Skip to main content

Compact encodings of planar graphs via canonical orderings and multiple parentheses

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1443))

Included in the following conference series:

Abstract

We consider the problem of coding planar graphs by binary strings. Depending on whether O(1)-time queries for adjacency and degree are supported, we present three sets of coding schemes which all take linear time for encoding and decoding. The encoding lengths are significantly shorter than the previously known results in each case.

Research supported in part by NSF Grant CCR-9205982.

Research supported in part by NSF Grant CCR-9531028.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Bell, J. G. Cleary, and I. Witten, Text Compression, Prentice-Hall, 1990.

    Google Scholar 

  2. D. R. Clark, Compact Pat Tree, PhD thesis, University of Waterloo, 1996.

    Google Scholar 

  3. H. D. Fraysseix, J. Pach, and R. Pollack, How to draw a planar graph on a grid, Combinatorica, 10 (1990), pp. 41–51.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Galperin and A. Wigderson, Succinct representations of graphs, Information and Control, 56 (1983), pp. 183–198.

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Itai and M. Rodeh, Representation of graphs, Acta Informatica, 17 (1982), pp. 215–219.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. Jacobson, Space-efficient static trees and graphs, in proc. 30th FOCS, 30 Oct.–1 Nov. 1989, pp. 549–554.

    Google Scholar 

  7. S. Kannan, N. Naor, and S. Rudich, Implicit representation of graphs, SIAM Journal on Discrete Mathematics, 5 (1992), pp. 596–603.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Kant, Drawing planar graphs using the lmc-ordering (extended abstract), in proc. 33rd FOCS, 24–27 Oct. 1992, pp. 101–110.

    Google Scholar 

  9. -, Algorithms for Drawing Planar Graphs, PhD thesis, Univ. of Utrecht, 1993.

    Google Scholar 

  10. G. Kant and X. He, Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems, TCS 172 (1997), pp. 175–193.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Y. Kao, M. Fürer, X. He, and B. Raghavachari, Optimal parallel algorithms for straight-line grid embeddings of planar graphs, SIAM Journal on Discrete Mathematics, 7 (1994), pp. 632–646.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Y. Kao and S. H. Teng, Simple and efficient compression schemes for dense and complement graphs, in Fifth Annual Symposium on Algorithms and Computation, LNCS 834, Beijing, China, 1994, Springer-Verlag, pp. 201–210.

    Google Scholar 

  13. K. Keeler and J. Westbrook, Short encodings of planar graphs and maps, Discrete Applied Mathematics, 58 (1995), pp. 239–252.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. I. Munro, Tables, in proc. of 16th Conf. on Foundations of Software Technology and Theoret. Comp. Sci., LNCS 1180, 1996, Springer-Verlag, pp. 37–42.

    Google Scholar 

  15. J. I. Munro and V. Raman, Succinct representation of balanced parentheses, static trees and planar graphs, in proc. 38th FOCS 20–22 Oct. 1997.

    Google Scholar 

  16. M. Naor, Succinct representation of general unlabeled graphs, Discrete Applied Mathematics, 28 (1990), pp. 303–307.

    Article  MATH  MathSciNet  Google Scholar 

  17. C. H. Papadimitriou and M. Yannakakis, A note on succinct representations of graphs, Information and Control, 71 (1986), pp. 181–185.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. Schnyder, Embedding planar graphs on the grid, in Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms, 1990, pp. 138–148.

    Google Scholar 

  19. G. Turán, On the succinct representation of graphs, Discrete Applied Mathematics, 8 (1984), pp. 289–294.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kim G. Larsen Sven Skyum Glynn Winskel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chuang, R.CN., Garg, A., He, X., Kao, MY., Lu, HI. (1998). Compact encodings of planar graphs via canonical orderings and multiple parentheses. In: Larsen, K.G., Skyum, S., Winskel, G. (eds) Automata, Languages and Programming. ICALP 1998. Lecture Notes in Computer Science, vol 1443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055046

Download citation

  • DOI: https://doi.org/10.1007/BFb0055046

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64781-2

  • Online ISBN: 978-3-540-68681-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics