Skip to main content

On existentially first-order definable languages and their relation to NP

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1443))

Included in the following conference series:

Abstract

Under the assumption that the Polynomial-Time Hierarchy does not collapse we show that a regular language L determines NP as an unbalanced polynomial-time leaf language if and only if L is existentially but not quantifierfree definable in FO[<, min, max, −1, +1]. The proof relies on the result of Pin & Weil [PVV97] characterizing the automata of existentially first-order definable languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Beigel, J. Gill: Counting classes: thresholds, parity, mods, and fewness, Theoretical Computer Science 103, 1992, pp. 3–23.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Blass, Y. Gurevich: On the unique satisfiability problem, Information and Control 55, 1982, pp. 80–88.

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Borchert: On the acceptance power of regular languages, Theoretical Computer Science 148, 1995, pp. 207–225.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. P. Bovet, P. Crescenzi, R. Silvestri: A uniform approach to define complexity classes, Theoretical Computer Science 104, 1992, pp. 263–283.

    Article  MATH  MathSciNet  Google Scholar 

  5. H.-J. Burtschick, H. Vollmer: Lindström Quantifiers and Leaf Language Definability, ECCC Report TR96-005, 1996.

    Google Scholar 

  6. J.-Y. Cai, T. Gondermann, J. Hartmanis, L. A. Hemachandra, V. Sewelson, K. Wagner, G. Wechsung: The Boolean Hierarchy I: structural properties, SIAM Journal on Computing 17, 1988, pp. 1232–1252

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Chang, J. Kadin, P. Hohatgi: On unique satisfiability and the threshold behavior of randomized reductions, Journal of Computer and System Science 50, 1995, pp. 359–373.

    Article  MATH  MathSciNet  Google Scholar 

  8. U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, K. Wagner: On the power of polynomial-time bit-computations, Proc. 8th Structure in Complexity Theory Conference, 1993, pp. 200–207

    Google Scholar 

  9. R. McNaughton, S. Papert: Counter-Free Automata, MIT Press, Cambridge, MA, 1971.

    Google Scholar 

  10. D. Perrin, J.-E. Pin: First-order logic and Star-free sets, J. of Computer and System Sciences 32, 1986, pp. 393–406.

    Article  MATH  MathSciNet  Google Scholar 

  11. J.-E. Pin, P. Weil: Polynomial closure and unambiguous product, Theory of Computing Systems 30, 1997, pp. 1–39.

    Article  MathSciNet  Google Scholar 

  12. H. Straubing: Finite Automata, Formal Logic, and Circuit Complexity, Birkhäuser, Boston, 1994.

    Google Scholar 

  13. W. Thomas: Classifying regular events in symbolic logic, Journal of Computer and System Sciences 25, 1982, pp. 300–376.

    Article  Google Scholar 

  14. S. Toda: PP is as hard as the Polynomial-Time Hierarchy, SIAM Journal on Computing 20, 1991, pp. 865–877.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kim G. Larsen Sven Skyum Glynn Winskel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borchert, B., Kuske, D., Stephan, F. (1998). On existentially first-order definable languages and their relation to NP. In: Larsen, K.G., Skyum, S., Winskel, G. (eds) Automata, Languages and Programming. ICALP 1998. Lecture Notes in Computer Science, vol 1443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055037

Download citation

  • DOI: https://doi.org/10.1007/BFb0055037

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64781-2

  • Online ISBN: 978-3-540-68681-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics