Optimisation of Active Rule Agents Using a Genetic
Algorithm Approach

Evaggelos Nonasind Alexandra Poulovassflis

! Department of Computer Science, King’s College London, Strand,
London WC2R 2LS, U.K.
vagelis@dcs.kcl.ac.uk
? Department of Computer Science, King’s College London, Strand,
London WC2R 2LS, U.K.
alex@dcs.kcl.ac.uk

Abstract. Intelligent agents and active databases have a number
of common characteristics, the most important of which is that
they both execute actions by firing rules upon events occurring
provided certain conditions hold. This paper assumes that the
knowledge of an intelligent agent is expressed using a set of
active rules and proposes a method for optimising the rule-base
of such an agent using a Genetic Algorithm. We illustrate the
applicability of this method by using it to optimise the
performance of a self-adaptive network. The benefits of our
approach are simplified design and reduced development and
maintenance times of rule-based agents in the face of
dynamically evolving environments.

1 Introduction

Beliefs-desires-intentions (BDI) agents have been around for some years now and
have been extensively studied ([5], [9], [11], [2]). A BDI agent has the following
components:

e Beliefs Database: Contains facts about the sate of the world, as well as about the
agent's internal state.

e Desires: Contains agent's goals expressed as conditions over some interval of time
and are described by applying various temporal operators to state descriptions.

e Plans: Actions the agent has to take in order to fulfill its goals. They have an
invocation condition which specifies upon which events the plan should be fired
and a context condition which specifies under what condition the plan applies.

¢ Intentions: Plans that are valid for firing are placed in an intentions structure where
they are executed. They can be hierarchically ordered.

Active databases are also based upon an Event-Action architecture [4]. An active

database system consists of the “traditional” components of a database system plus a

component that is concerned with the firing of ECA (event, condition, action) rules.
The meaning of an ECA rule is: “when an event occurs check the condition and if it is
true execute the action”. There is an event language for defining events and for
specifying composite events from a set of primitive ones. The condition part of an
ECA rule formulates in which state the database has to be, in order for the action to
be executed. The action part of an ECA rule usually starts a new transaction which
when executed may trigger new ECA rules. In this way we can have trees of
triggering and triggered transactions.

Similarities and differences between BDI agents and active databases are discussed
in [1], [12], where characteristics such as events, actions, consistency, query
expressiveness, goal achievement, responsiveness and others are compared. The
most important of their common characteristics is the way actions are executed, in
that upon a certain event occurring, if a condition holds a rule is fired. There may be
cases where more than one rule may be triggered by the same event occurrence. The
system will then select the rule with the highest priority to fire, or will arbitrarily
select a rule to fire if there are more than one with the same priority.

In this paper we assume that the knowledge of an intelligent agent is expressed
using a set of active rules, and that a genetic algorithm determines the “best” rule to
fire if more than one rule is triggered. Genetic algorithms and genetic programming
have been used before in the design of agent systems [8], [10]. The novelty of our
work is that we are using GAs to select the “best” rule to be fired and also to
automatically respond to changes in the environment.

The outline of this paper is as follows: In section 2 GAs are described and their use
in optimising rule based agents is proposed. In section 3 we apply our methods to the
problem of optimising a self-adaptive network. In section 4 some results of our
application are presented. Finally, some conclusions and possible directions for
further research are presented.

2 GAs and Rule-Based Agents

Genetic algorithms ([7], [3], [6]) are methods of solving problems based upon an
abstraction of the process of Natural Selection. They attempt to mimic nature by
evolving solutions to problems rather than designing them. Genetic algorithms work
by analogy with Natural Selection as follows. First, a population pool of
chromosomes is maintained. The chromosomes are strings of symbols or numbers.
They might be as simple as strings of bits - the simplest type of string possible. There
is good precedence for this since humans are defined in DNA using a four-symbol
alphabet. The chromosomes are also called the genotype (the coding of the solution),
as opposed to the phenotype (the solution itself). In the Genetic algorithm we
maintain a pool of chromosomes, which are strings. These chromosomes must be
evaluated for fitness. Poor solutions are purged and small changes are made to
existing solutions. We then allow "natural selection" to take its course, evolving the
gene pool so that steadily better solutions are discovered.

