Skip to main content

Complete proof systems for observation congruences in finite-control π-calculus

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1443))

Included in the following conference series:

Abstract

Proof systems for weak bisimulation congruences in the finite-control π-calculus are presented and their completeness proved. This study consists of two major steps: first complete proof systems for guarded recursions arc obtained; then sound laws sufficient to remove any unguarded recursions are formulated. These results lift Milner's axiomatisation for observation congruence in regular pure-CCS to the π-calculus. The completeness proof relies on the symbolic bisimulation technique.

Supported by grants from the National Science Foundation of China and the Chinese Academy of Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michele Boreale and Rocco De Nicola. A symbolic semantics for the π-calculus. Information and Computation, 126(1):34–52, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Dam. Model checking mobile processes. Information and Computation, 129:35–51, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  3. M. Hennessy and H. Lin. Symbolic bisimulations. Theoretical Computer Science, 138:353–389, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  4. H. Lin. Symbolic bisimulations and proof systems for the π-calculus. Report 7/94, Computer Science, University of Sussex, 1994.

    Google Scholar 

  5. H. Lin. Complete inference systems for weak bisimulation equivalences in the π-calculus. In TAPSOFT'95, LNCS 915. Springer-Verlag, 1995.

    Google Scholar 

  6. H. Lin. Unique fixpoint induction for the π-calculus. In CONCUR'95, LNCS 962. Springer-Verlag, 1995.

    Google Scholar 

  7. R. Milner. A complete inference system for a class of regular behaviours. J. Computer and System Science, 28:439–466, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  8. R. Milner. A complete axiomatisation for observational congruence of finite-state behaviours. Information and Computation, 81:227–247, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  9. R. Milner, J. Parrow, and D. Walker. A calculus of mobile proceses, part I,II. Information and Computation, 100:1–77, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Parrow and D. Sangiorgi. Algebraic theories for name-passing calculi. Information and Computation, 120(2):174–197, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  11. Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta Information, 33:69–97, 1996.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kim G. Larsen Sven Skyum Glynn Winskel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, H. (1998). Complete proof systems for observation congruences in finite-control π-calculus. In: Larsen, K.G., Skyum, S., Winskel, G. (eds) Automata, Languages and Programming. ICALP 1998. Lecture Notes in Computer Science, vol 1443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055074

Download citation

  • DOI: https://doi.org/10.1007/BFb0055074

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64781-2

  • Online ISBN: 978-3-540-68681-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics