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A b s t r a c t .  A new public key cryptosystem is proposed and analyzed. 
The scheme is quite practical, and is provably secure against adap- 
tive chosen ciphertext attack under standard intractability assumptions. 
There appears to be no previous cryptosystem in the literature that en- 
joys both of these properties simultaneously. 

1 I n t r o d u c t i o n  

In this paper, we present and analyze a new public key cryptosystem that is 
provably secure against adaptive chosen ciphertext attack (as defined by Rackoff 
and Simon [20]). The scheme is quite practical, requiring just a few exponenti- 
ations over a group. Moreover, the proof of security relies only on a standard 
intractability assumption, namely, the hardness of the Diffie-Hellman decision 
problem in the underlying group. 

The hardness of the Diffie-Hellman decision problem is essentially equivalent 
to the semantic security of the basic E1 Gamal encryption scheme [12]. Thus, 
with just a bit more computation, we get security against adaptive chosen cipher- 
text attack, whereas the basic E1 Gamal scheme is completely insecure against 
adaptive chosen ciphertext attack. Actually, the basic scheme we describe also 
requires a universal one-way hash function. In a typical implementation, this can 
be efficiently constructed without extra assumptions; however, we also present 
a hash-free variant as well. 

While there are several provably secure encryption schemes in the literature, 
they are all quite impractical. Also, there have been several practical cryptosys- 
tems that have been proposed, but none of them have been proven secure under 
standard intractability assumptions. The significance of our contribution is that 
it provides a scheme that is provably secure and practical at the same time. 
There appears to be no other encryption scheme in the literature that enjoys 
both of these properties simultaneously. 
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Chosen  C i p h e r t e x t  Secur i ty  

Semantic security, defined by Goldwasser and Micali [14], captures the intuition 
that an adversary should not be able to obtain any partial information about 
a message given its encryption. However, this guarantee of secrecy is only valid 
when the adversary is completely passive, i.e., can only eavesdrop. Indeed, se- 
mantic security offers no guarantee of secrecy at all if an adversary can mount 
an active attack, i.e., inject messages into a network or otherwise influence the 
behavior of parties in the network. 

To deal with active attacks, Rackoff and Simon [20] defined the notion of 
security against an adaptive chosen ciphertezt attack. If an adversary can inject 
messages into a network, these messages maybe  encryptions, and the adversary 
may be able to extract partial information about the corresponding cleartexts 
through its interactions with the parties in the network. Rackoff and Simon's 
definition models this type of attack by simply allowing an adversary to obtain 
decryptions of its choice, i.e., the adversary has access to a "decryption oracle." 
Now, given an encryption of a message--the "target" ciphertext--we want to 
guarantee that the adversary cannot obtain any partial information about the 
message. To achieve this, we have to restrict the adversary's behavior in some 
way, otherwise the adversary could simply submit the target ciphertext itself 
to the decryption oracle. The restriction proposed by Rackoff and Simon is the 
weakest possible: the adversary is not allowed to submit the target ciphertext 
itself to the oracle; however, it may submit any other ciphertext, including ci- 
phertexts that are related to the target ciphertext. 

A different notion of security against active attacks, called non-malleability, 
was proposed by Dolev, Dwork, and Naor [9]. Here, the adversary also has ac- 
cess to a decryption oracle, but his goal is not to obtain partial information 
about the target ciphertext, but rather, to create another encryption of a dif- 
ferent message that is related in some interesting way to the original, encrypted 
message. For example, for a non-malleable encryption scheme, given an encryp- 
tion of n, it should be infeasible to create an encryption of n + 1. It turns out 
that non-malleability and security against adaptive chosen ciphertext attack are 
equivalent [10]. 

A cryptosystem secure against adaptive chosen ciphertext attack is a very 
powerful cryptographic primitive. It is essential in designing protocols that are 
secure against active adversaries. For example, this primitive is used in proto- 
cols for authentication and key exchange [11,10, 2] and in protocols for escrow, 
certified e-mail, and more general fair exchange [1, 92]. The practical importance 
of this primitive is also highlighted by the adoption of Bellare and Rogaway's 
OAEP scheme [4] (a practical but only heuristically secure scheme) as an internet 
encryption standard and for use in the SET protocol for electronic commerce. 

There are also intermediate notions of security, between semantic security 
and adaptive chosen ciphertext security. Naor and Yung [19] propose an attack 
model where the adversary has access to the decryption oracle only prior to 
obtaining the target ciphertext, and the goal of the adversary is to obtain par- 
tial information about the encrypted message. Naor and Yung called this type 
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of attack a chosen ciphertext attaclz,, it has also been called a "lunch-time" or 
"midnight" attack. In this paper, we will always use the phrase adaptive chosen 
ciphertext attack for Rackoff and Simon's definition, to distinguish it from Naor 
and Yung's definition. 

Prev ious  Work 

Provably Secure Schemes. Naor and Yung [19] presented the first scheme prov- 
ably secure against lunch-time attacks. Subsequently, Dolev, Dwork, and Naor 
[9] presented a scheme that is provably secure against adaptive chosen ciphertext 
attack. 

All of the previously known schemes provably secure under standard in- 
tractability assumptions are completely impractical (albeit polynomial time), 
as they rely on general and expensive constructions for non-interactive zero- 
knowledge proofs. 

Practical Schemes. Damgard [8] proposed a practical scheme that he conjectured 
to be secure against lunch-time attacks; however, this scheme is not known to 
be provably secure, and is in fact demonstrably insecure against adaptive chosen 
ciphertext attack. 

Zheng and Seberry [24] proposed practical schemes that are conjectured to be 
secure against chosen ciphertext attack, but again, no proof based on standard 
intractability assumptions is known. Lira and Lee [16] also proposed practical 
schemes that were later broken by Frankel and Yung [13]. 

Bellare and Rogaway [3, 4] have presented practical schemes for which they 
give heuristic proofs of adaptive chosen ciphertext security; namely, they prove 
security in an idealized model of computation, the so-called random oracle model, 
wherein a hash function is represented by a random oracle. 

Shoup and Gennaro [22] also give E1 Gamal-like schemes that are secure 
against adaptive chosen ciphertext attack in the random oracle model, and that 
are also amenable to efficient threshold decryption. 

We stress that although a security proof in the random oracle model is of 
some value, it is still only a heuristic proof. In particular, these types of proofs 
do not rule out the possibility of breaking the scheme without breaking the 
underlying intractability assumption. Nor do they even rule out the possibility of 
breaking the scheme without finding some kind of weakness in the hash function, 
as recently shown by Canetti, Goldreich, and Halevi [7]. 

Out l ine  o f  paper  

In w we review the basic definitions that we need for security and intractability 
assumptions. In w we outline our basic scheme, and in w we prove its security. 
In w we discuss some implementation details and variations on the basic scheme. 
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2 Definit ions 

2.1 Security against adaptive chosen ciphertext  attack 

We recall Rackoff and Simon's definition. 
Security is defined via the following game played by the adversary. 
First, the encryption scheme's key generation algorithm is run, with a security 

parameter as input. Next, the adversary makes arbitrary queries to a "decryption 
oracle," decrypting ciphertexts of his choice. 

Next the adversary chooses two messages, too, ml, and sends these to an "en- 
cryption oracle." The encryption oracle chooses a bit b E {0, 1} at random, and 
encrypts tab. The corresponding ciphertext is given to the adversary (the inter- 
nal coin tosses of the encryption oracle, in particular b, are not in the adversary's 
view). 

After receiving the ciphertext from the encryption oracle, the adversary con- 
tinues to query the decryption oracle, subject only to the restriction that the 
query must be different than the output of the encryption oracle. 

At the end of the game, the adversary outputs b' E {0, 1}, which is supposed 
to be the adversary's guess of the value b. If the probability that b' = b is 1 /2+e,  
then the adversary's advantage is defined to be e. 

The cryptosystem is said to be secure against adaptive chosen ciphertext 
attack if the advantage of any polynomial-time adversary is negligible (as a 
function of the security parameter). 

2.2 The  Diff ie-Hel lman Decis ion P r o b l e m  

There are several equivalent formulations of the Diffie-Hellman decision problem. 
The one that we shall use is the following. 

Let G be a group of large prime order q, and consider the following two 
distributions: 

- the distribution R of random quadruples (gl, g2, ul, u2) E G4; 
- the distribution D of quadruples (gl, g2, ul, u2) E G 4, where gl, g2 are ran- 

dom, and ul = g~ and u2 = g~ for random r E Zq. 

An algorithm that solves the Diffie-Hellman decision problem is a statistical 
test that can effectively distinguish these two distributions. That is, given a 
quadruple coming from one of the two distributions, it should output 0 or 1, and 
there should be a non-negligible difference between (a) the probability that it 
outputs a 1 given an input from R, and (b) the probability that it outputs a 1 
given an input from D. The Diffie-Hellman decision problem is hard if there is 
no such polynomial-time statistical test. 

This formulation of the Diffie-Hellman decision problem is equivalent to sev- 
eral others. First, making the substitution 

gl --~ g, g2 --~ gz, Ul --~ gY, ~2 -'~ gXy, 
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one sees that this is equivalent to distinguishing Diffie-Hellman triples 
(g~,g~,g~) from non-Diffie-Hellman triples (gX,g~,gZ). Note that by a triv- 
ial random self-reducibility property, it does not matter if the base g is random 
or fixed. 

Second, although we have described it as a problem of distinguishing two dis- 
tributions, the Diffie-Hellman decision problem is equivalent to the worst-case 
decision problem: given (gZ, gV, gZ), decide--with negligible error probability-- 
if z = xy mod q. This equivalence follows immediately from a random self- 
reducibility property first observed by Stadler [23] and later by Naor and Rein- 
gold [17]. 

Related to the Diffie-Hellman decision problem is the Diffie-Hellman problem 
(given g, gX and gV, compute g~Y), and the discrete logarithm problem (given g 
and g~, compute x). 

There are obvious polynomial-time reductions from the Diffie-Hellman deci- 
sion problem to the Diffie-Hellman problem, and from the Diffie-Hellman prob- 
lem to the discrete logarithm problem, but reductions in the reverse direction 
are not known. Moreover, these reductions are essentially the only known meth- 
ods of solving the Diffie-Hellman or Diffie-Hellman decision problems. All three 
problems are widely conjectured to be hard, and have been used as assumptions 
in proving the security of a variety of cryptographic protocols. Some heuristic 
evidence for the hardness of all of these problems is provided in [21], where it 
is shown that they are hard in a certain natural, structured model of computa- 
tion. See [23, 17, 6] for further applications and discussion of the Diffie-Hellman 
decision problem. 

Note that the hardness of the Diffie-Hellman decision problem is equivalent 
to the semantic security of the basic E1 Gamal encryption scheme. Recall that 
in the basic E1 Gamal scheme, we encrypt a message m E G as (gr, hrm), where 
h is the public key of the recipient. 

On the one hand, if the Diffie-Hellman decision problem is hard, then the 
group element h r could be replaced by a random group element without changing 
significantly the behavior of the attacker; however, if we perform this substitu- 
tion, the message m is perfectly hidden, which implies security. 

On the other hand, if the Diffie-Hellman decision problem can be efficiently 
solved, then an attacker can break E1 Gamal as follows. The attacker chooses 
two messages m0, ml, giving these to an encryption oracle. The encryption oracle 
produces an encryption (u, e) = (gr, hrmb), where b E {0, 1} is chosen at random. 
The attacker's task is to determine b, which he can do by simply determining 
which of (u, h, e/mo) and (u, h, elm1) is a Diffie-Hellman triple. 

Note that the basic E1 Gamal scheme is completely insecure against adaptive 
chosen ciphertext attack. Indeed, given an encryption (u, e) of a message m, we 
can feed the (u, g.  e) to the decryption oracle, which gives us g.  m. 
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2.3 Coll is ion-resis tant  Hash  Funct ions  

A family of hash functions is said to be collision resistant  if upon drawing a 
function H at random from the family, it is infeasible for an adversary to find 
two di~erent  inputs x and y such that H ( x )  = H ( y ) .  

A weaker notion is that of a universal one-way family of hash functions [18]. 
Here, it should be infeasible for an adversary to choose an input x, draw a random 
hash function H, and then find a different input y such that H ( x )  = H ( y ) .  Such 
hash function families are also called target collision resistant. See [5] for recent 
results and further discussion. 

3 The Basic Scheme 

We assume that we have a group G of prime order q, where q is large. We 
also assume that cleartext messages are (or can be encoded as) elements of 
G (although this condition can be relaxed--see w We also use a universal 
one-way family of hash functions that map long bit strings to elements of Zq 
(although we can do without this--see w 

Key Generation. The key generation algorithm runs as follows. Random elements 
gl, g2 E G are chosen, and random elements 

Xl,~2,Yl,Y2, Z ~ Zq 

axe also chosen. Next, the group elements 

.,~i.,=2 .I  _ .,~i.,v2 h = g~ 
C ~ ,~1  ,.V2 ' " ~ - - ~ 1  ~2 , 

are computed. Next, a hash function H is chosen from the family of universal 
one-way hash functions. The public key is (gl, g2, c, d, h, H), and the private key 
is ( X l , x 2 , Y l , y 2 , z ) .  

Encrypt ion.  Given a message m E G, the encryption algorithm runs as follows. 
First, it chooses r E Zq at random. Then it computes 

ul  = g[, u2 = g~, e = hrm ,  a = H ( u l ,  u2, e), v = C d  ra. 

The ciphertext is 

Decryption.  Given a ciphertext (Ul,U2, e ,v ) ,  the decryption algorithm runs as 
follows. It first computes a = H ( u l ,  u2, e), and tests if 

uXl+•IO•.#X2"•y20• 1 ~2 = V. 

If this condition does not hold, the decryption algorithm outputs "reject"; oth- 
erwise, it outputs 

m = 
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We first verify that this is an encryption scheme, in the sense that the de- 
cryption of an encryption of a message yields the message. Since ul -- g~ and 
us = g~, we have 

21 2~ r21 r 2 2 = C  r. 
Ul U2 = gl gs 

Likewise, " ~1.  y2 = d r h r "1 ~s and u~ = Therefore, the test performed by the decryp- 
tion algorithm will pass, and the output will be e/h r = m. 

4 P r o o f  o f  S e c u r i t y  

In this section, we prove the following theorem. 

T h e o r e m  1. The above cryptosystem is secure against adaptive chosen cipher- 
text attack assuming that (1) the hash function H is chosen from a universal 
one-way family, and (2) the Diffie-Hellman decision problem is hard in the group 
G. 

To prove the theorem, we will assume that there is an adversary that can 
break the cryptosystem, and that the hash family is universal one-way, and show 
how to use this adversary to construct a statistical test for the Diflie-Hellman 
decision problem. 

For the statistical test, we are given (gl, gs, ul, us) coming from either the 
distribution 1% or D. At a high level, our construction works as follows. We build 
a simulator that simulates the joint distribution consisting of adversary's view in 
its attack on the cryptosystem, and the hidden bit b generated by the generated 
oracle (which is not a part of the adversary's view). 

We will show that if the input comes from D, the simulation will be nearly 
perfect, and so the adversary will have a non-negligible advantage in guessing 
the hidden bit b. We will also show that if the input comes from 1%, then the 
adversary's view is essentially independent of b, and therefore the adversary's 
advantage is negligible. This immediately implies a statistical test distinguishing 
1% from D: run the simulator and adversary together, and if the simulator outputs 
b and the adversary outputs b', the distinguisher outputs 1 if b -- b', and 0 
otherwise. 

We now give the details of the simulator. The input to the simulator is 
(gl, gs, ul, us). The simulator runs the following key generation algorithm, using 
the given gl, gs. The simulator chooses 

Z I , X 2 , Y l , Y 2 , Z l , Z 2  q Zq 

at random, and computes 

21 22 ,~/11,~/2 Zl  Z2 c = g l  g2 , d =  h =  ~1 u 2  , gl g2 �9 

The simulator also chooses a hash function H at random. The public key that the 
adversary sees is (gl, g2, c, d, h, H). The simulator knows (xl, x2, Yl, Y2, zl, z2). 
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Note that  the simulator's key generation algorithm is slightly different from 
the key generation algorithm of the actual cryptosystem; in the latter, we essen- 
tially fix z2 = O. 

The simulator answers decryption queries as in the actual attack, except that  
it computes m = e/(u~'u~2). 

We now describe the simulation of the encryption oracle. Given too, ml ,  the 
simulator chooses b E {0, 1} at random, and computes 

_ .~1_z2- -  H ( U l , U 2 , e ) ,  v : `*1 `*2 ' e ~ "t& 1 "tb 2 " l lbb,  Ol -~- a'Xl+Yl~"'=2"~'Y2(~ 

and outputs 
(ul,us,e,v). 

That  completes the description of the simulator. As we will see, when the 
input to the simulator comes from D, the output  of the encryption oracle is a 
perfectly legitimate ciphertext; however, when the input to the simulator comes 
from It ,  the output  of the decryption oracle will not be legitimate, in the sense 
that  loga~ ul ~ logg 2 u2. This is not a problem, and indeed, it is crucial to the 
proof of security. 

The theorem now follows immediately from the following two lemmas. 

L e m m a  1. When the simulator's input comes from D, the joint  distribution of 
the adversary's view and the hidden bit b is is statistically indistinguishable from 
that in the actual attack. 

Consider the joint distribution of the adversary's view and the bit b when 
the input comes from the distribution D. Say ul = g[ and u~ = g~. 

It is clear in this case that  the output of the encryption oracle has the right 
=x = 2  , Yl, Y2 d r, and z, z2 distribution, since u z u 2 = cr, -1 "*s = u 1 u 2 = hr; indeed, these 

equations imply that  e = mbh r and v = crd ra, and a itself is already of the 
right form. 

To complete the proof, we need to argue that  the output of the decryption 
i , , t G 4 oracle has the right distribution. Let us call (ul, us, e ,  v ) E a valid ciphertext 

if logg~ u~ = logg 2 u~. 
- r '  a n d  u t r '  r '  Note that  if a ciphertext is valid, with u~ = yl ~ = g2,  then h -- 

(u'l)Z~(u'2)z2; therefore, the decryption oracle outputs e /h  , just as it should. 
Consequently, the lemma follows immediately from the following: 

Claim. The decryption oracle--in both an actual attack against the cryptosystem 
and in an attack against the simulator--rejects all invalid ciphertexts, except with 
negligible probability. 

We now prove this claim by considering the distribution of the point 
P = ( x l , x2 , y l , y2 )  E Zq 4, conditioned on the adversary's view. Let log(.) de- 
note logg a (.), and let w = loggs. 

~From the adversary's view, P is a random point on the plane P formed by 
intersecting the hyperplanes 

logc = xl + wxs (1) 
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and 
log d = Yl + wy2. (2) 

These two equations come from the public key. The output  from the encryption 
oracle does not constrain P any further, as the hyperplane defined by 

logv = rz l  + wrx2 + aryl  + arwy2 (3) 

contains 7 ) . 
Now suppose the adversary submits an invalid ciphertext (u't,u'2,v', d) to 

the decryption oracle, where log u~ = rl and log u~ = wry, with rl ~ r~. The 
decryption oracle will reject, unless P happens to lie on the hyperplane 7{ defined 
by 

logv' r~xl +wr~x2 +a ' r~y l  ' ' = + a r2wyg., (4) 

where c~' = H(ul, u~, e'). But it is clear that the equations (1), (2), and (4) are 
linearly independent, and so 7/intersects the plane 7 ) at a line. 

It follows that the first time the adversary Submits an invalid ciphertext, 
the decryption oracle rejects with probability 1 - 1/q. This rejection actually 
constrains the point P, puncturing the plane 7~ at a line. Therefore, for i = 
1, 2,..., the ith invalid ciphertext submitted by the adversary will be rejected 
with probability at least 1 - 1/(q- i + 1 ). LFrom this it follows that the decryption 
oracle rejects all invalid ciphertexts, except with negligible probability. 

L e m m a  2. When the simulator's input comes from It ,  the distribution of the 
hidden bit b is (essentially) independent from the adversary's view. 

Let ul = g~l and u2 = g~Or2. We may assume that  r l  # r2, since this 
occurs except with negligible probability. The temma follows immediately from 
the following two claims. 

Claim 1. I f  the decryption oracle rejects all invalid ciphertexts during the attack, 
then the distribution of the hidden bit b is independent of the adversary's view. 

To see this, consider the point Q = (Zl,Z2) E Z 2. At the beginning of the 
attack, this is a random point on the line 

logh = zl + wz2, (5) 

determined by the public key. Moreover, if the decryption oracle only decrypts 
valid ciphertexts (u~, u~, e', v'), then the adversary obtains only linearly depen- 
dent relations r ' l o g h  r 'z l  + r'wz2 (since (u~)Z~(u~) z2 r'zx r'z2 = hr'). 

: = g l  g2 
Thus, no further information about Q is leaked. 

Consider now the output (ul, u2, e,v) of the simulator's encryption oracle. 
zl z2 Now, consider the equation We have e = e �9 rob, where e = u 1 u 2 . 

loge = r l z l  + wr2z2. (6) 

Clearly, (5) and (6) are linearly independent, and so the conditional distribution 
of e--conditioning on b and everything in the adversary's view other than e - -  
is uniform. In other words, e is a perfect one-time pad. It follows that  b is 
independent of the adversary's view. 
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Claim 2. The decryption oracle will reject all invalid ciphertexts, except with 
negligible probability. 

As in the proof of Lemma 1, we study the distribution of P = (xl, x2, Yl, Y2) E 
Zl, conditioned on the adversary's view. LFrom the adversary's view, this is a 
random point on the line l: formed by intersecting the hyperplanes (1), (2), and 

logv = r lx l  + wrzx2 + arlyx + awr2y2. (7) 

Equation (7) comes from the output of the encryption oracle. 
Now assume that the adversary submits an invalid ciphertext (u[, u~, e', v') 

(ul,u~,e,v),  where log u~ = r~ and log u~ = wry, with r~ # r~. Let or' = 

There are three cases we consider. 
I ! Case 1. (ul, u 2, e') = (ul, u2, e). In this case, the hash values are the same, but 

v' r v implies that the decryption oracle will certainly reject. 

Case 2. (u~, u~, e') # (ul, u2, e) and od # a. 
The decryption oracle will reject unless the point P lies on the hyperplane 
defined by (4). However, the equations (1), (2), (7), and (4) are linearly 

independent. This can be verified by observing that (10 0 0 ) 
det 0 1 w = w2(r2 - rl)(r~ - r~)(a - a') ~ 0. 

r l  w r 2  ~ r l  o~wr2 

r[ wrl  'wrl 

Thus, 7/intersects the line s at a point, from which it follows (as in the proof of 
Lemma 1) that the decryption oracle rejects, except with negligible probability. 

tu' u' e '~ = a. We argue that if this happens Case S. ~ 1, 2, , ~ (ul,u2,e) and a '  
with nonnegligible probability, then in fact, the family of hash functions is not 
universal one-way~a contradiction. Note that if we made the stronger assump- 
tion of collision resistance, there would be essentially nothing to prove, but with 
the weaker universal one-way assumption, an argument is needed. We use the 
adversary to break the universal one-way hash function as follows. We modify 
the encryption oracle in the simulator, so that it outputs (ul, u2, e, v) as before, 
except that now, e E G is simply chosen completely at random. Up until such 
time that a collision occurs, the adversary's view in this modified simulation 
is statistically indistinguishable from the view in the original simulation, and 
so the adversary will also find a collision with nonnegiigible probability in the 
modified simulation. But the argument (ul, u2, e) to H is independent of H, and 
in particular, we can choose it before choosing H. 

5 I m p l e m e n t a t i o n  D e t a i l s  a n d  V a r i a t i o n s  

In this section, we briefly discuss some implementation details and possible vari- 
ations of the basic encryption scheme. 
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5.1 A s imple imp lemen ta t i on  

We choose a large prime p such that p -  1 = 2q, where q is also prime. The group 
G is the subgroup of order q in Z~. We restrict a message to be an element of the 
set ( 1 , . . . ,  q), and "encode" it by squaring it modulo p, giving us an element in 
G. We can recover a message from its encoding by computing the unique square 
root of its encoding modulo p that is in the set (1 , . . . ,  q). 

For the hash function, one could use a function like SHA-1, or possibly some 
keyed variant, and make the appropriate collision-resistance assumption. How- 
ever, it is only marginally more expensive to do the following, which is based 
only on the hardness of discrete logarithms in G. Say we want to hash a bit 
string to an integer mod q. Write the bit string as a sequence ( a l , . . .  ,ak), with 
each ai E {0 , . . . , q  - 1). To define the hash function, choose h l , . . . , h k  in G 
at random. The hash of (a l , . . .  ,ak) is then the least non-negative residue of 
• 1 . . .  fi~ h E Z;,  where the sign is chosen so that this value is in (1 , . . . ,  q). 

This hash function is collision resistant, provided computing discrete loga- 
rithms in G is hard. To see this, note that from a collision, we obtain a nonzero 
sequence (a l , . . .  ,ak) rood q such that 

h~ * . . . h ~  u E {1 , -1}NG = {1}. 

Using a standard argument, it is easy to see that finding such a relation is 
equivalent to computing discrete logarithms. 

Note that the group elements gl, g2 and h i , . . . ,  hk can be system-wide pa- 
rameters, used by all users of the system. 

5.2 A hybr id  imp lemen ta t i on  

It would be more practical to work in a smaller subgroup, and it would be nice 
to have a more flexible and efficient way to encode messages. 

To do this, assume we have a symmetric-key cipher C with a key length of 
l bits. Now choose a large prime p such that p - 1 = qm, where q is a 3/-bit 
prime. The group G is the subgroup of order q in Z;. A message in this scheme is 
just an arbitrary bit string. To encrypt a message m, we modify our encryption 
algorithm, computing e : CK (m), where the encryption key K is computed by 
hashing h r to an/-bit  string with a public 2-universal hash function. 

For the hash function H used in the encryption scheme, something like SHA- 
1, possibly keyed, would be appropriate. 

The security of this variant is easily proved using the techniques of this paper, 
along with the left-over hash lemma [15], assuming the cipher C is semantically 
secure. 

5.3 A hash-free variant  

We can actually eliminate the hash function H from the scheme, so that the 
security can be based strictly on the Diffie-Hellman decision problem for an 
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arbitrary group G. Suppose the strings we need to hash in the original scheme 
are of the form ( a l , . . . , a k ) ,  where 0 < ai < p. In the modified scheme, we 
replace the group element d in the public key by d l , . . .  ,dk. For 1 < i < k, we 
have di = ~l"wl~w2~2 , where Yil and yi2 are random elements of Zq included in the 
secret key. When encrypting, we compute 

k 

v -~ cr II d~ it, 
i=1 

and when decrypting, we verify that 

l ]  ~ -  ~I ~ 2  

Using the same proof techniques as for the basic scheme, it is straightforward 
to prove that  this modified version is secure against adaptive chosen ciphertext 
attack, assuming the Diffie-Hellman decision problem in G is hard. 

5.4 A "lite" vers ion secure against  lunch- t ime  attacks 

To achieve security against lunch-time attacks only, one can simplify the basic 
scheme significantly, essentially by eliminating d, yl,  Y2, and the hash function 
H.  When encrypting, we compute v = c r, and when decrypting, we verify that  
23 ~--- x l  x 2  Ul U 2  �9 
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