Skip to main content

An algebraic approach to communication complexity

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1443))

Included in the following conference series:

Abstract

Let M be a finite monoid: define C(k)(M) to be the maximum number of bits that need to be exchanged in the k-party communication game to decide membership in any language recognized by M. We prove the following:

  1. a)

    If M is a group then, for any k, C(k)(M) = O(1) if M is nilpotent of class k − 1 and C(k)(M) = θ(n) otherwise.

  2. b)

    If M is aperiodic, then C(2)(M) = O(1) if M is commutative, C(2)(M) = θ(log n) if M belongs to the variety DA but is not commutative and C(2)(M) = θ(n) otherwise.

We also show that when M is in DA, C(k)(M) = O(1) for some k and conjecture that this algebraic condition is also necessary.

Research supported by FCAR and NSERC grants. We would like to thank Peter Bro Miltersen of the University of Aarhus, Denmark for his ideas and comments, that helped us improve some of our lower bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. J. Comput. Syst. Sci., 45(2):204–232, Oct. 1992.

    Article  MATH  MathSciNet  Google Scholar 

  2. D. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, Feb. 1989.

    Article  MATH  MathSciNet  Google Scholar 

  3. D. A. M. Barrington, H. Straubing, and D. Thérien. Non-uniform automata over groups. Information and Computation, 89(2):109–132, Dec. 1990.

    Article  MATH  MathSciNet  Google Scholar 

  4. D. A. M. Barrington and D. Thérien. Finite monoids and the fine structure of NC1. Journal of the ACM, 35(4):941–952, Oct. 1988.

    Article  Google Scholar 

  5. A. K. Chandra, M. L. Furst, and R. J. Lipton. Multi-party protocols. In Proc. 15th ACM STOC, pages 94–99, 1983.

    Google Scholar 

  6. S. Eilenberg. Automata, Languages and Machines, volume B. Academic Press, 1976.

    Google Scholar 

  7. V. Grolmusz. Separating the communication complexities of MOD m and MOD p circuits. In Proc. 33rd IEEE FOCS, pages 278–287, 1992.

    Google Scholar 

  8. V. Grolmusz. A weight-size trade-off for circuits and MOD m gates. In Proc. 26th ACM STOC, pages 68–74, 1994.

    Google Scholar 

  9. J. Håstad and M. Goldmann. On the power of small-depth threshold circuits. In Proc. 31st IEEE FOCS, volume II, pages 610–618, 1990.

    Google Scholar 

  10. M. Karchmer and A. Wigderson. Monotone circuits for connectivity require superlogarithmic depth. In Proc. 20th ACM STOC, pages 539–550, 1988.

    Google Scholar 

  11. E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.

    Google Scholar 

  12. L. Lovász. Communication complexity: a survey. Technical Report CS-TR-204-89, Princeton University, 1989.

    Google Scholar 

  13. P. McKenzie, P. Péladeau, and D. Thérien. NC1: The automata theoretic viewpoint. Computational Complexity, 1:330–359, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  14. J.-E. Pin. Varieties of formal languages. North Oxford Academic Publishers Ltd, London, 1986.

    Google Scholar 

  15. J.-é. Pin, H. Straubing, and D. Thérien. Locally trivial categories and unambiguous concatenation. J. Pure Applied Algebra, 52:297–311, 1988.

    Article  MATH  Google Scholar 

  16. R. Raz and P. McKenzie. Separation of the monotone NC hierarchy. In Proc. 38th IEEE FOCS, 1997.

    Google Scholar 

  17. M. Szegedy. Functions with bounded symmetric communication complexity, programs over commutative monoids, and ACC. J. Comput. Syst. Sci., 47(3):405–423, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Thérien. Subword counting and nilpotent groups. In L. Cummings, editor, Combinatorics on Words: Progress and Perspectives, pages 195–208. Academic Press, 1983.

    Google Scholar 

  19. D. Thérien. Programs over aperiodic monoids. Theoretical Computer Science, 64(3):271–280, 29 May 1989.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. C. Yao. Some complexity questions related to distributive computing. In Proc. 11th ACM STOC, pages 209–213, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kim G. Larsen Sven Skyum Glynn Winskel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Raymond, JF., Tesson, P., Thérien, D. (1998). An algebraic approach to communication complexity. In: Larsen, K.G., Skyum, S., Winskel, G. (eds) Automata, Languages and Programming. ICALP 1998. Lecture Notes in Computer Science, vol 1443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055038

Download citation

  • DOI: https://doi.org/10.1007/BFb0055038

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64781-2

  • Online ISBN: 978-3-540-68681-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics