
Building PRFs from PRPs*

Chris Hall I , David Wagner 2, John Kelsey I, and Bruce Schneier a

I Counterpane Systems
(hall,kelsey, schneier}@counterpane, corn

U.C. Berkeley
daw@cs, berkeley, edu

Abstract . We evaluate constructions for building pseudo-random func-
tions (PRFs) from pseudo-random permutations (PRPs). We present two
constructions: a slower construction which preserves the security of the
PRP and a faster construction which has less security. One application
of our construction is to build a wider block cipher given a block cipher
as a building tool. We do not require any additional constructions---e.g.
pseudo-random generators--to create the wider block cipher. The secu-
rity of the resulting cipher will be as strong as the original block cipher.
Keywords . pseudo-random permutations, pseudo-random functions, con-
crete security, block ciphers, cipher feedback mode.

1 Introduction and Background

In this paper we examine building psuedo-random functions from pseudo-random
permutations. There are several well known constructions for building pseudo-
random permutations from pseudo-random functions, notably [LR88]. However,
the only results we are aware of for going in the reverse directions are the recent
results of Bellare et. al. in [BKR98] I.

One primary justification for building pseudo-random functions is that it
allows one to use the results of Bellare et. al. [BDJR97] to produce an n-bit cipher
that can be used to encrypt more than 2 n/2 blocks. Due to birthday attacks, n-
bit permutations will leak information about the plaintext after 2 n/2 blocks. By
closing the loop between pseudo-random functions and permutations, we can also
accomplish a number of things: widening the block width of a cipher, creating a
provably secure 1-bit cipher feedback mode, and building encryption functions
secure for more than 2 n/2 blocks. Given the plethora of existing practical block
ciphers, it would be nice to be able to create pseudo-random functions from them
directly without having to resort to building new primitives from scratch.

Our work extends previous work on pseudo-random functions (PRFs) and
permutations (PRPs). PRFs and PRPs were initially defined in [GGM86] as
functions (resp. permutations) which a polynomially-bounded attacker cannot
to distinguish from truly random functions (resp. permutations) with more than

* The full paper is available at http://~r~, counterpane, com/publish-1998.html.
i We were unaware of these results when we originally wrote our paper, but they were
instead pointed out to us by an anonymous referee.

371

neglible probability. A more recent paper by Bellare et al. [BDJR97] evaluates
four different notions of security and applies those notions to the definitions of
PRFs and PRPs. In addition, M. Luby has written a book on pseudorandomness
which provides an excellent summary of the theoretical constructions leading up
to PRFs [Lub96].

Some authors have made a distinction between PRPs and super PRPs. With
a super PRP, an adversary is allowed to query for inverse evaluations of the
permutation [LR88]. For our applications, we require the "super" variety of
PRP. Therefore, for the remainder of this paper we shall consider only super
PRPs; we usually omit the "super" prefix for conciseness.

Extensive research has been conducted on building PRPs from PRFs. Many
of the constructions are based on Luby and Rackoff's original work [LR88].
Let F(l , r) = ~Pm(fl , . . . , fra)(l,r) denote an m-round Feistel network where
f i �9]Fn:n. Then F(l, r) �9]P2n where ~Pi(fa,... , f i) is defined by

~'(f)(1,r) = (r,l ~ f (r))

k~k(fl, . . . , fk) = ~(Yk) o k~(fk_l) o . . . o ~(f l) (/ , r) .

Luby and Rackoff [LR88] showed that an adversary has advantage at most
m (m - 1)/2 n if they make m < Q(n) queries for some polynomial Q(x). Recall
that the advantage is computed as

AdvA = IP[A p = 1] - P[A l = 1][

where A is an adversary who returns 1 if they believe they are looking at a 2n-bit
permutation from the ~P3(fl, f2, f3) family and 0 otherwise. Then p[Ap = 1] de-
notes the probability that an attacker returns 1 when given p �9 {~Pa(fx, f2,]3) :
f i �9 Fn:n} and P[A y = 1] denotes the probability that an attacker returns 1
when given f �9 P2n. The result was generalized for m < 2 n/~ [AV96,M92,Pglb,P92]
to

Adv A = O(m2 /2n).

Many different researchers have investigated variations of this construction
[AV96,C97,Luc96,M92,P91b] [P92,P97,SP91,SP92,ZMI89a,ZMI89b] and even pro-
posed different constructions [M92,P97]. The exact nature of these constructions
is beyond the scope of this document; they investigate building PRPs from PRFs,
and we are interested in going the other direction.

In addition to designing PRPs from PRFs, some researchers have studied
designing PRFs from smaller PRFs. Aiello and Venkatesan built a 2n-bit to 2n-
bit function from eight n-bit to n-bit functions using a Benes transform [AV96].
They achieved the notable bound that

AdvA = [P[A B = 1] - P[A f = 111 = O(m/2 n)

after m queries, where A B is the result of executing the adversary A with the
oracle instantiated by a function B from the Benes family, and A f is the result
of running the adversary with a random 2n-bit function.

372

Aside from building wider functions, some researchers have examined build-
ing variable-length input PRFs (VI-PRFs). In [BCK96], BeUare et al. formalize
the notation of VI-PRFs and analyze the security of several constructions. Their
functions are constructed using simpler primitives: fixed-length input PRFs (FI-
PRFs) which were first defined in [BKR94] in order to model the Data Encryp-
tion Algorithm (DES). One important feature of these papers is that they focus
on concrete security analysis, which attempts to provide precise estimates of se-
curity, rather than being satisfied with asymptotic results. Bellare et al. initiated
this study in [BKR94,BGR95].

When it comes to building PRFs from PRPs, though several different people
have noted that a PRP can be used as a PRF with advantage 0(m2/2 n) for
m < 2 n/2 (e.g. [AV96]), there has been a notable lack of research in this area.
One recent exception is the excellent paper of BeUare et. al. [BKR98], which uses
the notion of data-dependent keying to build a PRF from a PRP. Their results
present strong evidence for the security of their P R P ~ P R F construction, and
they take some initial steps towards a more complete analysis of its strength
against computationally-bounded adversaries. One of the most appealing fea-
tures of their construction is its practicality: the construction is very simple,
and performance is degraded by only a factor of two (or less, when in stream
cipher modes). It should be possible to use their re-keying construction in the
applications found in Section 3, as a drop-in replacement for our P R P ~ P R F
construction. This would provide corresponding improvements in performance;
the tradeoff is that the available security results are weaker for the re-keying
construction.

One interesting motivation for building PRFs from PRPs is that we could
build larger PRPs from smaller PRPs by first constructing PRFs from the PRPs,
using the results of [AV96] to strengthen the function, and finally using one of
the many results available for building PRPs from PRFs. This is in fact the
approach we take in our paper, and it provides the first useful technique (which
we are aware of) for securely increasing the block width of a trusted block cipher.

The format of the rest of our paper is as follows. In Section 2 we intro-
duce our two constructions for producing PRFs from PRPs: 0RDEtt(P)~ :k and
TRUNCATE(P)~ -m. In Section 3 we apply our constructions to a few different
problems and give descriptions of our solutions. Finally, in Section 4 we analyze
the security of the constructions presented in Section 2.

1.1 N o t a t i o n

In this section we introduce some of the notation we will use through the rest of
the paper:

Rn Z~, the set of all n-bit blocks.
lPn The symmetric group on 2 n elements (specifically, the set of all permutations

on P~).
]Fn:m The set of all functions with the signature Rn ~ R,n.

373

p(a, b) Denotes the evaluation of a permutation p with the bit concatentation of
a and b.

(t, q, e)-secure Captures the notion of a cryptographic primitive which is se-
cure, in the sense that any adversary who uses at most t units of off]hue work
and issues at most q chosen-plaintext/ciphertext queries can only get advan-
tage at most e for distinguishing the primitive from a random function (or
permutation). This roughly means that an attacker must either do t work or
implement q chosen-text queries to have any chance of breaking the primi-
tive; however, even then the attacker is not guaranteed a practically-useful
attack. Therefore, this is a very strong measure of security, in the sense that
if a primitive is proven strong under this model, it is likely to be very strong
indeed.

2 The Construct ions

We introduce two constructions: 0RDER(P)~ :k and TRUNCATE(P)n n-re. The former
uses a permutation p E lPi to produce a function f E Fj..k. The latter uses a
permutation p E]Pn to produce a function f E IFn..,~-m. In this section we give
a brief description of each of these constructions along with their security, but
leave the analysis of their security until Section 4.

2.1 0RDER(P),~ I

Our first construction, 0RDER(P)~I uses the order of entries in a table repre-
senting a n+ 1-bit permutation to encode a function ~fn E Fn:1. More specifically,
if p E Pn+i then we assign a function fp E Fn:l where

h(x) = (0 ifp(0,x) < p(1,x)
1 otherwise.

Here the expression p(0, x) stands for the result of applying p to the concatena-
tion of the bit 0 and the n-bit value x.

Note, this construction is really a special instance of a much more general
construction given in the next two sections. However, for our analysis we found
it much simpler to analyze this simple case (in a later section) and extrapolate
to the more general case.

2.2 W i d e r O u t p u t s : n'2~-lm 0RDER(P) n+km

Of course, in practice a PRF with a 1-bit output is rarely useful. Fortunately,
there are some simple techniques to build wide-output PRFs from PRPs with a
1-bit output.

One basic approach is to observe that j = 2 ~ (independent) PRFs from Fn:m
suffice to build a PRF on]Fn:#m. This yields the following construction. Given
a PRF F E]Fn+k:,n, we build a wider PRF G E lFn:2~,n by

G(x) = (F(O, x), F(1, x) , . . . , F(2 k - 1, x)).

374

This construction has the disadvantage that it reduces the input size slightly,
which can be a problem for some applications.

Of course, this does not produce an optimal construction. We leave the anal-
ysis to Section 4, but in fact the next construction is optimal. By optimal we
mean that it divides the set of permutations lPn into equally-sized equivalence
classes such that each equivalence class has an odd number of permutations.
This implies that we cannot divide the equivalence classes any further and still
expect to have equally-sized equivalence classes.

2.3 W i d e r O u t p u t s , Ef f ic ien t ly : 0RDER(p)nn~ -1

As one might expect, the construction of the previous section falls to extract all
of the possible bits from a permutation. In some cases we can nearly double the
number of bits tha t we obtain from a given permutation p by extracting more
information about the sorted order of p(x).

Suppose that we have a permutat ion p E Pn+m; then we build a function
f E]Fn:2m-1 in the following fashion. First we determine 2 m-x bits of f (x) by
using the construction outlined in the previous section. That is, if [f(x)]i denotes
bit i of f (x) and 0 < i < 2 m- l , then

{ ~ if p(O,i,x) < p(1, i ,x)
[f(x)]i = otherwise

Briefly, the remaining bits of information are obtained by comparing the mini-
mum elements of two pairs of values min (p(xj),p(x~)} for j = 1, 2.

To be more precise, we star t by creating 2 n perfectly-balanced binary trees
with 2 m - 1 nodes (i.e. each one has height m - 1) and uniquely assign each tree
to a different n-bit value x. Hence tree x will correspond to f (x) . For any given
tree, each node has three values associated with it: a n + m-bit value X(x) , a
1-bit value Y(x), and a m-bit value Z(x), which serves to identify the node. For
ease of exposition, we assign Z(x) so that the root node has Z(x) = O, the left
child of a node has the value 2Z(x) + 1, and the right child of a node has the
value 2Z(x) + 2 (implying Z is independent of x so we can drop it). This assigns
each node a unique m-bit value and allows us to associate bit i of f (x) with the
Y(x) value of node i. 2

Using these particular Z-values, the leaf nodes will have the values 2 m-1 - 1
to 2 m - 2. Let Xi(x) and Yi(x) denote the X and Y values respectively of the
leaf nodes with Z = i. Then for i > 2 m-1 - 1

Yi(x) = ~0 if p(O, Zi - 2 m - l - 1,x) < p(1, Zi - 2 m-1 - 1, x)

(1 otherwise.

Xi(x) - min{p(O, Zi - 2 m-1 - 1, x),p(1, Zi - 2 m- t - 1, x)}

2 Some other ordering of the nodes will also work, such as one given by a postorder
traversal of the tree.

375

This is precisely the information obtained by the construction of the previous
section. For the remaining 2 "~-1 - 1 bits of information, we assign

Y/(x)={01 otherwise.ifX2i+l(X)<X2i+~(x)

Xi(x) = min{Y2i+l (x), Y2i+2 (x) }

It should be clear that this tree partially encodes the order of p(0, x),. . . ,p(2 m -
1,z), but that more than one permutation may produce the same function. It
requires 2 m invocations of the permutation p to produce the 2 m - 1 bits of fp(x).
For an example evaluation of](x) for p e F3, see Figure 1.

f (x) = 0111000 (postorder traversal)

~ X = 3 , Y = O

...,y"" "..,.. ...''" ".,,,., /...';" ".; /..."" "",,.,.
P(0,x) := I~(1,xJ :---- 5 P(2,x)" := PC3,xJ := 0 PC4,x)" := ~(5,xJ := 3 P(6,x)" := PCT,xJ := 7

Fig. 1. Example Function t~om p E]Pa.

