Skip to main content

Metric semantics for true concurrent real time

  • Conference paper
  • First Online:
Automata, Languages and Programming (ICALP 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1443))

Included in the following conference series:

Abstract

This paper investigates the use of a complete metric space framework for providing denotational semantics to a real-time process algebra. The study is carried out in a non-interleaving setting and is based on a timed extension of Langerak's bundle event structures, a variant of Winskel's event structures. The distance function is based on the amount of time to which event structures do ‘agree’. We show that this intuitive notion of distance is a pseudo metric (but not a metric) on the set of timed event structures. A generalisation to equivalence classes of timed event structures in which we abstract from event names and non-executable events (events that can never appear) is shown to be a complete ultra-metric space. We show that the resulting metric semantics is an abstraction of an existing cpo-based denotational and a related operational semantics for the considered language.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.F. Ates, M. Bilgic, S. Saito and B. Sarikaya. Using timed CSP for specification verification and analysis of multi-media synchronization. IEEE J. on Sel. Areas in Comm., 14(1):126–137, 1996.

    Article  Google Scholar 

  2. C. Baier and M.E. Majster-Cederbaum. Denotational semantics in the cpo and metric approach. Th. Comp. Sci., 135:171–220, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. Baier and M.E. Majster-Cederbaum. How to interpret consistency and establish consistency results for semantics of concurrent programming languages. Fund. Inf., 29:225–256, 1997.

    MATH  MathSciNet  Google Scholar 

  4. C. Baier and M.E. Majster-Cederbaum. Metric semantics from partial order semantics. Acta Inf., 34:701–735, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.W. de Bakker and J.I. Zucker. Processes and the denotational semantics of concurrency. Inf. and Contr., 54(1/2):70–120, 1982.

    MATH  Google Scholar 

  6. J.W. de Bakker and E.P. de Vink. Control Flow Semantics. MIT Press, 1996.

    Google Scholar 

  7. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language LOTOS. Comp. Netw. & ISDN Syst., 14:25–59, 1987.

    Article  Google Scholar 

  8. J. Davies, J.W. Bryans and S.A. Schneider. Real-time LOTOS and timed observations. In Formal Description Techniques VIII. Chapmann & Hall, 1995.

    Google Scholar 

  9. J-P. Katoen. Quantitative and Qualitative Extensions of Event Structures. PhD thesis, University of Twente, 1996.

    Google Scholar 

  10. J-P. Katoen, D. Latella, R. Langerak and E. Brinksma. On specifying real-time systems in a causality-based setting. In Formal Techniques in Real-Time and Fault-Tolerant Systems, LNCS 1135, pages 385–405. Springer-Verlag, 1996.

    Google Scholar 

  11. R. Langerak. Bundle event structures: a non-interleaving semantics for LOTOS. In Formal Description Techniques V, pages 331–346. North-Holland, 1993.

    Google Scholar 

  12. R. Loogen and U. Goltz. Modelling nondeterministic concurrent processes with event structures. Fund. Inf., 14(1):39–74, 1991.

    MATH  MathSciNet  Google Scholar 

  13. D. Murphy. Time and duration in noninterleaving concurrency. Fund. Inf., 19:403–416, 1993.

    MATH  MathSciNet  Google Scholar 

  14. X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In Real-Time: Theory in Practice, LNCS 600, pages 526–548. Springer-Verlag, 1992.

    Google Scholar 

  15. M. Nivat. Infinite words, infinite trees, infinite computations. In Foundations of Computer Science III, Mathematical Centre Tracts 109, pages 3–52, 1979.

    MathSciNet  Google Scholar 

  16. M. Nielsen, G.D. Plotkin and G. Winskel. Petri nets, event structures and domains, part 1. Th. Comp. Sc., 13(1):85–108, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  17. G.M. Reed and A.W. Roscoe. A timed model for Communicating Sequential Processes. Th. Comp. Sc., 58:249–261, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  18. J.J. Žic. Time-constrained buffer specifications in CSP+T and timed CSP. ACM Transactions on Programming Languages and Systems, 16(6):1661–1674, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kim G. Larsen Sven Skyum Glynn Winskel

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baier, C., Katoen, JP., Latella, D. (1998). Metric semantics for true concurrent real time. In: Larsen, K.G., Skyum, S., Winskel, G. (eds) Automata, Languages and Programming. ICALP 1998. Lecture Notes in Computer Science, vol 1443. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055085

Download citation

  • DOI: https://doi.org/10.1007/BFb0055085

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64781-2

  • Online ISBN: 978-3-540-68681-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics