Abstract
Let M be a finite monoid: define C(k)(M) to be the maximum number of bits that need to be exchanged in the k-party communication game to decide membership in any language recognized by M. We prove the following:
-
a)
If M is a group then, for any k, C(k)(M) = O(1) if M is nilpotent of class k − 1 and C(k)(M) = θ(n) otherwise.
-
b)
If M is aperiodic, then C(2)(M) = O(1) if M is commutative, C(2)(M) = θ(log n) if M belongs to the variety DA but is not commutative and C(2)(M) = θ(n) otherwise.
We also show that when M is in DA, C(k)(M) = O(1) for some k and conjecture that this algebraic condition is also necessary.
Research supported by FCAR and NSERC grants. We would like to thank Peter Bro Miltersen of the University of Aarhus, Denmark for his ideas and comments, that helped us improve some of our lower bounds.
Preview
Unable to display preview. Download preview PDF.
References
L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. J. Comput. Syst. Sci., 45(2):204–232, Oct. 1992.
D. A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, Feb. 1989.
D. A. M. Barrington, H. Straubing, and D. Thérien. Non-uniform automata over groups. Information and Computation, 89(2):109–132, Dec. 1990.
D. A. M. Barrington and D. Thérien. Finite monoids and the fine structure of NC1. Journal of the ACM, 35(4):941–952, Oct. 1988.
A. K. Chandra, M. L. Furst, and R. J. Lipton. Multi-party protocols. In Proc. 15th ACM STOC, pages 94–99, 1983.
S. Eilenberg. Automata, Languages and Machines, volume B. Academic Press, 1976.
V. Grolmusz. Separating the communication complexities of MOD m and MOD p circuits. In Proc. 33rd IEEE FOCS, pages 278–287, 1992.
V. Grolmusz. A weight-size trade-off for circuits and MOD m gates. In Proc. 26th ACM STOC, pages 68–74, 1994.
J. Håstad and M. Goldmann. On the power of small-depth threshold circuits. In Proc. 31st IEEE FOCS, volume II, pages 610–618, 1990.
M. Karchmer and A. Wigderson. Monotone circuits for connectivity require superlogarithmic depth. In Proc. 20th ACM STOC, pages 539–550, 1988.
E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1997.
L. Lovász. Communication complexity: a survey. Technical Report CS-TR-204-89, Princeton University, 1989.
P. McKenzie, P. Péladeau, and D. Thérien. NC1: The automata theoretic viewpoint. Computational Complexity, 1:330–359, 1991.
J.-E. Pin. Varieties of formal languages. North Oxford Academic Publishers Ltd, London, 1986.
J.-é. Pin, H. Straubing, and D. Thérien. Locally trivial categories and unambiguous concatenation. J. Pure Applied Algebra, 52:297–311, 1988.
R. Raz and P. McKenzie. Separation of the monotone NC hierarchy. In Proc. 38th IEEE FOCS, 1997.
M. Szegedy. Functions with bounded symmetric communication complexity, programs over commutative monoids, and ACC. J. Comput. Syst. Sci., 47(3):405–423, 1993.
D. Thérien. Subword counting and nilpotent groups. In L. Cummings, editor, Combinatorics on Words: Progress and Perspectives, pages 195–208. Academic Press, 1983.
D. Thérien. Programs over aperiodic monoids. Theoretical Computer Science, 64(3):271–280, 29 May 1989.
A. C. Yao. Some complexity questions related to distributive computing. In Proc. 11th ACM STOC, pages 209–213, 1979.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Raymond, JF., Tesson, P., Thérien, D. (1998). An algebraic approach to communication complexity. In: Larsen, K.G., Skyum, S., Winskel, G. (eds) Automata, Languages and Programming. ICALP 1998. Lecture Notes in Computer Science, vol 1443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055038
Download citation
DOI: https://doi.org/10.1007/BFb0055038
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64781-2
Online ISBN: 978-3-540-68681-1
eBook Packages: Springer Book Archive