The basic outline of a Genetic Algorithm is as follows:

Initialise pool randomly

for each generation

{

Select good solutions to breed new population
Create new solutions from parents
Evaluate new solutions for fithess

Replace old population with new ones

}

The randomly assigned initial pool is presumably pretty poor. However, successive
generations improve, for a number of reasons:

e Selection. On each generation parents are selected to produce new children. The
selection of parents is biased by fithess, so that fit parents produce more children;
very unfit solutions produce no children. This is known as selection. The genes of
good solutions thus begin to proliferate through the population.

e Mutation. Small changes (mutations) are made to at least some of the newly
created children. Some of these mutations may be harmful. However, this doesn't
matter as bad mutations will soon be purged by selection. Good mutations, on the
other hand, will succeed, causing further increases in fitness.

e Crossover. It combines the genetic material from parents in order to produce
children, during breeding. Since only the good solutions are picked for breeding,
during the selection procedure, the crossover operator mixes the genetic material,
in order to produce children with even greater fitness. For example, if we assume
single point crossover at position 3 two binary chromosomes with values (000000,
111111) will produce (000111, 111000) as children. Moreover, there can be
multiple point crossover.

What we propose here, is an “automatic” way of selecting the best action to
execute upon an event occurring. The action is selected by a genetic algorithm. For
the moment we do not support conditions in our active rules, although we plan to add
a condition part in the future. When an event has occurred the system can take several
actions. For each of possible events, the system holds an ordered set of possible
actions that can be taken when the event occurs. The first action is always selected,
but a genetic algorithm running in parallel may dynamically change the order of the
actions. Obviously this approach requires a measure of the performance of the agent,
which must be available at run-time, to be given to the genetic algorithm.

Since the genetic algorithm controls the way the agents respond to events, we can
say that the reactive behaviour of the agent is controlled by the genetic algorithm.
But there can also be another "level" (the "rational" level) to control the agent,
especially if our architecture is part of an agent built partially using another method

and controlled partially by the constructs this method provides. If for instance the
agent is built conforming to the BDI model, it will have facts, goals, plans and
intentions (plans that have been selected for execution). Some of the plans will be
selected for execution using the traditional approach, but some others using the GA
approach. This rational part of the agent can also control several parameters of the
GA, restart it when needed, or schedule it to be run when the load is low.

Our architecture can also be embedded in more complex systems. When an
event/action language is necessary for the building of an agent type system, our
method can be used for a subset of the events and the actions of the system. This
simplifies the design and reduces testing and maintenance times when compared to a
deterministic rule-set with many conditions and checks.

3 An Example Application: Self-Adaptive Networks

A self adaptive network is a network that can automatically adapt to changes in its
environment without human intervention being necessary. While load conditions
change and nodes and links may fail, the network continues to operate near the
optimum state requiring little or no assistance from its operators. In other words, the
network must be autonomous, intelligent and have distributed control. There should
be no global knowledge for the network. On the contrary all information must be
kept as local as possible.

Our network model is a simple yet powerful one. The network is composed of a
set of nodes and a set of connections between them. Each node can exchange
messages only with the ones it is connected with. There is no global knowledge of
the topology of the network stored in any node. There is a set of services provided by
the network and each node can provide some or all of the services. The task for every
node is to provide the services requested from it with the minimum cost. The cost
can be a function of the number of intermediate nodes and links the service is using,
as well as the load and the spare capacity of those nodes and links respectively.
Obviously, the bigger the number of intermediate nodes and links a service is using,
the bigger the cost for the provision of that service is.

Messages are exchanged between nodes to allow service establishment and service
canceling. Messages can be exchanged only between connected nodes. For the time
being we use three kinds of messages, but we intend to add more in the future. The
first requests a service from a node and has as parameters the requesting node, the
service number as well as the hop-count (number of intermediate nodes the request
has used). Messages with a hop-count greater than a specific number are canceled
automatically, to avoid flooding the network with cyclic or very long requests. The
second type of message concerns the answer to a request for a service. If the service
can be provided, the cost is returned, otherwise the message just rejects the request.
The third kind of message cancels services already provided.

Table 1. A Simple Example

Events Actions

On provide any service Local, Remote
On send request for service|l Send to node 2, Send to node 3, Send to noge 4

On send request for service[2 Send to node 2, Send to node 3, Send to noge 4

On send request for service|3 Send to node 2, Send to node 3, Send to noge 4

In each node of the network there is an agent running which is built using the
proposed architecture. For the time being only the reactive part of the agent has been
built, although in the future we intend to build a rational part, together with event and
action languages. There is a set of events and a set of actions for each event. An
event occurs when a service is requested. There are two actions that can be triggered
for this event: the service can be provided either remotely or locally. When a request
for a service is to be sent to another node a separate event is generated for each
service. The actions corresponding to this event are all the nodes that the requesting
node is connected with. For instance, if node 1 is connected with nodes 2, 3 and 4
and the network provides 3 services, the events and actions for node 1 are shown in
Table 1 (no order is shown, just all the events and all the possible actions for each
event).

A simple genetic algorithm is used to try out several permutations of the rule set
and finally find the best rule set for each node. Permutations of actions for each event
are enumerated and placed in the chromosome one after the other. We define a
correspondence between all possible permutations of the actions for an event and an
integer in the range [0..n!-1], where n is the number of actions. The binary
representation of this number is placed in the chromosome to encode the ordered set
of actions for an event. The whole chromosome is composed of K (where K is the
number of events) numbers placed in it, in their binary representation, one after the
other. In this way one chromosome can encode the rule set with which each agent
works.

Each agent has a chromosome pool which is initially randomly instantiated. Then
the chromosomes in the chromosome pool are evolved by the genetic algorithm to
better solutions. We use a constant population size, selection proportional to fithess

Actions Actions Actions Actions
for Event 1 |for Event 2 |for Event 3 |for Event 4

Fig. 1. Chromosome Encoding

and full replacement of parents by their children. Multiple point crossover is used for
breeding. Crossover points are set at the end of each event in the chromosome. The
chromosome for the example of Table 1 is shown in Figure 1, where arrows show the
positions of the crossover points.

The fitness of each rule is calculated as follows: When a node provides a service to
another node, it also sends to it the cost of this service. This cost, is a function of the
number of intermediate nodes and links the service is using as well as their load and
free capacity respectively. Obviously, when the service is provided locally, the cost is
minimum. Each rule in the chromosome pool is used for service provision for some
time and the costs of the services provided using this rule are averaged. The fitness,
then, for this rule is inversely proportional to this average cost. So the bigger the cost,
the smaller the fitness of the rule and vice-versa.

The current implementation of our architecture is in Borland C++ Builder and runs
under the Win32 platform (Windows 95 and Windows NT). A network simulator as
well as the actual agents running on each node of the network have been built. Finally
the genetic algorithms used by the agents have also been programmed. There is a
graphical user interface that provides for the design of the network, the design of the
rules the agents are using and the fine-tuning of the genetic algorithm that each agent
runs.

4 Experiments and Results

In this section we present some results for several network configurations. In all the
graphs the Y axis shows the average of the mean fithess of the chromosome pools
over all the nodes. The X axis shows the number of generations the genetic algorithm
has been run. While nodes are being trained service requests have a uniform
distribution as far as type of service is concerned, across all nodes. Of course, real
traffic data can ultimately be used for more effective training.

Our first experiment is concerned with a network of 100 nodes and 200 links. The
topology has been randomly created by our software. In total there are 40 services
provided across the network. We examine three different cases with varying service
distribution across nodes. In the first case all 40 services are provided by all the
nodes. In the second case there is a random distribution of services across nodes. The
number of different services provided by each node is drawn randomly from the
range [1..40]. In the third case, services and nodes are split into 5 disjoint sets and
eight services are provided by each node. For example, nodes 1 to 20 provide services
1 to 8, nodes 21 to 40 provide services 9 to 16, etc. Graphs for all three cases are
shown in Figure 2 under the legends Totally Replicated, Random and Partitioned
respectively.

As we would expect, the best performance is achieved when services are totally
replicated across all nodes. The worst performance is achieved when services and
nodes are partitioned into disjoint sets. This is because only a few of the total number
of services can be provided locally, or with a small hop-count. Random distribution
of services results in a performance between the two “extreme” cases.

900
800 -
700 -
600 -
500 -
400 -
300 -
200 -
100 -

0 M

43
57
71
85
99
113
127
141
155
169
183
197
211
225
239

— Totally Replicated —— Random Partitioned

Fig. 2. Varying the Distribution of Services

Our second experiment demonstrates the fault tolerance of the network and its
behaviour is illustrated in Figure 3. There is a network of 11 nodes and 10 services.
10 of the nodes are connected in a ring and provide only 3 services each, which vary
from node to node. The 1hode provides all 10 services and is connected with all
the other nodes. So it is the most important node of the network. The GAs are run and
at generation 150, this 1Inode of the network goes down. We see initially a

600

500 +
400 +
300 +
200 +
100 +

©O© «+d © «H © «d ©

M~ O O N M W0 ©
-
S

181
196
211
226
241

- — -

— Average Fitnes!

Fig. 3. Fault Tolerance Demonstration

decrease in the fitness of the rule-sets in the remaining 10 nodes, since the services
that were provided by node 11 to these nodes cannot now be provided. But the GAs
quickly evolve better rule-sets and their fithess increases again. Not surprisingly, it
cannot be restored to its original value, since services that were before provided in
only one hop-count from node 11 (since node 11 was connected to every other node)
now have to be provided with a bigger hop-count from other nodes.

5 Conclusions

In this paper we have described how sets of active rules can be used to express the
knowledge of intelligent agents, and how a genetic algorithm can be used to
dynamically prioritise rules in the face of dynamically evolving environments. To our
knowledge, this is the first time that GAs have been used for this purpose. We have
illustrated the applicability of our method by using it to optimise the performance of a
self-adaptive network. The advantages of our approach to optimising self-adaptive
networks are apparent: distributed solution, load balancing and sharing, and self
adaptation to varying load conditions and fault situations.

One could argue that the genetic algorithm can find a local optimum and then stop.
This is always a danger with a genetic algorithm, but again it depends on the search
space. In a network where service distribution across nodes is done in such way that
neighbouring nodes have some services in common there are many good solutions
and the genetic algorithm will find one of them. In extreme cases where there is only
one good solution the genetic algorithm may fail, but again it can be restarted by the
rational part of the agent with many chances to find a better solution. Finally, in such
cases the advantages of adaptation, autonomy and distributed operation are more
important than the discovery of the best solution, especially in a dynamic and
continually changing environment where keeping track of global information would
be difficult if not impossible.

One could also argue that this architecture is not powerful enough since it does not
work based on an event/action language. However there is nothing to prevent this
architecture from being a subset of a rich and powerful event/action language. In
such a case it can be used to pick the rule to be fired when there are no other criteria
available for rule selection. In other cases it may be better to let the genetic algorithm
pick the rule to be fired, instead of having many conditions which will complicate
the active rule set and consequently increase design, test and maintenance times.

For further work we plan to construct the rational part of the agent. This too will
be based on active rules. It will schedule, restart and fine tune the genetic algorithm.
It will also feed it with a good initial population and will provide for knowledge
exchange between neighboring nodes. We believe that this combination of
intelligence and heuristic search methods like genetic algorithms will lead to a much
better performance than use of the latter alone.

We will also explore different types of genetic algorithms, for example ones with
overlapping populations such as steady state or incremental GAs. In such cases, we
can have a small replacement percentage, so that the GA could be used for driving the

nodes at real time (once an initial good state has been reached) and not just training
them. The above would be useful mostly for relatively stable environments. We also
plan to investigate other methods for finding the optimum rule set (for example,
neural networks or other heuristic search methods like simulated annealing) and to
formally compare our results with theoretical results obtained by a statistical analysis
of the network.

Acknowledgments

E. Nonas is sponsored by B.T. Laboratories, Systems and Software Unit, Martlesham
Heath, Ipswich.

References

1. J. Bailey, M. Georgeff, D. B. Kemp, and D. Kinny, “Active databases and agent systems ---
A comparison”, Lecture Notes in Computer Science, 985, 342-356, (1995).

2. Michael Bratman, Intention, plans, and practical reason, Harvard University press, 1987.

3. Lawrence Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York,
1991.

4. K. R. Dittrich, S. Gatziu, and A. Geppert, “The active database management system
manifesto: A rulebase of ADBMS features”, Lecture Notes in Computer Science, 985, 3-17,

(1995).
5. Klaus Fischer, Jorg P. Muller, and Markus Pischel, “A pragmatic BDI architecture”, in
Proceedings on the IJCAI Wotksp on Intelligent Agents Il : Agent Theories,

Architectures, and Languages, volume 1037 of LNAI, pp. 203-218, Berlin, (19-20 August
1996). Springer Verlag.

6. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, Reading, Mass., 1989.

7. David Goldberg, Genetic Algorithms, Addison Wesley, Reading, 1989.

8. Thomas Haynes and Sandip Sen, “Evolving behavioral strategies in predators and prey”, in
IJCAI-95 Workshop on Adaptation and Learning in Multiagent Systems, pp. 32-37, (1995).

9. David Kinny, Michael Georgeff, and Anand Rao, “A methodology and modelling technique
for systems of BDI agents”, in Proceedings of the 7th European Wigksn Modelling
Autonomous Agents in a Multi-Agent World, volume 1038 of LNAI, pp. 56-71, Berlin,
(22-25 January 1996). Springer Verlag.

10.Mauro Manela and J. A. Campbell, “Designing good pursuit problems as testbeds for
distributed Al: A novel application of genetic algorithms, in d&edings of the 5th
European Workshop on Modelling Autonomous Agents in a Multi-Agend World
(MAAMAW'93), volume 957 of LNAI, pp. 231-252, Berlin, GER, (August 1995).
Springer.

11.Anand S. Rao and Michael P. Georgeff, “BDI agents: from theory to practice”, in
Proceedings of the First International Conference on Multi—Agent System3124319,
San Francisco, CA, (1995). MIT Press.

12.Johan van den Akker and Arno Siebes, “Enriching active databases with agent technology”,
in Proceedings ot the First International Wdrtgs on Cooperative Information Agents,
volume 1202 of LNAI, pp. 116--125, Berlin, (February26--28 1997). Springer.

