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Abs t r ac t .  We address the problem of robust lip tracking, visual speech 
feature extraction, and sensor integration for audio-visual speech recogni- 
tion applications. An appearance based model of the articulators, which 
represents linguistically important features, is learned from example im- 
ages and is used to locate, track, and recover visual speech information. 
We tackle the problem of joint temporal modelling of the acoustic and 
visual speech signals by applying Multi-Stream hidden Markov models. 
This approach allows the use of different temporal topologies and levels 
of stream integration and hence enables to model temporal dependen- 
cies more accurately. The system has been evaluated for a continuously 
spoken digit recognition task of 37 subjects. 

1 I n t r o d u c t i o n  

Human speech perception is inherently a mul t i -modal  process, which involves 
the analysis of the uttered acoustic signal and which includes higher level know- 
ledge sources such as grammar ,  semantics, and pragmatics.  One information 
source which is mainly used in the presence of acoustic noise is lipreading or 
so-called speechreading. It  is well known that  seeing the talker 's  face in addition 
to audition can improve speech intelligibility, part icularly in noisy environments. 

Automat ic  speech recognition (ASR) has been an active research area for 
several decades, but  in spite of the enormous efforts, the performance of current 
ASR systems is far from the performance achieved by humans.  Most state-of-the- 
art ASR systems make use of the acoustic signal only and ignore the visual speech 
cues. They are therefore susceptible to acoustic noise [15], and essentially all real- 
world applications are subject to some kind of noise. Much research effort in ASR 
has therefore been directed towards systems for noisy speech environments and 
the robustness of speech recognition systems has been identified as one of the 
biggest challenges in future research [9]. 

2 V i s u a l  S p e e c h  F e a t u r e  E x t r a c t i o n  

Facial feature extraction is a difficult problem due to large appearance differ- 
ences across persons and due to appearance variability during speech production. 
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Different illumination conditions and different face positions cause further diffi- 
culties in image analysis. For a real-world application, whether it is in a car, an 
office, or a factory, the system has to be able to deal with these kinds of image 
variability. 

The main approaches for extracting visual speech information from image 
sequences can be grouped into image based, geometric feature based, visual mo- 
tion based, and model based approaches. In the image based approach [34, 6, 30], 
the grey-level image containing the mouth is either used directly or after some 
pre-processing as feature vector. The advantage of this method is that  no data 
is disregarded. The disadvantage is that  it is left to the classifier to learn the 
nontrivial task of finding the generalisation for image variability (translation, 
scaling, 3D rotation, illumination) and linguistic variability ( inter/ intra speaker 
variability). The visual motion based approach [25] assumes that  visual motion 
during speech production contains relevant speech information. This informa- 
tion is likely to be robust to different speakers and to different skin reflectance, 
however, the algorithms usually do not calculate the actual flow field but  the 
visual flow field. A further difficulty consists in the extraction of relevant and 
robust features from the flow field. The geometric feature based approach [27] 
assumes that certain measures such as the height or width of the mouth opening 
are important  features. Their automatic extraction is however not trivial and 
most of these systems have used semi-automatic methods or have painted the 
lips of the talker to facilitate feature extraction. In the model based approach a 
model of the visible speech articulators, usually the lip contours, is built and its 
configuration is described by a small set of parameters.  The advantage is that 
important  features can be represented in a low dimensional space and can often 
be made invariant to translation, scaling, rotation, and lighting. A disadvantage 
is that the particular model used may not consider all relevant speech inform- 
ation. Some of the most successful model based approaches have been based on 
colour information [8, 29, 2], although it was found that  individual chromaticity 
models are necessary for each subject if the method is being used for several 
persons [29]. In comparison, our system [23] is based on grey-level information 
only. A technique which enables lip tracking from different head poses and the 
recovery of 3D lip shape from the 2D view has been described in [2]. 

The system presented here falls into the category of model based feature 
extraction. An important  issue is to choose an appropriate description of the 
visible articulators. We are modelling a physical process, so we could describe 
this process in terms of physical movements and positions of the articulators that  
determine the vocal tract.  Specifically, for visual analysis, we could a t tempt  to 
estimate muscle action from the image such as in [25, 13]. However, the muscu- 
lature of the face is complex, 3D information is not present, muscle motion is not 
directly observable, and there are at least thirteen groups of muscles involved in 
the lip movements alone [18]. We have chosen to use an appearance based model 
of the visual articulators [23] based on point distribution models [11]. 
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2.1 S h a p e  M o d e l l i n g  

The lip shape is represented by the coordinates of a point distribution model, 
outlining the inner and outer lip contour: x = (x0, Y0, xl, Y l , . . . ,  XNs-1, YNs-1) T 
where (xj,yj) are the coordinates of the jth point. A shape is approximated 
by a weighted sum of basis shapes which are obtained by a Karhunen-Lodve 
expansion 

x = ~ +  Psbs  (1) 

where Ps = (p s l , p~2 , - . - , p~T , ) i s  the matr ix of the first T~ (T~ < Ns) column 
eigenvectors corresponding to the largest eigenvalues and bs = (bsl, bs2,.. . ,  bsT,) 
a vector containing the weights for the eigenvectors. 

The approach assumes that  the principal modes are linearly independent, 
although there might be non-linear dependencies present. For objects with non- 
linear behaviour, linear models reduce the specificity of the model and can gener- 
ate implausible shapes, which lead to less robust image search. They also require 
more modes of variation than the true number of degrees of freedom of the ob- 
ject. The specificity of a model can however be improved by a nonlinear process, 
e.g. by nonlinear PCA. 

2.2 I n t e n s i t y  M o d e l l i n g  

Intensity modelling serves two purposes: Firstly, it is used as a mean for a robust 
image representation to be used for image search in locating and tracking lips; 
secondly, it provides visual linguistic features for speech recognition. We there- 
fore need to define dominant image features of the lip contours which we try to 
match with a certain representation of our model, but which also carry important  
speech information. Our solution to this problem is as follows. One dimensional 
grey-level profiles gij of length Np are sampled perpendicular to the contour 
and centred at point j ,  as described in [10]. The profiles of all model points are 
concatenated to construct a global profile vector hi = (gi0, g i l , - . . ,  giN,-l) T of 
dimension Ni = N~Np. Similar to shape modelling, the model intensity can be 
approximated by a weighted sum of basis intensities using a K-L expansion 

m 

h = h + P i b i ,  (2) 

where Pi  = (pil,  p / 2 , . . . ,  PIT,) is the Ni • T/ matr ix of the first T/ (T/ < Ni) 
column eigenvectors corresponding to the largest eigenvalues and bi a vector 
containing the weights for each eigenvector. This approach is related to the local 
grey-level models described in [22] and to the eigen-lips reported in [6]. 

We define image search as finding the shape of the model which maximises 
the posterior probability (MAP) of the model given the observed image Oi: 

P(Oilb,)P(b,)  
b* = arg maxP(b~  IOi) = arg max 

b~ P(Oi) 
(3) 

P(Oi) is independent of bs and can therefore be ignored in the calculation of b*. 
We assume equal prior shape probabilities P (bs )  within certain limits b~,~a~ (e.g. 
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4- 3 s.d.) and zero probabil i ty otherwise. This reduces the MAP to the likelihood 
function which is defined as 

P(Oi]bs) = E 2 = (h - h ) T ( h  - h) - bTb i  (4) 

where bi  can be obtained using 

bi = Pi  T (h - h) (5) 

and where h represents the intensity profile of the image corresponding to the 
model configuration bs.  

Fig. 1. A simple model for T~ = 2 and N i  ---- 3 with mean h = (hl,hT) T and two 
eigenvectors Pl, PT,. The best fit h is the projection of h onto the surface spanned by 
Pl and PT, which results in the residual e r r o r  ET,+I,N,. Constraining all parameters bi 
to stay within a certain limit b,m~= (shaded area) results in the limited fit h and the 
residual error E,. 

Cootes et al. [10] have used the following measure to est imate how well the 
model fits the profile: 

(6) 
j=l 0.5AT, 

where Ai is the eigenvalue corresponding to the ith eigenvector with A{ < Ai+l. 
This measure considers both the distances between the considered modes from 
the mean E1,T (first term) and the distance not explained by the considered 
modes ET+I,N (second term). The notat ion E , ,m refers to the residual error for 
the modes n to m. The relative weighting of both  terms assumes that  the sum 
of squares of residuals are Gaussian distributed and have a variance of 0.5AT,. 
It  has been shown [26] that  the opt imal  value for 0.5AT, is the ari thmetic mean 
of the eigenvalues (AT,+1,. . .  , AN,). Since this measure penalises values far from 
the mean,  it is unlikely to be appropriate  for the application of lip localisation 
and tracking, where the intensities vary considerably for different subjects and 
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Fig. 2. Examples of tip tracking results. The examples demonstrate the robustness of 
the algorithm for appearance variability across subjects (e.g. beards) and appearance 
variability during speech (e.g. visibility of teeth). 

mouth opening. In this case it is more desirable to assign equal prior probabilities 
to instances within a certain limit and to constrain the model parameters to stay 
within these limits. This strategy was implemented here, by using the sum of 
residual square errors E~ as distance measure but forcing all intensity modes to 
stay within certain limits bima,. 

Figure 1 illustrates the different error measures for a simple model with two 
modes of variation. Along the directions Pi for which i < Ti, the weights bi are 
not considered in the error function Ei, but they are constrained to lie within the 
limits bima~ (e.g. 4- 3 s.d.). For the point h the best fit h is the projection of h 
onto the surface spanned by Pl and PT,, resulting in the residual error ET~+I,N~. 
The limited fit tt is obtained by limiting the weight vectors which results in the 
residual error Ei. Examples of tracking results are shown in Fig. 2. 

2.3 F e a t u r e  Extrac t ion  

Psychological studies suggest that  the inner and outer lip contour are important  
visual speech features. The shape parameters b~ obtained from the tracking res- 
ults are therefore used as features for the speech recognition system. Translation, 
rotation and scale parameters are disregarded since they are unlikely to provide 
speech information. The shape features are invariant to translation, rotation 
(2D), scale, and illumination. 

Lip shape information provides only part  of the visual speech information. 
Other information is contained in the visibility of teeth and tongue, protrusion, 
and finer details. The intensity parameters bi of the lip model are therefore used 
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Fig.3.  Learned sequence of quasi-stationary states for the words "one" and "two" 
learned by the HMM. The images represent the mean shape and intensities learned 
from training data of 11 subjects. The images represent the lips, the mouth opening, 
and the skin region around the lips. 

as features to provide information complementary to the shape features. The 
intensity of a 2D image reflects its actual 3D shape and provides information 
not covered by the shape model. In general, the intensity image depends on the 
shape of the object, its reflectance properties, the light source, and the viewing 
angle. For a Lambertian surface the image radiance or brightness It(x, y) at a 
particular point in the image is proportional to the irradiance or illumination 
Ii(x, y) at that  point. The radiance depends on the irradiance of the illumination 
source I i (x ,y)  and the angle 0 between the surface normal and the direction 
toward the illumination source: 

y) = y) cos o for o _> 0. (7) 

This equation directly relates the 3D shape to intensity and is fundamental 
to the methods for recovering shape from shading [20]. The recovery of 3D shape 
from shading is possible under certain constraints, i.e. it is normally assumed that  
the angle of the illumination source is known and that the surface is smooth. For 
our application of the face image, the shape from shading problem becomes very 
difficult. The illumination source is generally not known, the surface is disrupted 
at the oral opening, the oral opening itself is not smooth, and the reflectance 
properties of facial parts are not homogeneous and generally not known. Here, 
the motivation behind the use of intensity information is therefore not to recon- 
struct the 3D shape but to use it to implicitly represent 3D information and to 
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represent information about the position and configuration of facial parts based 
on their individual brightness. 

Much visual speech information is contained in the dynamics of lip move- 
ments rather than the actual shape or intensity. Furthermore, dynamic informa- 
tion is likely to be more robust to linguistic variability, i.e. intensity values of the 
lips and skin will remain fairly constant during speech, while intensity values of 
the mouth opening will vary during speech. On the other hand, intensity values 
of the lips and skin will vary between speakers, but temporal intensity changes 
might be similar for different speakers and robust to illumination. Similar com- 
parisons can be made with shape parameters. Dynamic parameters of the shape 
and intensity vectors were therefore used as additional features. 

The feature extraction method described here has been compared with sev- 
eral image based approaches (low pass filtering, PCA, optical flow) by Gray et 
al. [16] and was found to outperform all of these methods. It was also found 
that  the performance of image-based approaches can be considerably improved 
by the use of the lip tracking results to normalise the images prior to processing. 

Figure 3 displays learned hidden Markov models (HMMs) for the words "one" 
and "two" using extracted visual shape and intensity features from example ut- 
terances of 11 subjects. The images represent the mean images synthesised by the 
shape features and intensity features of HMMs with one Gaussian distribution 
per state. 

3 Audio-Visual  Sensor Integrat ion 

How humans integrate visual and acoustic information is not well understood. 
Several models for human integration have been proposed in the literature. They 
can be divided into early integration (EI) and late integration (LI) models [31]. 
In the EI model, integration is performed in the feature space to form a com- 
posite feature vector of acoustic and visual features. Classification is based on 
this composite feature vector. The model makes the assumption of conditional 
dependence between the modes and is therefore more general than the LI model. 
It can furthermore account for temporal  dependencies between the modes, such 
as the voice-onset-time 1 (VOT) , which are important  for the discrimination of 
certain phonemes. In the LI model, each modali ty is first pre-classified inde- 
pendently of each other. The final classification is based on the fusion of the 
outputs of both modalities by estimating their joint occurrence. In comparison 
with the EI scheme, this method assumes that both data streams are condition- 
ally independent. Furthermore, temporal  information between the channels is 
lost in this approach. AVSR systems based on EI models have for example been 
described in [6, 32] and systems based on LI models in [27, 30]. Although it is 
still not well known how humans integrate different modalities, it is generally 
agreed that  integration occurs before speech is categorised phonetically [5, 31]. 
Furthermore, several studies have shown that  consonants which differ by the 

1 The time delay between the burst sound and the movement of the vocal folds 
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VOT such as "bi" and "pi", are distinguished based on the evidence of both 
modalities [12, 17]. It was concluded that  integration, therefore, must take place 
before phonetic categorisation. In acoustic speech perception, on the other hand, 
there is much evidence that  humans perform partial recognition across different 
acoustic frequency bands [14, 1] which assumes conditional independence across 
bands. The auditory system seems to perform partial recognition which is inde- 
pendent across channels, whereas audio-visual perception seems to be based on 
some kind of early integration, which assumes conditional dependence between 
both modalities. These two hypotheses are controversial since the audio-visual 
theory of early integration assumes that  no partial categorisation is made prior 
to the integration of both modalities. 

The approach described here follows Fletcher's theory of conditional inde- 
pendence [14, 1], but  it also allows the modelling of different levels of syn- 
chrony/asynchrony between the streams and can therefore account for speech 
features like the VOT, which otherwise can only be modelled by an EI integra- 
tion model. Tomlinson et al. [32] have already addressed the issue of asynchrony 
between the visual and acoustic streams by the use of HMM decomposition. 
Under the independence assumption, composite models were defined from in- 
dependently trained audio and visual models. Although our work is strongly 
related with [32], it allows to consider different recombination formalisms and 
enables the decoding of continuous speech. Moreover, the scope of asynchrony 
between the two streams was here extended from the phone level to the word 
level. 

The bimodal speech signal can be considered as an observation vector con- 
sisting of acoustic and visual features. According to Bayesian decision theory, a 
maximum posterior probability classifier (MAP) can be denoted by 

p ( o  a, 0 ~ IA)P(A) 
A* = argmAaxP(A[Oa, OV ) = p ( o a , o ~ )  (8) 

where A represents a particular word string, O a represents the sequence of acous- 
tic feature vectors O ~ = o~(1), oa (2 ) , . . . ,  oa(T)  and O v the sequence of visual 
feature  vectors  O v = o" (1), o" ( 2 ) , . . . ,  o" (T) .  If  the  two modal i t i es  are independ-  
ent, the likelihood P(O a, 0 v IAi) becomes 

P(O ~, OVlA) = P(OalA)P(O~IA). (9) 

Previous AVSR systems based on conditional independence have essentially 
addressed the problem of isolated word recognition. Most of these contributions 
were mainly focused on finding an appropriate automatic weighting scheme so 
as to guarantee good performance in a wide range of acoustic signal-to-noise ra- 
tios. Compared to isolated word recognition, the problem of continuous speech 
recognition is more tricky as we do not want to wait until the end of the spoken 
utterance before recombining the streams. This introduces a time delay and it 
also requires to generate N-best hypothesis lists for the two streams. Indeed, one 
can only recombine the scores from identical hypothesis. As the best hypothesis 
for the acoustic stream is not necessarily the same as the best hypothesis for the 
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visual stream, techniques such as N-best lists are required. Identical hypothesis 
must then be matched to recombine the scores from the two streams. An altern- 
ative approach would be to generate an N-best list for one of the two streams, 
to compute the score of these best hypothesis for the other stream, and finally 
to recombine the scores. 

The Multi-Stream approach, proposed in this work, does not require to use 
such an N-best scheme. As we will show, it is an interesting candidate for mul- 
t imodal continuous speech recognition as it allows for: (1) synchronous mul- 
t imodal continuous speech recognition, (2) asynchrony of the visual and acoustic 
streams with the possibility to define phonological resynchronisation points, (3) 
specific audio and video word or sub-word HMM topologies. 

3.1 M u l t i - S t r e a m  S t a t i s t i c a l  M o d e l  

The Multi-Stream approach [4, 3] used in this work is a principled way for mer- 
ging different sources of information using cooperative HMMs 2. If the streams 
are supposed to be entirely synchronous, they may be accommodated simply. 
However, it is often the case that  the streams are not synchronous, that  they do 
not even have the same frame rate, and it might be necessary to define models 
that  do not have the same topology. The Multi-Stream approach allows to deal 
with this. In this framework, the input streams are processed independently of 
each other up to certain anchor points where they have to synchronise and re- 
combine their partial segment-based likelihoods. While the phonological level of 
recombination has to be defined a priori, the optimal temporal  anchor points are 
obtained automatically during recognition. 

l 1 

( ~ ) =  Recombination at the sub-unit level 

Fig. 4. General form of a K-stream model with anchor-points between speech units, 
forcing synchrony between the streams. 

An observation sequence O, representing the utterance to be recognised, is 
assumed to be composed of K input streams Xk (possibly with different frame 
rates). A hypothesised model M associated with O is built by concatenating 

2 A different framework for more general networks has also been proposed in [21]. 



666 

J sub-unit models Mj (j = 1 , . . . ,  J)  associated with the phonological level at 
which we want to perform the recombination of the input streams (e.g., syl- 
lables). To allow the processing of each of the input streams independently of 
each other up to the pre-defined sub-unit boundaries each sub-unit model Mj 
is composed of parallel models Mj k (possibly with different topologies). These 
models are forced to recombine their respective segmental scores at some tem- 
poral anchor points. The resulting model is illustrated in Fig. 4. In this model 
we note that: 

- The parallel HMMs, associated with each of the input streams, do not ne- 
cessarily have the same topology. 

- The recombination state (~) in Figure 4) is not a regular HMM state since it 
will be responsible for recombining probabilities (or likelihoods) accumulated 
over the same temporal segment for all the streams. 

The recombination has to be done for all possible segmentation points. The 
problem appears to be similar to the continuous speech recognition problem 
where all of the concurrent word segmentations, as well as all of the phone 
segmentations, must be hypothesised. However, as recombination concerns sub- 
unit paths that  must begin at the same time, and as the best state path is not 
the same for all of the sub-stream models, (even if the topologies are the same), 
it is necessary to keep track of the dynamic programming paths for all of the 
sub-unit starting points. Hence, an approach such as the asynchronous two-level 
dynamic programming, or a synchronous formulation of it, is required. 

Alternatively, composite models can be used in the same spirit as HMM 
decomposition [33]. The HMM decomposition algorithm is a time-synchronous 
Viterbi search which allows the decomposition of a single stream (speech signal) 
into two independent components (typically speech and noise), each component 
being modelled by its own set of HMMs. Composite states are defined for each 
of the combined model states of the different components. This allows to use a 
classical Viterbi decoding as far as observation probabilities for the combined 
states can be computed. This idea was exploited in this work to replace the multi- 
dimensional search (required for decoding using the model in Figure 4) by a one- 
dimensional search. Composite sub-unit models are built up from corresponding 
sub-unit models from each stream. This allows to implement independent search 
within sub-units as well as inter-units synchrony constraints. 

As discussed in [3], the training and recognition problems (including auto- 
matic segmentation and recombination) can be coined into different statistical 
formalisms based on likelihoods or posterior probabilities and using linear or 
nonlinear recombination schemes. During recognition, we will have to find the 
best sentence model according to (8). 

In this work, recombination of the independent likelihoods is done linearly, by 
multiplying segment likelihoods from the two streams, thus assuming conditional 
independence of the visual and acoustic streams. This was done according to: 

P (O  a, OV]A) = p(oalAa)~P(OVlAV)(1-w), (10) 
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Fig. 5. Mapping between the optimal recombination weight w and the acoustic SNR. 

The weighting factor w represents the reliability of the modalities which 
generally depends on the presence of acoustic or visual noise. IIere we estimate 
the optimal weighting factor on the development set which is subject to the 
same noise as the test set. Another possibility is to estimate the sound-noise 
ratio (SNR) from the test data and adjust the weighting factor accordingly. 
Figure 5 displays the mapping between the SNR and the weighting factor found 
in our experiments. It can be seen that the optimal weight is related almost 
linearly to the SNR ratio and can easily be estimated from it. 

4 Speech Recogni t ion  Exper iment s  

The M2VTS audio-visual database [28] was used for all experiments. This data- 
base is publicly available and hence allows the comparison of algorithms by other 
researchers. It contains 185 recordings of 37 subjects (12 females and 25 males). 
Each recording contains the acoustic and the video signal of the continuously 
pronounced French digits from zero to nine. Five recordings have been taken 
of each speaker, at one week intervals to account for minor face changes like 
beards. For each person, the shot with the largest imperfection was labelled as 
shot 5. This shot differs from the others in face variation (head tilted, unshaved 
beards), voice variation (poor voice SNR) or shot imperfections (poor focus, dif- 
ferent zoom factor). Additional imperfections apart from those of shot 5 are due 
to some people who were smiling while speaking. The video sequences consist of 
286*360 pixel colour images with a 25 tIz frame rate and the audio track was 
recorded at a 48 kHz sampling frequency and 16 bit PCM coding. The database 
contains a total of over 27,000 colour images which were converted to grey-level 
images for the experiments reported here. 

Although the M 2 V T S  database is one of the largest databases of its type, it 
is still relatively small compared to reference audio databases used in the field 
of speech recognition. To increase the significance level of our experiments, we 
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used a jack-knife approach. Five different cuts of the database were used. Each 
cut consisted of: 

- 3 pronunciations from the 37 speakers as training set. 
- 1 pronunciation from the 37 speakers as development set. It was used to 

optimise the weighting coefficients between ahdio and video streams. 
- 1 pronunciation from the 37 speakers as test set. 

This procedure allowed to use the whole database as test set (185 utterances) 
by developing five independent speech recognition systems for each of the com- 
pared approaches. These systems could be qualified as multi-speaker (but speaker 
dependent) continuous digit recognition systems. We note here that  the digit 
sequence to be recognised is always the same (digits from '0' to '9'). This some- 
what simplify the task of the speech recognition system which always "see" the 
pronounced words in the same context. 

4.1 A c o u s t i c  S p e e c h  Recognition 

The audio stream was first down sampled to 8 kHz. We used perceptual linear 
prediction (PLP) parameters [19] computed every 10 ms on 30 ms sample frames. 
The complete feature vectors consisted of 25 parameters: 12 PLP coefficients, 12 
APLP coefficients and the Aenergy. 

We used left-right digit HMMs with between 3 and 9 independent states, 
depending on the digit mean duration. This yielded a total of 52 states. The 
digit sequences were first segmented into digits using standard Viterbi align- 
ment with a HMM based recogniser trained on the SWISS-FRENCH POLYPHONE 
database [7] of 5000 speakers. Each M 2 V T S  digit was then linearly segmen- 
ted according to the number of states of the corresponding HMM model. This 
segmentation was used to train the HMM states which were represented by a 
mixture of two multidimensional Gaussian distributions with diagonal covariance 
matrices, yielding to 5200 parameters. 

System training and tests were then performed according to the database 
partitioning described earlier using the Viterbi algorithm. Results are summar- 
ised in Figure 8 for clean speech as well as for speech corrupted by additive 
white noise with different signal-to-noise ratios. As can be observed, recognition 
performance is severely affected by additive noise, even at such moderate noise 
levels. 

4.2 V i s u a l  Speech Recognition 

The most dominant 12 shape features and 12 intensity features, described earlier, 
were used for the recogniser. These features were complemented by 24 temporal 
difference parameters (delta parameters). We used the same HMM topologies 
and the same initial segmentation as for the previously described acoustic-based 
recognition system. In this case, the HMM-states were represented by a single 
multidimensional Gaussian distribution with diagonal covariance matrix.  



669 

The mean error rate for the five database cuts defined earlier was 44.0%. 
Since the visual signal only provides partial information, the error rate for the 
video-based system was considerably lower than for the audio-based system. 
This is mainly due to the high visual similarity of certain digits like "quatre" ,  
"cinq", "six", and "sept",  which accounted for about half of the errors. Most of 
the other errors were deletion errors (i.g. fewer words than the actual number of 
words were recognised) which are also likely to be due to the high similarity of 
visually confusable digit models. A more detailed analysis can be found in [24]. 

4.3 A u d i o - V i s u a l  S p e e c h  R e c o g n i t i o n  

Audio-Visual speech recognition was experimentally investigated and 2 kinds of 
model topologies were compared. These were based on the HMM word topologies 
used in the two previous sections. The differences between the models lay in the 
possible asynchrony of the visual stream with respect to the acoustic stream. 

The first model (MODEL 1) did not allow for any asynchrony between the 
two streams. It corresponds to a Multi-Stream model with recombination at the 
state level and allows to use fusion criteria that  can weight differently the two 
streams according to their respective reliability. 

Fig. 6. Multi-Stream model for Audio-Visual speech recognition with optional silence 
states. 

The second model (MODEL 2) was a Multi-Stream model with recombination 
of the streams at the word level. This model thus allows the dynamic program- 
ming paths to be independent from the beginning up to the end of the words. 
This relaxes the assumption of piecewise stationarity by allowing the stationar- 
ity of the two streams to occur on different time regions, while still forcing the 
modalities to resynchronise at word boundaries. This also accounts for the pos- 
sible asynchrony of the streams inherent to the production mechanism. Indeed, 
lip movements and changes in the vocal tract  shape are only synchronous up to 
a certain point. 

MODEL 2 also allows the transition from silence to speech and from speech 
to silence to occur at different t ime instants for the two streams 3. Indeed, lip 

3 'Visual silence' could be defined as a portion of the visual signal that doesn't carry 
any relevant linguistic information. 
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Fig. 7. Acoustic spectrogram (evolution of the critical band energies) and evolution of 
the first visual shape parameter for a portion ('0' to '8') of an M2VTS utterance. 

movement can occur before and after sound production and conversely. Figure 7 
shows in parallel a speech spectrogram as well as the evolution of the first visual 
shape parameter,  mainly representing the changes in the position of the lower lip 
contour [23]. It can clearly be seen that  the two signals are partially in synchrony 
and partially asynchronous. Ideally, we would like to have a model which forces 
the streams to be synchronous where synchrony occurs and asynchronous where 
the signals are typically in asynchrony. MODEL 2 is presented in Figure 6. 

Table 1. Word error rate of acoustic-, visual- and acoustic-visual-based (MODEL 2) 
speech recognition systems on clean speech. 

System Video Audio[Audio-Visual I 
Error rate 43.9% 3.4% 2.6% I 

We used the same parameterisation schemes as in the two previous sections. 
However, as the visual frame rate (25 Hz) is a quarter of the acoustic frame rate, 
visual vectors were added at the frame level (by copying frames), so that  both 
signals were synchronously available. 

Results are summarised in Figure 8 for different levels of noise degradation. 
In the case of clean speech, using visual information, in addition to the acoustic 
signal, does not yield significant performance improvements (see Table 1). The 
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Fig. 8. This graph presents the results obtained after embedded training for the visual 
models, the acoustic models, and the two audio-visuai models. All models were trained 
on clean speech only. The solid line represents the acoustic system, the dashed line 
MODEL1 and the dotted line MODEL2. The horizontal line represents the performance 
of the visuai-only system. 

confidence level of the hypothesis test was 0.95. In the case of speech corrupted 
with additive stationary Gaussian white noise, significant performance improve- 
ment can be obtained by using the visual stream as an additional information 
source. The results also clearly show that we can get a significant performance 
improvement with MODEL2 compared to MODEL1 by allowing the acoustic and 
visual decoding paths to be asynchronous and by the inclusion of "silence mod- 
els". 

5 C o n c l u s i o n s  

We have described an approach based on appearance based models for robust 
lip tracking and feature extraction. This method allows robust lip tracking in 
grey-level images for a broad range of subjects and without the need of lipstick 
or other visual aids. Visual speech information is compactly represented in the 
form of shape and intensity parameters. Visual speech recognition experiments 
have demonstrated that  this technique leads to robust multi-speaker continuous 
speech recognition. 

We have presented a framework for the fusion of acoustic and visual informa- 
tion for speech recognition based on the Multi-Stream approach. Several signific- 
ant advances have been achieved by this approach. Firstly, the method enables 
synchronous audio-visual decoding of continuous speech and we have presented 
one of the first continuous audio-visual speech recognition experiments. Secondly, 
it allows for asynchronous modelling of the two streams, which is inherent in the 
acoustic and visual speech signal and which has been shown to lead to more 
accurate modelling and to improved performance. Thirdly, the approach allows 
to design specific audio-visual word or sub-word topologies, including "silence 
models", which leads to more accurate audio-visual models. 
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