Abstract
Proof systems for weak bisimulation congruences in the finite-control π-calculus are presented and their completeness proved. This study consists of two major steps: first complete proof systems for guarded recursions arc obtained; then sound laws sufficient to remove any unguarded recursions are formulated. These results lift Milner's axiomatisation for observation congruence in regular pure-CCS to the π-calculus. The completeness proof relies on the symbolic bisimulation technique.
Supported by grants from the National Science Foundation of China and the Chinese Academy of Sciences.
Preview
Unable to display preview. Download preview PDF.
References
Michele Boreale and Rocco De Nicola. A symbolic semantics for the π-calculus. Information and Computation, 126(1):34–52, 1996.
M. Dam. Model checking mobile processes. Information and Computation, 129:35–51, 1996.
M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science, 138:353–389, 1995.
H. Lin. Symbolic bisimulations and proof systems for the π-calculus. Report 7/94, Computer Science, University of Sussex, 1994.
H. Lin. Complete inference systems for weak bisimulation equivalences in the π-calculus. In TAPSOFT'95, LNCS 915. Springer-Verlag, 1995.
H. Lin. Unique fixpoint induction for the π-calculus. In CONCUR'95, LNCS 962. Springer-Verlag, 1995.
R. Milner. A complete inference system for a class of regular behaviours. J. Computer and System Science, 28:439–466, 1984.
R. Milner. A complete axiomatisation for observational congruence of finite-state behaviours. Information and Computation, 81:227–247, 1989.
R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses, part I,II. Information and Computation, 100:1–77, 1992.
J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi. Information and Computation, 120(2):174–197, 1995.
Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta Information, 33:69–97, 1996.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lin, H. (1998). Complete proof systems for observation congruences in finite-control π-calculus. In: Larsen, K.G., Skyum, S., Winskel, G. (eds) Automata, Languages and Programming. ICALP 1998. Lecture Notes in Computer Science, vol 1443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055074
Download citation
DOI: https://doi.org/10.1007/BFb0055074
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64781-2
Online ISBN: 978-3-540-68681-1
eBook Packages: Springer Book Archive