

  22. Pontius, J., Richelle, J., & Wodak, S. J. (1996). Deviations from Standard Atomic Volumes as a Quality Measure for Protein Crystal Structures. Journal of Molecular Biology, 264, 121–136.

    Article  Google Scholar 

  23. Preparata, F. P., & Hong, S. J. (1977). Convex hulls of finite point sets in two and three dimensions. Comm. ACM 20, (pp. 87–93)

    Article  MathSciNet  Google Scholar 

  24. Ruppert, J. (1993). A New and Simple Algorithm for Quality 2-Dimensional Mesh Generation, Proc. 4th ACM-SIAM Sympos. Discrete Algorithms (pp. 83–92).

    Google Scholar 

  25. Seidel, R. (1993). Backwards analysis of randomized geometric algorithms. In J. Pach (Ed.), New Trends in Discrete and Computational Geometry, (pp. 37–67). Berlin: Springer-Verlag

    Google Scholar 

  26. Tilton, R. F., Singh, U. C., Weiner, S. J., Connolly, M. L., Kuntz, I. D., Kollman, P. A., Max, N., & Case, D. A. (1986). Computational Studies of the interaction of myoglobin and xenon. Journal of Molecular Biology, 192, 443–456.

    Article  Google Scholar 

  27. Yeates, T. O. (1995). Algorithms for evaluating the long range accessability of protein surfaces. Journal of Molecular Biology, 249(4), 804–815.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stefan Arnborg Lars Ivansson

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Will, H.M. (1998). Fast and efficient computation of additively weighted Voronoi cells for applications in molecular biology. In: Arnborg, S., Ivansson, L. (eds) Algorithm Theory — SWAT'98. SWAT 1998. Lecture Notes in Computer Science, vol 1432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054378

Download citation

  • DOI: https://doi.org/10.1007/BFb0054378

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64682-2

  • Online ISBN: 978-3-540-69106-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics