Abstract
The mixed product gives a global representation of concurrent systems modelled by interacting automata. In this paper we study the opposite operation: we characterise the transition systems which may be viewed as products and we build some of their decompositions. For a large subclass of systems, we exhibit a minimal decomposition. We finally extend this study to asynchronous automata whose components may be non-deterministic and present an optimal characterisation of the corresponding transition systems. Thus, we state precisely the shape of the transition systems which are associated to three kinds of system; in that way, we obtain axioms which are similar to those identified for the synthesis problem of Petri nets.
Preview
Unable to display preview. Download preview PDF.
References
Arnold A., Nivat M. (1982): Comportements de processus, Colloque AFCET, “Les Mathématiques de l'Informatique”, p. 35–68
Badouel E., Bernardinello L., Darondeau Ph. (1997): The synthesis problem for elementary net systems is NP-complete, TCS 186, p. 107–134
Bednarczyk M.A. (1987): Categories of Asynchronous Systems, thesis, University of Sussex
Duboc C. (1986): Mixed product and asynchronous automata, TCS 48, p. 183–199
Ehrenfeucht A., Rozenberg G. (1990): Partial (Set) 2-structures, Part II: State spaces of concurrent systems, Acta Informatica, Vol. 27, p. 343–368
Garey M., Johnson D. (1978): Computers and intractability: a guide to the theory of NP-completeness, p. 194, W. H. Freeman and Company
Godefroid P., Wolper P. (1991): Using Partial Orders for Efficient Verification of Deadlock Freedom and Safety Properties, CAV, LNCS 575, p. 332–341
Lynch, N.A. (1996): Distributed Algorithms, Morgan Kaufmann Publishers, Inc., San Francisco, California
MacLane S. (1971): Categories for the Working Mathematician, Graduate Texts in Mathematics, Springer-Verlag
Mukund M. (1992): Petri nets and step transition systems, International Journal of Foundations of Computer Science, Vol. 3, N. 4, p. 443–478
Mukund M., Nielsen M. (1992): CCS, Locations and Asynchronous Transition Systems, Report DAIMI, Vol. 3, N. 4, p. 443–478 and LNCS 652, p. 328–341
Nielsen M., Plotkin G., Winskel G. (1981): Petri nets, events structures and domains, part 1, TCS 13, p. 85–108
Nielsen M., Rozenberg G., Thiagarajan P.S. (1992): Elementary transition systems, TCS 96, p. 3–33
Pigghizzini G. (1994): Asynchronous automata versus asynchronous cellular automata, TCS 132, p. 179–207
Shields M.W. (1992): Multitraces, Hypertraces and Partial Order Semantics, Formal Aspects of Computing 4, p. 649–672
Valmari A. (1990): A Stubborn Attack on State Explosion, CAV, LNCS 531, p. 156–165
Winskel G., Nielsen M. (1994): Models for Concurrency, Handbook of Logic in Computer Science, vol. 3, Oxford University Press, also available as Research Report DAIMI, PB-463, Aarhus University
Zielonka W. (1987): Notes on finite asynchronous automata, Theoretical Informatics and Applications, vol. 21, p. 99–135
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Morin, R. (1998). Decompositions of asynchronous systems. In: Sangiorgi, D., de Simone, R. (eds) CONCUR'98 Concurrency Theory. CONCUR 1998. Lecture Notes in Computer Science, vol 1466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055647
Download citation
DOI: https://doi.org/10.1007/BFb0055647
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-64896-3
Online ISBN: 978-3-540-68455-8
eBook Packages: Springer Book Archive