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Abstract. Verifiable Signature Sharing (V~S) enables the recipient of a 
digital signature, who is not necessarily the original signer, to share such 
signature among n proxies so that a subset of them can later reconstruct 
it. The original RSA and Rabin V~5 protocols were subsequently broken 
and the original DSS V~S lacks a formal proof of security. 

We present new protocols for RSA, Rabin and DSS VES . Our protocols 
are efficient and provably secure and can tolerate the malicious behav- 
ior of up to half of the proxies. Furthermore we believe that some of 
our techniques are of independent interest. Some of the by-products of 
our main result are: a new threshold cryptosystem, a new undeniable 
signature scheme and a way to create binding RSA cryptosystems. 

1 I n t r o d u c t i o n  

The  concept of Verifiable Signature Sharing (V~US) was introduced by Franklin 
and Reiter in [14]. V~US enables the recipient of a digital signature, who is not 
necessarily the original signer, to share such signature among n proxies so tha t  
a subset of them can later reconstruct it. A V~US protocol is divided in a sharing 
phase and a recover phase. At the end of the sharing phase each proxy can verify 
tha t  a valid signature for the given document  can be reconstructed. At the end 
of the recover phase such signature is reconstructed no mat t e r  what  a malicious 
subset of proxies may  do. 

PREVIOUS WORK. In [14] efficient protocols were given for RSA, Rabin, E1Ga~ 
mal,  Schnorr and DSS signatures. However their RSA and Rabin V~S  protocols 
were subsequently broken in [7]. Also their DSS V~US achieves only an heuristic 
form of security. 

In [3] Burmester  shows an unifying approach to V~U5 based on homomor-  
phism of secret sharing schemes. The approach is very elegant and also secure. 
However its generality does not yield extremely efficient protocols when applied 
to typical real-life signature schemes. 

* Extended abstract. A final version of this paper can be found at 
http://www, research, ibm. com/security/vsignas, ps 
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Thus the question of efficient and provably secure V~TS schemes for R S A / l ~ b i n  
and DSS was still open. 

OUR CONTRIBUTION. In this paper we present new protocols for RSA, Rabin 
and DSS V22S . Our protocols are ej~cient and provably secure. They can tol- 
erate a malicious sharer (who tries to share something different from a valid 
signature) and the malicious behavior of up to half of the proxies during sharing 
or reconstruction time. 

MOTIVATION. It is important to notice that  V~US can be solved in theory using 
known cryptographic techniques for zero-knowledge proofs [22,19] and multi- 
party computation [20, 2, 5]. However these solutions are hardly practical. We 
focus instead on practical solutions since there are several real-life applications 
which would greatly benefit from secure and efficient V,US protocols. In order to 
motivate the problem we present first some of the most interesting applications 
in which V,US can be used. 

The main application of V,US is the incorporation of digital cash into mul- 
t iparty protocols. Consider the example of cash escrow: digital cash can be rep- 
resented as the bank's signature on a digital coin or e-check. By using V,US 
financial institutions can divide the cash among a set of authorities so that  only 
through the cooperation of a threshold of them it is possible to spend it, yet the 
authorities can verify that  they collectively have the cash. A related application 
is secure distributed auctions: bidders to an auction may be required to verifiably 
share a signature on a check for the amount of their bid. This way it will be 
impossible for the winner of the bid to default (since the proxies can reconstruct 
his check), while the payments of the losers will never be recovered. 

More generally V~US is useful when a signed document should become valid 
only under certain conditions. By verifiably sharing the signature, one makes sure 
that  the signature will be recovered if and only if such conditions are created. 

OTHER APPLICATIONS. We believe that  parts of our solution are relevant on 
their own. For example, in Section 3 we present a new threshold cryptosystem 
which is possibly of independent interest. V~TS protocols are somewhat related 
to undeniable signatures (introduced by Chaum in [4]), i.e. signatures that  can be 
verified only with the help of the signer. RSA-based undeniable signatures were 
recently introduced in [17]. Our RSA construction can be seen as an alternative 
to [17] (though admittedly a less emcient scheme). Interestingly the structure of 
our RSA VzUS protocol can also be used to construct binding RSA cryptosystems. 
In [31] the concept of binding cryptography was introduced. In a binding public- 
key cryptosystem the sender encrypts a message under both the public key of the 
receiver and the public key of a third party and prove in (non-interactive) ZK 
that  the two ciphertexts contain the same message. In [31] a scheme for binding 
E1Oamal was presented. We show that  our RSA V~US scheme can be used to 
construct binding RSA public key encryptions. Details about these applications 
can be found in the final paper. 
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1.1 Overview of Our Solution 

Let Bob be the signer, Alice the recipient of the signature and P1 , . . . ,  P,~ the 
proxies (see Section 2 for a detailed description of the model). 

THe. RSA SCH~.M~.. Let (NB, vs) be Bob's RSA public key. The matching sign- 
ing key is ss  such that sBvB = 1 mod ~(NB). We assume the standard "hash- 
and-sign" paradigm. Alice receives a message M from Bob and Bob's signature 
S = 7n ' s  rood Ns on it where ra = H(M) for some collision-resistant hash func- 
tion H. Alice wants to verifiably share the value S among the proxies P1, �9 �9 Pn. 
That is, at the end of the sharing phase the proxies must be assured that they 
hold shares of Bob's signature on rn (from now on we will drop the hashing step 
since it is irrelevant to our purposes). 

Our new RSA V~US scheme is based on a completely novel approach. Alice 
will not share S using conventional secret sharing schemes, but instead she will 
encrypt S using a threshold cryptosystem, i.e. a public key whose matching 
secret key is kept shared at the proxies. That is, she gives to the proxies the 
values ra and Cs = EBK(S) where E is a public key encryption scheme and the 
decryption key DK is shared at the proxies, i.e. each proxy P~ has a share DK~ 
of a t-out-of-r~ secret sharing of DK. At this point all we need is a mechanism 
to convince the proxies that the decryption of Cs is really the signature S on ra 
without revealing S. 

The crux of the problem was to design a threshold cryptosystem that would 
make such proof efficient. The main idea here is to use the E1Gamal encryption 
scheme [10, 11] over the same corapos~te modulus Ns over which the signature 
was computed. This will allows us to construct efficient methods to convince the 
proxies that the ciphertext contains the signature. We present two such methods. 
(1) One is for Alice to provide a zero-knowledge proof [22] that Cs contains S. 
We present an efficient ZK proof for this task. 
(2) The other variant consists on the proxies using their private key to decrypt a 
message Cs publicly computable from Cs. If such decryption equals the message 
ra, then the proxies are guaranteed that Cs contains the signature S. 
Method (1) is more efficient for the proxies, but requires interaction with Alice. 
Method (2) is more efficient for Alice and requires no interaction between her 
and the proxies. 

The solution is described in detail in Section 4 

THB DSS SCH~.MB. The DSS V~US scheme is a modified version of the E1Ga- 
mal V~US scheme from [14] which allows for a proof of security. The solution is 
described in Section 5 

1.2 Re la t ed  Work  

Some ideas in our new RSA V~US scheme have appeared previously in the liter- 
ature although in different contexts and with different usage. 

Performing secret sharing by encrypting a value with a symmetric key that 
is shared among the proxy appeared first in [23] as a way to shorten the size of 
shares in computationally secure secret sharing schemes. 
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The idea of encrypting a signature and then proving in ZK that the ciphertext 
contains a valid signature has appeared in several places. In [8] it was proposed 
as a general paradigm to construct undeniable signatures but the specific effi- 
cient solutions work only for E1Garnal-like signatures. In [1] this technique was 
used to construct fair exchange of digital signatures between two parties using 
an off-line trusted center. The paper is not concerned with using a threshold 
cryptosystem for encrypting the signature. Moreover they present general solu- 
tions for RSA and DSS signatures using any kind of public-key encryption but 
employing inefficient binary cut-and-choose ZK proofs which require a number 
of public-key operations which is proportional to the security parameter. 

Stadler in [30] uses E1Gamal over a composite to verifiably encrypt e-roots. 
But when it comes to share such encryptions, his scheme can only deal with 
additive access structures, thus resulting in an O(n t) exponential blow-up to 
achieve a t-out-of-n threshold scheme. 

The construction of an E1Gamal-hke threshold cryptosystem over a composite 
modulus uses techniques from the areas of threshold [9, 15] and proactive [13, 
27] RSA signature schemes. 

2 Preliminaries 

THB MODBL. We assume there are three entities. The signer (which in the 
following we will usually call Bob), the recipien~ (Alice) and a set of n prozies. 
The V,U5 protocol will be between Alice and the proxies and must not involve 
Bob. We assume that Alice and the proxies are connected by a full network 
of private channels and by a broadcast channel. These assumptions allow us to 
focus on a high-level description of the protocols. However, it is worth noting that 
these abstractions can be substituted with standard cryptographic techniques 
for privacy, commitment and authentication. In some of the variations of our 
protocols it will not be necessary to have private channels between Alice and the 
proxies. We assume that there exist an adversary .A who can corrupt Alice and at 
most t of the proxies. By corrupting a player, ~4 can read his memory and cause 
him to deviate arbitrarily from the protocol. We assume the adversary is static 
i.e. the set of corrupted players is decided at the beginning of the computation of 
a protocol. Finally we assume communication to be synchronous. We do however 
allow for rushing adversaries, i.e. adversaries who decide the messages of the bad 
players at round /~ after having seen the messages of the good players at the 
same round. 

NOTATION. In the rest of the paper n will denote the number of proxies and 
L = n!. If N is a composite modulus, we denote with Go an element of maximal 
order in Z~ and with G = Go L2 rood N.  DLogu .4 mod N is the discrete log in 
base G of .4 modulo N. 

DEFINITION. We follow the ideas in the definition of V~5 presented in [14], 
although we believe our formalization to be simpler and more rigorous. 

VE5 consists of a pair of protocols (EShare , ERecover ) for Alice and the 
proxies. The input of ,UShsre for all the players is a message rr~ and the public 
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verification key VK of the signer. The secret input for Alice is a signature S of 
m under the signer's key. The output of ~UShsre for each proxy P~ is a value S~, 
which can assume the special value S~ = w denoting that the proxy has rejected 
the sharing. The protocol ~URecover is then run on the output of ZShsre by the 
proxies. 

We say the VES = (,UShsre , ~URecover ) is a Verifiable Signature Sharing 
protocol with fault-tolerance t if for any adversary A that can corrupt Alice and 
at most t proxies the following conditions are met: 

comple teness  If Alice is not corrupted then the output of ~URecover is a sig- 
nature S on m under the signer's key VK.  

soundness  If a good proxy P~ outputs S~ = w at the end of ~UShsre then each 
good player Pj outputs Sj = w. If St ~ w for good players then the output 
of ~URecover is a signature S on m under the signer's key VK.  

secur i ty  Define the view ~ of the adversary ~4 as the set of messages sent and 
received by the bad players (including the broadcasted ones) at the end of 
~UShare . Then there exists an algorithm S called the simulator which on 
input only m and VK and black-box access to A, produces output strings 
with a distribution which is computationally indistinguishable from ~. 

We accept a negligible probability (over the coin tosses of the players) that these 
conditions are violated. Informally, completeness means that if Alice really shares 
the right signature, then, no matter what malicious proxies do, the signature will 
be recovered at the end. Soundness means that if Alice is malicious, then either 
she will be caught trying to cheat (i.e. sharing something different from a valid 
signature) or she will share a valid signature anyway. Security finally says that 
a run of ~UShsre gives the adversary no information he could not compute on 
his own from the message and the public key. In particular (unless the signature 
scheme is not secure) no information about the signature S. 

COMPUTATIONAL ASSUMPTIONS. Our RSA V~S protocol uses the so-called De- 
cisional Di~e-Hellman Assumption (DDH) over a composite modulus. Infor- 
mally this assumption says that given two random Diffie-Hellman "public keys" 
A = G a and B -- G b the resulting shared key G ab is indistinguishable from a 
random value to an observer who does not know any of the secret keys a, b. More 
formally stated: 

A s s u m p t i o n  1 Let N be a composite modulus product of two large primes. 
Let G be an element of Z~r and ~ the group generated by it. Consider the 
two probability distributions on G s defined as 97t  = (G a, G b, G ab) rood N and 
T~ = (G a, G b, G e) rood N for a, b, c chosen randomly and uniformly in Zle. We 
assume that the two distributions are computationally indistinguishable. 

The Decisional Diffie-Hellman Assumption is related to the regular Diffie-HeUman 
assumption that says that given G a and G b one cannot compute G ab in polyno- 
mial time. Clearly this assumption relies on the hardness of computing discrete 
logs. Reductions in the inverse direction are not known. 
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I~,LGAMAL OVER A COMPOSITE. We recall the functioning of the E1Gamal en- 
cryption scheme [10, 11] over a composite modulus [24, 29]. The public encryp- 
tion key is E K  = (N, G, Y) where N is an RSA modulus product of two primes, 
G is an element of Z~r of large order and Y is computed as Y = G x rood N 
with X ER ZN. X is the secret decryption key. A message M is encrypted 
under E K  by choosing a random K ER ZAr and computing A = G K mod N 
and B = y K  . M mod N. The ciphertext is the pair (A, B). Decryption of a 
pair (A, B) is computed by taking M = B / A  x mod N. Notice that  in order to 
decrypt, all it is required is to raise A to the secret exponent X. 

The E1Gamal encryption scheme can be thought as a one-time pad with 
a one-time Diffie-Hellman key (the value y K  = GXK).  Thus if the message 
M is in the same group generated by G it is an easy task to show that  the 
DDH implies the semantic security of the E1Gamal encryption scheme (semantic 
security defined in [21], means that  it is impossible for an observer to distinguish 
between the encryption of two messages). If the message space is larger than the 
group generated by G then the semantic security of the E1Gamal encryption 
scheme is a seemingly stronger assumption than the DDH. 

2.1 Tools  

We will use the polynomial-based t-out-of-n secret sharing due to Shamir [28]. 
Let q be a prime: given a secret cr G Zq, the dealer chooses at random a 
polynomial f (z)  = ~r q- )-'~t~_ 1 ajzJ of degree ~ and gives to player Pi a share 
~ - f ( i )  mod q. Clearly t Jp-layers have no information about the secret while 
t q-1 can reconstruct it by polynomial interpolation. Notice that  a (n-1)-out-of-n 
secret sharing can be obtained simply by sharing cr as a sum ~ -- ~1 q- .. �9 -b ~n. 

Basic secret sharing protocols cannot cope with a malicious dealer who gives 
out random points that  do not lie on a polynomial of degree t and/or  with 
malicious players who contribute false shares at reconstruction time. A Verifiable 
Secret Sharing (VSS) protocol [6] solves these problems. Here we recall Feldman's 
VSS [12]. The dealer follows Shamir's scheme but in addition he broadcasts the 
values c~0 = g a m o d p  and a j  -- g"~ m o d p  where p i s  a prime such that  q 

divides p - 1 and g is an element of order q in Z~. The c~ values will allow 
the players to check that  the values ~r~ really define a secret by checking that  
g ~ = 1-Ij a~ /mod  p. If the value they hold is inconsistent they complain about 
the dealer who will reveal their share (that should match the above equation). 
The a values also allow detection of incorrect shares ~ at reconstruction time. 
This protocol can tolerate up to t -- n /2  malicious faults including the dealer. 

Notice that  the value of the secret is only computationally secure, e.g., the 
value ga mod p is leaked. To avoid this problem it is possible to use Pedersen's 
VSS [26] which protects the secret in an information-theoretic sense. In this 
implementation the dealer chooses a second t-degree polynomial f l  = )-~d bjzJ 
and sends the value ri = f ( i )  m o d p  to player Pi in addition to the share ~ri 
as above. The dealer then commits to each coefficient of the polynomials f ,  f~ 
as follows: he publishes the values ;~j = g%hbJ rood p where h is an element 
in the subgroup generated by g such that  the discrete log of h in base g is 
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unknown. This will allow the players to check the received shares by checking 
that gO" h ~ = l-Ij ~ rood p. At revealing time the players are required to reveal 
both ~ and r~ and the above equation is used to validate the shares. It is possible 
to prove that the VSS fails if and only if the adversary is able to compute the 
discrete log of h in base g. Notice that the value of the secret is unconditionally 
protected since the only value revealed is/3o = g~ h b~ . 

3 A n e w  t h r e s h o l d  c r y p t o s y s t e m  

Our RSA VZS scheme relies on a new E1Gamal-based threshold cryptosystem 
which we present in this section. We believe this new threshold cryptosystem 
to be of independent interest. Although the construction of this E1Gamal-based 
threshold cryptosystem is new, the techniques used in this section appears in 
several papers related to threshold [9,15] and proactive [13, 27] B.SA signature 
schemes. 

THRESHOLD CRYPTOSYSTEM$. Let E be a public key encryption scheme. A 
threshold cryp~osystem Ts for a scheme ~ distributes the operation of key gen- 
eration and decryption among a set of n parties P1, �9 �9 P,~. That is, T~ is defined 
by two protocols: 

T-Key-Gen a randomized protocol that returns as public output the public en- 
cryption key E K  and as private output for player Pi a value DKi such that 
DKz, �9 DK,~ constitute a ~-out-of-r~ threshold secret sharing of DK. 

T-Decrypt each player Pi takes as public input a ciphertext C = E s K ( M )  and 
as secret input his share DKi and returns as public output the message M 

The two protocols should be secure i.e. they should function correctly and reveal 
no extra information even in the presence of an adversary that corrupts ma- 
liciously up to ~ players z. In particular notice that the private key DK should 
not be exposed during T-Decrypt. Formal definitions for threshold cryptosystems 
appear in the final paper. 

A THRESHOLD CRYPTOSYSTEM FOR ELGAMAL OVER A COMPOSITE. There are 
several complications that arise from trying to generalize the approach in [25] to 
work for E1Gamal modulo a composite. 

First of all we will require for our application that the modulus N will be 
given as a parameter to the key generation protocol 2 without its factorization. 
This implies that the value ~(N) is unknown to the parties who have to jointly 
choose and share X. Our threshold cryptosystem overcomes this problem using 
techniques discovered by [13] for the application of proactive RSA. 

FELDMAN'S VSS OVER A COMPOSITE. First we present how to modify Feldman's 
VSS to work modulo a composite of unknown factorization. This protocol was 

z Notice that  we are talking about robust protocols that  work in the presence of ma- 
licious fanlts. Unless otherwise noted when we say "secure" we mean also "robust". 

2 Jumping ahead, N will be the same modulus from Bob's public key 
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discovered in [13]. They used it as a crucial tool to refresh shares of a proactive 
RSA signature scheme. We slightly modified it to work as a component of our key 
generation protocol. The main idea behind the protocol is for the the dealer to 
share the secret ~ over the integers (since he doesn't know r The coefficients 
of the sharing polynomial must be chosen large enough to statistically hide 
information. The protocol appears in Figure 1. 

L e m m a  1. Feldman-ZN-VSS is a V S S  o f  faul t . to lerance t f o r  any ~, n such that  

n >  2L 

Feldman-ZN-VSS 

I n p u t  for all players: a composite number N and an element G of maximal 
order in Z~. 
I n p u t  for  the  dealer:  a secret a E [ - N ~ . . .  N~]. 

Sharing Phase. 

1. The dealer chooses t random integers a l , . . . ,  at E [-L= N S . . .  L= N a] and 
consider the polynomial f ( z )  = L~ ~ al z -{-... ~ atz  t 

2. The dealer sends to player Pc the integer a~ -- f( i)  and broadcasts a0 = 
G ~ rood N and a~ = G =" mod N. 

3. Player P~ checks that 

t 
s ~ 43 

G ~'=ao J . l a J  m o d N  (1) 
3=1 

If the check falls he asks that the dealer makes a~ public. If more than t 
player make this request the dealer is disqualified. 

4. The dealer reveals a= for the players who asked and the previous check is 
carried out on all public shares. If it fails the dealer is disqualified. 

Reconstruction Phase. Player P~ broadcasts a,. Accept those for which Equa- 
tion (I) is satisfied. Take t -{- 1 accepted shares and compute the secret a via 
polynomial interpolation on a prime field large enough (i.e. p > nt+2L2NS). 

Fig. I. Feldman VSS over a composite modulus 

KEY GENERATION PROTOCOL. We are now ready to show the key generation 
protocol for the threshold E1Gamal scheme. 

The general idea follows the one of Pedersen [25] for the case of discrete-log 
cryptosystems in a prime field. Each player P~ shares a r andom value z~ via 
Feldman 's  VSS. The secret key z will be the sum of those r andom values, while 
the public key y = g | is easily computable  from the public information of the 
VSS protocols. The key generation continues by having each player sum up the 
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shares he received to create his own share of the secret key for a t-out-of-n secret 
sharing. There are two difficulties with the above approach however: 

- Since each Feldman's VSS reveals g=" it is possible for a rushing adversary to 
choose the zi's of the bad players so that a specific y - g| will appear. Even 
if the adversary were not rushing, it would be possible for her during the 
complain phase to "pull out" some bad players (by having them disqualified) 
in order to affect the value of y. At the end it is not possible to prove that 
the pair z, y is built with the right (uniform) distribution. This problem was 
first noticed by [16]. Their solution, which we are going to employ on this 
paper, is to perform an information-theoretically secure VSS first for z~ (for 
example Pedersen's VSS) and then on top of that (using the same sharing 
polynomial) perform the checks required by the Feldman's VSS. This has the 
effect of forcing the decision of the adversary when the zi's are information- 
theoretically secure and thus the choice of the adversary is independent from 
the ones of the good players. 

- When working over a composite modulus the threshold decryption protocol 
is unnecessarily cumbersome if the key is represented in a t-out-of-n fashion. 
Thus we follow a different approach. Each player will keep as a share of the 
secret key the random value he originally shared: this is a (n - 1)-out-of- 
n secret sharing. The shares a player received during Feldman-Zjv-VSS will 
be used for backup in case some other player fails during the decryption 
protocol. This paradigm was introduced by [27] and called share-backup. 

The protocol TEG-Key-Gen (for Threshold E1Oamal Key Generation) appears in 
figure 2. 

DECRYPTION PROTOCOL. We are now left to show the decryption protocol. The 
approach is the same as the decryption protocol modulo a prime in [25], but it 
uses the techniques from [13, 27], to make it work modulo a composite. 

The idea is to get a partial decryption from each player by exponentiating the 
ciphertext to his own additive (not threshold!) share of the secret key. Since the 
secret key is the sum of the additive shares, the product of the partial decryptions 
will be the correct decryption. To prevent bad players from contributing bad 
partial decryption we force them to prove in ZK that they are correct with 
respect to the witnesses generated during the key generation protocol. The ZK 
proof for this task is described s in [15]. The protocol TEG-Decrypt appears in 
Figure 3. 

T h e o r e m  1. TEG = (TEG-Key-Gen, TEG-Decrypt) is a secure threshold cryp- 
tosystem for  EIGamal over a composite with fault-tolerance t for  any t, n such 
that n > 25. 

s [15] requires the modulus N to be a product of safe primes. It is possible to lift this 
assumption however by using a different protocol. 
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TEG-Key-Gen 

I n p u t  for  all p layers :  A composite number N product of two primes and 
an dement G of maximal order in Z~. 

1. Each player P, selects a random number z~ Ea [ - N 2 . . .  N 2] and ~ ran- 
dom integers a , l , .  �9 �9 a~t E [ - L ~ N S . . .  L 2 N  s] and consider the polynomial 
f~(z)  = Lz~ § a~l z -t- . . .  + a~tz t. Player P~ performs an unconditionally 
secure VSS of x~ using sharing polynomial f~(z) (for example Pedersen's 
VSS over a large enough prime field). Let Good be the set of players who 
are not disqualified at the end of this step. 

2. Player P, broadcasts a,0 ---- G | mod N and a~k = G ~'~ mod N. 
3. Let x~ = fj  (i) be the integer player Ps received during step 1. Player Pi 

checks that 
t 

G =~" = a.~o a mod N (2) 
k----1 

If the check falls P~ opens the commitment to the share he received in 
Step 1 and proves that Pj is cheating. 

4. Each P~ caught cheating on the previous step is exposed. That  is the 
value x~ is reconstructed using the VSS of step 1. The value ~ 0  is reset 
to G =~ mod N. 

5. The public key is set to Y = YLeooo= a~0 mod N (including the exposed 
values). The private share of player PC is the vector (x~, {z~,}~eoood ). 

Fig. 2. A Pedersen-like joint key generation with share-backup 

TEG-Decrypt 

I n p u t  fo r  all p layers :  A composite number N product of two primes, an 
element G of maximal order in Z~, the public output of TEG-Key-Gen and a 
ciphertext (A, B). 
P r i v a t e  I n p u t  fo r  P l aye r  P~: The secret output of TEG-Key-Gen, i.e. the 
vector (x,, {x,,}~eooo~ ). 

1. Each player P~ E Good broadcasts the partial decryption A~ - A =" rood 
N and proves in ZK using the protocol from [15] that DLogA A, = 
D Logo ao,. 

2. If P~ E Good and he fails the ZK proof of the above step, all the players 
run the reconstruction phase of Feldman-ZN-VSS and compute x~ and 
A~ = A =~ rood N on their own. 

mod N. 3. Output the message M -- llr-t,eooo~ A~ 

Fig.  3. Threshold Decryption for RIGamal over a composite 
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4 S h a r i n g  a n  R S A  S i g n a t u r e  

THE PROBLEM. Let (NB, vB) be Bob's RSA public key. The matching signing 
key is ss  such that SBVB = 1 mod r Alice receives a message m from Bob 
and Bob's signature S -- m ' s  mod Ns on it. Alice wants to verifiably share the 
value S among the proxies P1 , . . . ,  P, .  That is at the end of the sharing the 
proxies must be assured that they hold a sharing of Bob's signature on m. 

THE BASIC PARADIGM. We depart from the approach used by Franklin and 
Reiter [14] of directly sharing the signature S. Instead we follow the alternative 
approach to obtain secret sharing using an encryption of the secret with a key 
which is shared at the proxies. Assume that the proxies have established an 
instance of a public key encryption scheme E with public key E K  and that the 
matching secret key SK is shared among them in a t-out-of-n fashion. Then all 
Alice has to do to share S among the proxies is to simply give them the value 
Cs = EpK(S). Indeed t or less proxies have no information about the secret 
key, thus they cannot decrypt S. In order to achieve the verifiability property 
we need a proof that Cs indeed contains the signature S. 

ACHIEVING VERIFIABILITY. The above proof could be constructed using general 
zero-knowledge proof techniques, with a loss of efficiency. The key idea to obtain 
an efficient proof is to encrypt the signature S (created under Bob's public 
key (NB, VB)) using an instance of the E1Gamal cryptosystem over the same 
composite modulus NB. 

If Y = G x mod NB is the public key of the proxies, Alice will encrypt the 
signature by choosing a random K 6 Z*NB and computing As - G K mod NB 
and Bs - Y~: �9 S mod NB. 

This will allow for an efficient verifiability check using the ZK proof in Fig- 
ure 4. Alice will be the prover and the proxies will be the verifiers. The protocol 
is based on [30] with some efficiency improvements (it is not necessary to repeat 
it several times.) 

L e m m a  2. The protocol EGRSA-ZK-Proof is a honest-verifier zero-knowledge 
proof that (As, Bs ) is an EIGamal encryption under the key ( NB, G, Y)  of the 
signature S of rn under the key ( NB , VB ). 

To make the above protocol ZK against any verifier, known techniques [18] can 
be used. In particular the Verifier can commit to the challenge before the Prover 
speaks. 

THE BASIC PROTOCOL. On input a message m, Bob's signature S on it and 
Bob's public key NB, VB Alice does the following. She generates an instance of 
the E1Gamal encryption scheme over the composite NB. She generates G as a 
random power of m (for reasons that will appear clear in the security proof). 
She selects a random X 6 [ - N ~ , . . . ,  N~] and the public key Y = G x rood NB. 
She then encrypts S under by selecting a random K 6 ZNB and setting As = 
G K modNB and Bs = Y~: �9 S mod NB. She hands m, N s , v B , G , Y ,  A s , B s  to 
the proxies. Then she proves in ZK that As, Bs is indeed an encryption of the 
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EGRSA-ZK-Proof 

Input  for Prover and Verifier: The message m, Bob's RSA public key 
N s ,  ~s, the E1Garaal public key G, Y = G x ,  the ciphertext (As  = G K, Bs  = 
y K  . S) .  

Secret input for the Prover: A value S such that m = S ~s rood Ns and 
the random value K. 

I. The Prover chooses a random value R ER Z~,s and sets r = R ~s rood Ns 
(notice that R is a signature on r according to Bob's public key). The 
Prover encrypts R under the EIGamal key of the proxies, i.e. she chooses 
J ER ZN~ and sets AR ----- G a rood Ns and BR = Ya �9 R rood/Vs. She 

sends r, AR, BR to the proxies. 
2. The Verifier sends a random challenge c E ZNn 
3. The Prover answers with L = J -I- cK (integer value) and T = RS c rood 

IVy. The Verifier accepts if 
(a) G z' = A R "  AS mod Ns, 
(b) Ba .  B} -- yL .  T rood Ns and 
(c) T ~s = rm  c mod ]Vs. 

Fig. 4. A ZK Proof that an EIGaraal encryption contains an RSA signature 

signature S using the EGRSA-ZK-Proof from Figure 4. Finally the last thing 
left is to share X using Fddmsn-Zjv-VSS from Figure 1. This will guarantee the 
proxies that they have the correct decryption key to reconstruct S. 

To recover S the proxies will run the reconstruction phase of Feldman-ZN- 
V55 and then use X to decrypt S. The protocol is described in Figure 5. 

Notice that this protocol does not make use of the full threshold cryptosys- 
tern we have outlined in the previous section but only of the Feldrnsn-ZN-VS5 
protocol. 

T h e o r e m  2. Under the Decisional Dij~ie-Hellman assumption modulo a com- 
posite the protocol RSA-VI25-1 is a secure VE5 protocol for  R S A  with fault- 
tolerance 4, f o r  any n, t with n > 2t. 

AN ALTERNATIVE PROTOCOL. In this section we show a variation of the pre- 
vious protocol. The reason we present an alternative protocol is to improve the 
efficiency of the scheme for Alice. Indeed in this scheme we take full advantage 
of the new threshold cryptosystem described in Section 3. 

The main difference with respect to the previous protocol is that the key 
generation for the E1Gamal scheme is done distributively by the proxies instead 
than by Alice. This will also allow for a very efficient verification that the ci- 
phertext contains the required signature. Indeed the proxies can verify that the 



117 

RSA-V~S-I 

Input for Alice: The message m, BoWs RSA public key Na, va, the signa- 
ture B on m, i.e. a value such that m = S ~B rood Nv. 

RSA-~'Share-1 

1. Alice chooses uniformly at random 
- r E ZIvB and sets G = m y mod Nv. 
- X E [ - N ~ , . . . ,  N~] and sets Y = G x rood N~. 
- K E ZlvB and sets As = O K rood Nv and Bs  = y K .  S rood N~. 

She sends to the proxies rn, Nv ,  vv,  r, Y, As,  Bs.  The proxies compute 
G = rn ~ mod Nv.  

2. Alice runs the proof EGRSA-ZK-Proof as the prover on input 
m, Nv,  va, G, Y, As,  Bs  with the proxies as the Verifier. The proxies re- 
ject if Alice fails the proof. 

3. Alice runs Feldman-Z~--VSS for X as the dealer with the proxies. The 
proxies reject if Alice fails the VSS protocol. 

RSA-ERecover-1 
The proxies run the Reconstruction Phase of Feldman-Zzc-VSS and compute 
X and output S = ~r rood N~. 

Fig. 5. Basic RSA V~S Protocol 

pair (As,  B s )  is constructed correctly by checking tha t  

(A~n)x  -- (G K)X,~.  - y K . ~ ,  -- rn rood N/~ (3) 

t ~ s  m~s~ The full i.e. just  by running the TEG-Decrypt protocol on the pair t ~ s  , "~s )- 
protocol appears  in Figure 6. 

T h e o r e m  3. Under the Decisional Di~e-Hel lman assumption modulo a com- 
posite the protocol RSA-V~TS-1 is a secure V•S protocol for  R S A  with fault- 
tolerance t, for  any n, t with n > 2t. 

COMMENTS, VARIANTS AND OPTIMIZATIONS. Due to space l imitat ions we refer 
the reader to the final version of the paper  for a description of several variants 
of the above protocols and a detailed efficiency analysis. 

5 Sharing a DSS s ignature 

THE PROBLI~M. Recall the DSS signature scheme. The  public parameters  axe a 
large prime p, a 160-bit prime q tha t  divides p - 1 and an element # of order q 

in Z~. Bob (the signer) has a secret key z which is a random number  in Zq. The  
matching public key is y - #~ m o d  p. A message M is signed by first hashing 
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RSA-V~'S-2 

I n p u t  for Alice:  The message m, Bob's RSA public key Ns ,  vv, the signs, 
ture S on m, i.e. a value such that m = S ~s mod/Vs. 

RSA-L'Share-2 

1. Alice sends to the proxies the message m, Bob's public key (Ns,  vs)  artd 
a random value r E ZNs 

2. The proxies run TEG-Key-Gen on input the modulus N s  and the basis 
G = m ~ mod/Vs. They return to Alice the public key Y = G x mod/Vs. 

3. Alice encrypts ,~ using the E1Gamal encryption scheme with public key 
(Ns,  (7, Y). That is, she generates a random number K in ZNs and com- 
putes A s  = G K rood Ns  and B s  = yZ: .S  mod/Vs. Alice sends (As,  Bs)  
to the proxies. 

~B ~B 4. The proxies run TEG-Decrypt protocol on the pair (A s , B s ). If the 
output is m they accept otherwise they reject. 

RSA-~TRecover-2 The proxies run TEG-Decrypt protocol on the pair (As,  Bs) .  

Fig. 6. Alternative I=tSA VES Protocol 

it down via SHA-1, i.e. m = S H A - I ( M ) .  Then Bob chooses a random number  
k ER Zq, and computes r = gk m o d p  mod q and s = k - i ( r a  + z r ) m o d  q. The 
signature is the pair (r, s). A signature is verified by comput ing ~ = s - t  mod  q 
and checking that  r = ( g r n f ) r  rood p rood q. Alice receives the message M and 
the pair (r, s) and she wants to verifiably share the pair (r, s) among the proxies 
PI, . . . , P,~. 

THI~ APPROACH FROM [14]. We follow the same provably secure approach used 
in [14] to verifiably share an E1Gamal signature. The main  difference between 
a (plain) E1Gamal signature and DSS 4 is tha t  r = gh mod  p (without the extra  
modq reduction) and 8 = k - 1 ( m  - zr )  (a - instead of a +) .  The idea in [14] 
was for Alice to give out r in the clear to the proxies and to share s via a 
Feldman VSS using an appropriate  basis for the verification. For some reason 
(probably because the extra  reduction modq for r seems at  first sight not to 
allow this approach) they decided to switch the roles between r and 8 in the 
DSS VES . Alice gives out s in the clear and shares ~" via Feldman's  VSS. 
However their simulation does not go through, al though they claim heuristically 
tha t  it is secure. 

OUR APPROACH. We show that  a careful adapta t ion of the E1Gamal V~TS from 
[14] can be shown to be secure. Alice gives out 7" in the clear to the proxies and 
shares ~r = s - t  via Feldman VSS using the basis G = gmy~ (which the proxies 
can compute  on their own from g, y, m, r) .  Notice tha t  by doing this she reveals 

4 Apart from the way messages are hashed which is irrelevant for the purpose of V~S 
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r* = G ~ mod p. So in order to check that the shared value is really the correct 
signature the proxies must simply check that r* rood q = r. Notice that revealing 
r* (i.e. the value of r before the reduction modq) does not turn into a security 
problem since this information is easily simulatable (see the proof). Indeed the 
reduction modq of r serves only to shorten the signature and has no security 
purpose. The full protocol appears in Figure 7. 

DSS-VZS 

I n p u t  for  all players:  Bob's DSS public key (2, q, g, y), a message M and 
its hash value m. 
Secret  I n p u t  for Alice: A DSS signature r, s from Bob on M. 

DSS-~Share 

I. Alice broadcasts r to the proxies. She runs Feldman's VSS on input the 
secret a = s -I and with basis G = g"~y~. Let a0 be the commitment to 
the secret generated by the Feidman's VSS, i.e. if Alice is honest a0 --- 
G ~ rood p. 

2. The proxies run the verification phase of Feldman VSS (including the 
complaint phase). They reject the sharing if either Alice is disqualified 
during the verification of Feldman's VSS or a0 ~ r rood q. 

DSS-~Recover The proxies run the reconstruction phase of Feldman's VSS 
to recover er. They compute s = a-* rood q and output r, s. 

Fig. 7. A protocol for DSS VZS 

T h e o r e m  4. Protocol DSS-V~S is a secure V,~S protocol for DSS with fault- 
tolerance t, for any n, t with n > 2t. 

A c k n o w l e d g m e n t s :  We would like to thank  Tal Rabin for several discussions 
over the topic of proactive RSA. 
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