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Abs t rac t .  Several multivariate algebraic signature schemes had been 
proposed in recent years, but most of them had been broken by exploiting 
the fact that their secret trapdoors are low rank algebraic structures. One 
of the few remaining variants is Patarin's "Oil & Vinegar" scheme, which 
is based on a system of n quadratic forms in 2n variables of two flavors 
(n "oil" variables and n "vinegar" variables). The security of the scheme 
depends on the difficulty of distinguishing between the two types, and 
does not seem to be susceptible to known low rank attacks. In this paper 
we describe two novel algebraic attacks which can efficiently separate the 
oil and vinegar variables, and thus forge arbitrary signatures. 

1 I n t r o d u c t i o n  

The  problem of developing secure digital signature schemes had been extensively 
investigated over the last 20 years. The longest surviving and best known of these 
schemes is the RSA signature scheme, in which the verification condition for a 
message m, signature x, and public key (e, n) is the single algebraic equation x e = 
m (modn) of degree e in the single variable r Its security is based on the difficulty 
of solving such an equation modulo a large n with unknown factorization. 

A natural  extension of this algebraic approach is to consider several simulta- 
neous equations in several variables. Let M = ( m l , . . . ,  ink) and X = (~1 , . - . ,  xt) 
be vectors representing the message and signature, respectively. The signature 
is said to be valid if: 

G l ( X l , . . . , ~ , )  -- ml 

= ms 

= 

where the Gi are multivariate polynomials published by the signer as his public's 
key. 

The designer of the signature scheme can now take one of two routes: 

1. He can use a small (=constant)  number of variables over a large algebraic 
domain such as ~ r ,  and base its security on the difficulty of factoring n. 
Compared to the RSA scheme, he hopes to get the same security but  higher 
performance. 
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. He can use a large (=security parameter) number of variables over a small 
algebraic domain. The problem of solving systems of polynomial equations 
is NP-complete even when all the equations are of degree 2 and the algebraic 
domain is the two-element field f2 .  Compared to the RSA scheme, he hopes 
to get higher security and higher performance. 

Unfortunately, almost all these schemes were broken shortly after their intro- 
duction. For example, the Ong-Schnorr-Shamir [OSS] scheme (which belongs to 
the first type) was broken by Pollard and Schnorr [PSI, the Matsumoto and Imai 
scheme [MI] (which belongs to the second type) was broken by Patarin [P1], and 
Shamir's birational permutation scheme IS] (which belongs to the second type) 
was broken by Coppersmith Stern and Vaudenay [CSV]. 

About two years ago, Patarin tried to revive the second approach by in- 
troducing several new signature schemes which seemed to be immune to all the 
known types of algebraic attacks. The "oil & vinegar" signature scheme [P2] was 
described as the simplest, while the "hidden field equations" [P3] was described 
as the most secure, and a $1000 prize was offered for its cryptanalysis. The only 
partial attack found so far against any of these schemes (based on private com- 
munication with Patarin, January 1998) is due to Coppersmith, who broke a 
cubic variant of the oil & vinegar scheme, but not the original quadratic versiom 

In this paper we describe two novel algebraic attacks which can break the 
original "Oil & Vinegar" scheme in a matter of seconds for all reasonable choices 
of the security parameter. The first attack linearizes certain quadratic equa- 
tions which distinguish between the oil and vinegar variables, while the second 
attack analyses the characteristic polynomials of certain matrices to find two 
eigenspaces generated by the two types of variables. The attacks extract from 
the public key an algebraic structure which is equivalent to (but not necessarily 
equal to) the legitimate signer's secret key, and after this short precomputa- 
tion the forger can use the signer's efficient algorithm to generate signatures for 
arbitrary messages. 

2 A Simplified Oil and Vinegar Scheme 

In this section we introduce a homogeneous variant of the Oil & Vinegar scheme, 
which makes the description and analysis of our attacks simpler. In section 4 
we show that essentially the same attack can be applied to the original non- 
homogeneous Oil & Vinegar scheme. 

Let M = (ml,. . . ,mk) be a message consisting of k elements from a fi- 
nite field ~r of order q . X = (Xl,...,z2k) consisting of 2k elements from Y 
is a valid signature of M if it satisfies G(X) = M where G(X)  : .T 2k , 
.T k is the signer's public key. The mapping G can be written as G(X)  = 
(GI(X) ,  G2(X), . .Gk(X)) where each Ge(X) is a homogeneous quadratic form 
of 2k variables X = (x l , . . . ,  x2k) over ~r, i.e., a sum of monomials of the form 
c i jx~j .  Such a quadratic form can be described by the product X t G e X  in which 
Ge is a 2k • 2k matrix, X is a column vector, and X t is X transposed. 
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Each message M has approximately qk possible signatures, but finding any 
one of them is apparently difficult due to the nonlinearity of the equations. The 
legitimate signer can solve these equations and compute X by exploiting the 
secret structure of G, defined by the following construction: 

Let A be a randomly chosen nonsingular 2k x 2k matrix over ~r, and let 
Y = (Yl, . . . ,  Y2k) be a new set of 2k variables defined by Y = A X .  Let F = 
(F1, . . . ,  Fk) be a vector of k random matrices of size 2k x 2k in which the top 
left k x k submatrix is zero: 

B1 

Define the quadratic forms F ~ ( Y )  for e = 1 . . . .  , k in the usual way as y t F e y ,  

and derive the equivalent quadratic forms G e ( X )  after the linear change of vari- 
ables Y = A X  as the products X t �9 A t �9 Fe . A .  X .  Publish their coefficients (i.e., 
the entries of the triple products A t �9 Fe �9 A )  as  the public signature verification 
key. 

The signer's secret key is the matrix A which translates between the public 
X and secret Y variables. In terms of the Y variables, the quadratic forms are 
y t .  Fe �9 Y .  The fact that Fe has a top left quarter of zeroes implies that in any 
monomial of the form c i j y i y j  at most one of i, j can be in the range [1, k], and 
thus all the variables from the first half of Y (which we call the oil  variables) occur 
linearly in the quadratic forms, while all the variables from the second half of Y 
(which we call the v i n e g a r  variables) can occur either linearly or quadratically 
in the quadratic forms. However, when translated into quadratic forms in terms 
of the X variables, the distinction disappears and all the 2k variables in X 
seem to multiply each other in all possible combinations with random looking 
coefficients. 

To sign a given message M = (ml , . . . ,  mk), the legitimate signer uses the 
following simple algorithm: 

1. Assign random values to all the vinegar variables (yk+l,..., y2k). 
2. Simplify the quadratic equations defined by y t .  Fe �9 Y = m e .  The resultant 

equations are linear and contain only oil variables. 

3. Solve the system of k linear equations in k variables. If it is singular, return 
to step 1 (this can be shown to happen with a probability smaller than some 
constant which depends on the choice of F). 

4. Map the Y solution to an X solution via X = A - 1 y .  

5. Provide X as a signature of M. 

To forge a signature for message M, the forger has to find 2k values for the 
variables in X satisfying the k random looking quadratic equations G i ( X )  = rni .  

In the next section we show that it is possible to break the scheme by recovering 
the oil variables. 



260 

3 Cryptanalysis of the Oil and Vinegar Signature Scheme 

3.1 The  C r y p t a n a l y t i c  Approach  

Definition1. The oil subspace of the Y space is the set of all vectors in y~2k 
whose second half contain only zeroes. The oil subspace of the X space is the 
preimage by A of all vectors in 9 v2k whose second half contain only zeroes. 

Definitlon2. The vinegar snbspace of the Y space is the set of all vectors in 
~-2k whose first half contain only zeroes. The vinegar snbspace of the X space is 
the preimage by A of all vectors in 9 r2k whose first half contain only zeroes. 

The notions of oil and vinegar subspaces will often be used without referring 
to the X or Y spaces, and the meanning will be clear from the context. Since A 
is nonsingular, each one of these subspaces has dimension k, and the X and Y 
spaces can be viewed as direct sums of their oil and vinegar subspaces. 

An important property of the oil space is: 

L e m m a  3. All the published quadratic forms GI(X). .Gk(X) over yr~k are iden- 
tically zero on the oil subspace V of X .  

Proof." In each monomial in Y t F e Y  there can be at most one oil variable. 
By our simplifying homogeneous assumption, the Oil & Vinegar scheme cannot 
contain linear monomials, and thus each monomial contains at least one vinegar 
variable. Since any X E V corresponds to a Y in which all the vinegar variables 
are zero, the quadratic form is identically zero on V. [] 

The set of X vectors which make a particular Ge(X) zero is usually a strict 
superset of the oil subset, but the intersection of sufficiently many of these sets 
is likely to be exactly the oil subspace. However, this is not an effective charac- 
terization of the oil subspace, since we can't find the zero sets of quadratic forms 
with many variables by an efficient algorithm. 

The next observation is that each matrix Ge can be considered not only as 
a quadratic form, but also as a linear mapping over the X space. One technical 
problem is that quadratic forms and linear mappings behave differently under 
the linear change of variables Y = AX: If B is the matrix of a quadratic form, 
it is changed by a congruence relation to AtBA,  while if B is the matrix of a 
linear mapping, it is changed by a similarity relation to A-1BA.  

To overcome this problem, we consider products of matrices of the form 
B-1C. If B and C are quadratic forms and A is a linear change of variables, then 
the new B and C are AtBA  and A'CA,  respectively, and thus the new B - z C  
is A - 1 B - 1 A ' - I A ~ C A  = A - 1 B - 1 C A ,  which is B - 1 C  changed by a similarity 
relation, as desired. 

We first characterize the behaviours of the Fe's as linear mappings over the 
Y space: 

L e m m a 4 .  I f  Fi and Fj are nonsingular, then Fj maps the oil space onto the 
vinegar space, F[ "1 maps the vinegar space onto the oil space, and F~-I Fj maps 
the oil space onto itself. 
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Proof :  Fj has a top left quarter of zeroes. When it is multiplied by a column 
vector whose second half is zero, the result is a column vector whose first half 
is zero, and thus Fj maps the oil subspace into the vinegar subspace. If Fj is 
nonsingular, it maps a subspace of dimension k to a subspace of dimension k, and 
thus Fj maps the oil subspace onto the vinegar subspace. Since all the vinegar 
subspace is in the range of this mapping, Fi -1 maps the vinegar subspace back 
onto the oil subspace, and F~'IFj maps the oil subspace onto itself. D 

When we change Y to X, Fe is changed to Ge as a quadratic form, but not 
as a linear mapping. However, Fij = F~-IFj is changed to Gij = G'~IGj as a 
linear mapping, and thus for any i , j ,  Gij maps the oil subspace of the X space 
onto itself. 

Remark :  There is a subtle point for fields ~r of characteristic 2, since 0 + 0 - 
1 + 1 = 0, and thus the symmetric matrix representation of their quadratic forms 
does not always exist, and is not always unique. In particular, the party that 
chooses the signature key can change the top left quarter of F8 from zero to 
any symmetric matrix with zeroes on the diagonal, and then compute Ge in the 
usual way as AtFsA. As quadratic forms, all these matrices are equivalent, but as 
linear mappings they behave very differently, and in particular any attack based 
on a search for these zeroes in Fe will be foiled by such a modification. The 
simplest way to overcome this countermeasure was proposed by Coppersmith 
(private communication): replace each published Ge by G~ = Ge + Gte. As a 
quadratic form over X, XtG~X is uninteresting since it is identically zero, but 
as a linear mapping it is equal to At(Fr + F~)A, which has the desired form (a 
matrix Fe % F~ with a top left quarter of zeroes, under congruence relation). 
Since our attack only considers the behaviour of the given matrices as linear 
mappings, we can apply it even when the field has characteristic 2 and the F6 
matrices are intentionally modified. 

Def inl t lonS.  Assume that all the Ge matrices are nonsingular (eliminate those 
which are not). Define T as the closure of all the matrices Gij = G'~IGj under 
addition, multiplication, and multiplication by a constant from ~'. 

Note that if the Fe and A are chosen at random, at least a constant fraction 
of the G8 matrices are nonsingular, and thus there are quadratically many Gij 
matrices. Their closure T is even richer, and contains all the polynomials in all 
the nonsingular G~j (note that these matrices need not commute, and thus the 
monomials in these polynomials contain all the different orders in which they 
can be multiplied, and not just their multiplicity). 

Def ini t lon6.  A linear subspace U is an r of matrix B if B maps U 
into itself. U is a common eigenspace of a set of matrices if it is an eigenspace 
of each one of them. 

Remark :  If B is nonsingular then it maps the eigenspace onto itself. Any 
eigenvector of B defines an eigenspace of dimension one. If B has several eigenvec- 
tors then the space spanned by any subset of eigenvectors is also an eigenspace. 
If B has a complete set of eigenvectors corresponding to distinct eigenvalues, 



262 

then all the eigenspaces of B are of this form. However, B can have nontriv- 
ial eigenspaces even when it has no eigenvectors at all, and thus the concept 
of eigenspaces is a strict generalization of the concept of eigenvectors. Random 
matrices often have only the trivial eigenspaces of the zero vector and the whole 
space, and several random matrices are very unlikely to have a common non- 
trivial eigenspace. 

We can thus provide a strong characterization of the oil subspace: 

T h e o r e m  7. The oil subspace V of the X space is a common eigenspace of all 
the matrices ~n T. 

Proof: We have already shown that V is a common eigenspace of all the 
Gij matrices. Since this property is preserved by the operations of addition, 
multiplication, and multiplication by a constant, V is a common eigenspace of 
their closure T. [] 

4 F i n d i n g  C o m m o n  E i g e n s p a c e s  

In this section we describe two efficient methods for finding a common eigenspaee 
of a sufficiently rich set of matrices. The first method is a linearization heuristic 
which is expected to succeed with high probability. The second method is based 
on a simple relationship between eigenspaces and characteristic polynomials of 
matrices, and can be rigorously analysed. 

4.1 The  LJnear izat ion M e t h o d  

In this method we first derive a large number of quadratic equations in a small 
number of variables. We linearize it hy replacing the product of any two variables 
by a new variable, getting linear equations in a quadratic number of variables. 
If the original number of quadratic equations is quadratic in the number of 
variables, we hope to get a uniquely solvable system of linear equations. The 
values of the original variables can now be derived by analysing the values of 
their pairwise products. 

To find the quadratic equations, choose a basis T1, . . . ,  Tn for the closure T 
of the Gij matrices. We cannot formally prove a lower bound on n, but there are 
strong heuristic arguments why n is expected to be 0(k2). Let R = ( rz , . . . ,  r2k) 
be a vector of formal variables denoting some vector in the oil subspace of X. 
Consider the collection of column vectors T1R, . . . ,  TnR in which each entry is 
a formal linear combination of rl variables with known coefficients, and arrange 
them in a 2k • n matrix M. Since the oil space is a common subspace of rank 
k of all the Tj matrices, the column rank of M cannot exceed k for any choice 
of R in the oil subspce V. Consequently, the row rank of M cannot exceed k as 
well, and thus there is a linear relationship between the first k + 1 rows of M. 
Let S = ( s l , . . . ,  sk+l) be the coefficients of this linear relationship (without loss 
of generality, we can assume that sk+~ is 1). For each one of the n columns of 
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M, we can thus express the relationship as a quadratic equation in the variables 
of R and S. 

We can now solve this system of equations by the linearization method, 
replacing each product of variables risj by a new variable z 0. Unfortunately, 
the ri and sj solution is not unique (any vector in the oil space can give rise 
to a different linear combination of the rows), and thus there is a non-trivial 
subspace of solutions for the linearized variables zij. A randomly chosen solution 
in this subspace is unlikely to correspond to a consistent product of ri variables 
and sj variables. To overcome this problem, we add random (nonhomogeneous) 
linear equations relating the 2k variables ri, and use them to eliminate some of 
the ri variables from the quadratic equations before we linearize them. When, 
sufficiently many random linear equations are added, we expect that the vector 
R in the oil subspace will become uniquely defined (as the intersection of a 
linear subspace and an affine subspace of half dimension), and thus we will 
not get parasitic zij solutions which do not correspond to products of ri and sj 
variables. We may have to try several collections of random equations of different 
sizes, but the method is expected to succeed since our characterization of the oil 
subspace leads to an extremely overdefined system of equations. 

4.2 The  Charac te r i s t i c  Po lynomia l  M e t h o d  

In this section we exploit interesting relations between eigenspaces and charac- 
teristic polynomials. 

Let P(z) be the characteristic polynomial of an n x n matrix B. By the 
Caley-Hamilton theorem, P(B) is the zero matrix. We now consider the matrices 
obtained by substituting B into other polynomials. 

L e m m a 8 .  For any polynomial P'(x), kernel(P'(B)) is an eigenspace of B. 

Proof: ff Z e kernel(Pt(B)) then P'(B)Z = 0 by definition. B commutes 
with any power of B, and thus with any polynomial in B such as Pt(B). Con- 
sequently, Pt(B). BZ = B.  Pt(B)Z = O. This proves that B maps the kernel of 
P~(B) into itself. [] 

The converse of this lemma is not true, in the sense that some eigenspaces of 
B are not definable as the kernel of any polynomial in B. Consider, for example, 
the identity matrix B = I. Since all the powers of B are I, the only singular 
polynomial in B is the zero matrix, whose kernel is the whole space. On the 
other hand, any linear subspace is an eigenspace of B. 

For any matrix B and vector Z there exists a minimal nonzero polynomial 
P'(x) such that (P'(B)) maps Z to zero (P' is defined by the smallest linear 
relationship between the vectors B i Z). If this P'(z) does not divide the charac- 
teristic polynomial P(z) of B, there are two polynomials D(x) and E(x) such 
that D(z)P'(r,)+ E(z)P(z) = P"(z)  where P"(x) = gcd(P'(z), P(x)) whose 
degree is strictly smaller than that of P'(z). When B is substituted for z and 
the resultant matrix is applied to Z, we get a lower degree polynomial which 
maps Z to zero, in contradiction to the minimality of P'(z). 
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The definition can be extended from a single vector Z to any linear subspace 
V, and the minimal polynomial of V (with respect to B) is the least common 
multiple of the minimal polynomials of all the vectors Z E V, which is also a 
divisor of the characteristic polynomial P(z)  of B. 

The following case is of special interst: 

T h e o r e m  9. If  the characteristic polynomial P(x) of B is irreducible, then the 
only eigenspaces of B are {0} and the whole space. 

Proof." Let Z be any nonzero vector in the eigenspace V. The minimal poly- 
nomial of Z is a divisor of P(x). Since P(z)  is irreducible, it can only be 
P(z) itself. Since the minimal polynomial of Z is of full degree n, the vectors 
Z, BZ, B~Z , . . . ,  B n - I Z  are n linearly independent vectors. However, Z E V and 
V is an eigenspace of B, and thus all these vectors are also in V. Consequently, 
V has full dimension n, and contains the whole space. [] 

We cannot use this simple characterization of eigenspaces to search for the oil 
subspace of matrices in T, since the characteristic polynomials of these matrices 
are always reducible polynomials. To see this, consider any two matrices Fi and 
F/ of size 2k x 2k whose top left quarter is zero. It is easy to show that the 
product Fij = Fi-IFj has the form: 

F ~ J = (  B1B2)B3 

and the sum, product, and constant multiples of such matrices have the same 
form. The characteristic polynomial of any matrix of this form is the product of 
the characteristic polynomials of Bz and B3, which are of degrees k each. The 
characteristic polynomial is not changed by a similarity transformation, and thus 
the characteristic polynomials of all the matrices in T can be expressed as the 
products of two k degree polynomials. 

We are thus led to consider the next simplest case, in which the char- 
acteristic polynomial P(x) of B factors into two distinct irreducible factors 
P(~) = P I ( X ) .  P2(X). Define B1 = PI(B), B2 = P~(B), K1 - kernel(B1), 
and K2 = kernel(B2). Then the following is true: 

1. range(Bz) C K2 and range(B2) c C. K~. 
2. K1 fl K2 - {0} (the zero vector). 
3. dim(K1) + dim(K2) = 2k. 
4. The space can be represented as a direct sum of K1 and/s 
5. The only eigenspaces of B are {0}, K1, K2, and the whole space. 

The intuitive reason for the last part is that any vector Z in an eigenspace V 
can be decomposed into its K1 and K2 components, which behave independently 
of each other. If only one of the components is nonzero, repeated application of B 
to Z spans the corresponding Ki by the irreducibility of P/. If both components 
are nonzero, the minimal polynomial of Z is the least common multiple of the 
two minimal polynomials, which is the whole P(x) since PI(~) and P2(x) are 
distinct and thus relatively prime. These statements will be formally proved in 
the full version of the paper. 
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Remark: It is possible to extend the complete characterization of the eigenspaces 
to arbitrary matrices by analysing their Jordan normal forms, but the results 
are more complicated and the characterization becomes useless when there are 
too many possible eigenspaces. 

We know that the oil subspace is a common eigenspace of dimension k of 
all the matrices in T. The characteristic polynomial of any such matrix factors 
into two polynomials of degree k, but each one of these polynomials can often be 
factored further into smaller degree polynomials. In particular, if the character- 
istic polynomial factors completely into 2k linear terms, there are exponentially 
many ways to multiply k of them to get the k degree polynomial defining the 
oil space. However, if T contains some matrix B whose charactristic polynomial 
P(x) can be factored into two distinct irreducible factors Pl(x) and P2(x) of 
degree k, then the oil subspace we want to find is easy to compute either as the 
kernel of PI(B) or as the kernel of P2(B). 

The characteristic polynomial and the kernel of a given matrix can be found 
in polynomial time, and its complete factorization over a finite field can be 
found in random polynomial time. To find a usable B, we randomly sample 
matrices in T. What is left to be shown is that with a sufficiently high probability, 
the characteristic polynomials of these matrices factor into a pair of distinct 
irreducible factors. An easy counting argument shows that random k degree 
polynomials are irreducible with probability about 1/k, and thus a quadratic 
number of random polynomials almost certainly contains polynomials of the 
desired form. However, the characteristic polynomials of random matrices may 
be non-uniformly distributed. We overcome this difficulty by proving: 

Theorem 10. There is a set B of matrices such that: 
1.B contains at least a constant fraction of all ~he matrices 
~. The characteristic polynomials of matrices in B are uniformly distributed. 

The proof will be given in the full version of the paper, and then applied 
to our case in which the characteristic polynomials of all the matrices in T are 
known to factor into two polynomials of degree k, but are somewhat unlikely to 
factor further into lower degree factors. 

We can thus conclude that for a randomly chosen public key in the oil & 
vinegar signature scheme, we can find its oil subspace with high probability by 
a random polynomial time algorithm. 

5 Completing the Attack 

Let V be the common oil eigenspace of all the T matrices, found by one of the two 
methods described in the previous section. We define a new basis (Yl, . . . ,  Y2~) 
in which the vectors Yl , . . . ,  Yk span the oil subspace and Y~+I,..., Y2k complete 
it into a basis for the 2k dimensional space. This basis is not unique, but it 
is related to the original basis used by the legitimate signer via some linear 
transformation which maps the oil subspace onto itself. For any such basis, all 
the given quadratic forms Ge become linear in the first half of their variables, 
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because this is true when the original basis is used, and remains true under 
any linear transformation which preserves the oil subspace. Consequently, the 
forger can use the same efficient algorithm used by the signer to generate forged 
signatures for arbitrary messages, even though he cannot reconstruct an identical 
secret key. 

To complete our attack on the original oil & vinegar signature scheme, we 
have to consider the differences between the original the simplified versions. The 
only significant difference is that in Patarin's original scheme, the quadratic 
forms Fe can contain linear and constant terms, and the mapping A is affine 
rather than linear. The resultant Ge forms are not necessarily homogeneous, 
and we have to modify our definitions of the oil and vinegar domains since they 
become affine rather than linear subspaces. However, all the modifications affect 
only the linear and constant terms in each Ge, which are clearly distinguishable 
from the quadratic terms in the published forms. We can thus apply the attack 
described so far to the homogeneous quadratic parts of the published forms, 
find the homogeneous linear part of the mapping A, and add the linear and 
constant parts of the Ge only when we actually solve the resultant system of 
linear equations in the oil variables. More details on this point will be provided 
in the full version of this paper. 
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