We can use this latter technique to build a PRF in Fm..n using a permutation
in lPa where a = [m+Iog2(n+l)+ l]. It will require [log2(n+l)+l] invocations
of E per invocation of F,n:n. Note, if n r 2 z - 1 for some l, we will actually obtain
a wider output than n bits. In that case we can simply truncate the output to
n bits and retain the security of the PRF.

While this construction provably transfers (essentially) all of the security of
the underlying block cipher to the PRF, the disadvantage is that it has poor
performance: we can get a 57:127 PRF that's provably as strong as DES (and
hence a 57:64 PRF), but it requires 128 queries to DES per PRF computation.

2,4 TRUNCATE(P)~ - ~

Our second construction has much better performance, but uses a very different
idea: we merely truncate a few bits of the output of the underlying block cipher,
so the PRF can be almost as fast as the block cipher. Formally, let p E Pn be a
random permutation. We assign a function fp E Fn:n-m by

fp----gop

where g : Rn --~ Rn-m denotes the function which truncates the high m bits
from its input. For a PRP family {rk} the resulting PRF family would be {]~ }.

376

The disadvantage to this approach is that it doesn't preserve the security
of the underlying block cipher nearly as well: our proofs only work when the
attacker has at most O(min{2 (n+m)/2, 22(n-'n)/3}) chosen texts available to him,
where n is the block width of the underlying cipher and m is the number of
truncated bits. In practice, this means that we can prove security up to 0(24n/7)
chosen texts by truncating m = n/7 bits, but our analysis degrades too much to
be provide better bounds for larger m.

3 A p p l i c a t i o n s

There are several nice applications of our result. Probably one of the most in-
teresting is that we "close the loop" between PRFs and PRPs. Luby-Rackoff
[LR88] gave a nice PRF ~ PRP construction; we have now shown how to go
the other direction s .

We explore two additional possibilities in the next sections. There are others
listed below, but due to a lack of time and space we have omitted further analysis
of these ideas. Hence we pose them as open problems for further study.

1. Building MACs (or possibly hash functions) with provable security. The
disadvantage is that they are likely to be very slow.

2. Building provably-strong PRNGs out of our constructions for provably-strong
PRFs. Such a tool might be used for session key derivation, for example. The
advantage is that in many cases (depending upon the application, of course)
the PRNG isn't performance-critical, so slow techniques are still interesting
if they have notable security advantages.

3. Building provably-strong stream ciphers from our constructions for provably-
strong PRFs. By running a good PRF in counter mode, you can get security
past the birthday bound. In contrast, 64-bit block ciphers typically run into
security problems when used in a standard chaining mode to encrypt more
than 232 known texts, no matter how strong the cipher is.
Bellare et. al. have explored this application further in [BKR98].

3.1 Building Wider Block Ciphers

Techniques for building wider block ciphers are especially relevant as the AES
standards effort ramps up. The problem with most existing ciphers, such as
Triple-DES, is that they offer only 64-bit blocks, and thus fall prey to certain
birthday attacks that can work with only 232 texts or so. (The matching cipher-
text attack is one example.) As network communication speeds rise, this limit
becomes increasingly concerning: for instance, on a 1 Gbit/sec encrypted link, we
expect that information about two plaintext blocks will leak after only 6 minutes
or so. The only solution is to move towards ciphers with wider block lengths, but
if this involves a full cipher redesign, then we may forfeit the insights provided

3 We don't consider treating a PRP as a PRF as an example because it won't produce
more general functions, and because its security level is limited.

377

by more than two decades of analysis on DES and Triple-DES. This motivates
our search for a construction which can provably retain the time-tested security
level of Triple-DES while providing a wider block length.

This paper provides new results in this area. If we have a trusted cipher,
then we can model it as a PRP family. Using one of our constructions we can
construct a PRF family, use the Benes transform [AV96] to create a wider PRF
family, and finally use Luby-tLuckoff to create a PRP family again. The nice
thing is that the resulting PRP family will be almost four times as wide as the
original construction. Furthermore, we will be able to provide provable security
reductions to show that the widened cipher is likely to be strong if the original
cipher is secure.

We will focus on a particular example and consider Triple-DES. Hence let
n = 64 and P = {Ek} be the Triple-DES family where Ek(X) denotes encryption
with key k and plaintext X. Also suppose that P is (t, q, e) secure. Then using
0RDER(P)658:63 we can construct a PRF family F = {fE~} C Fss:~s (truncate the
5 extra bits). As later analysis will show, F is (t, q/64, e) secure. In other words,
F largely retains the security properties of Triple-DES.

Using the modified Benes transform, we can form a second PP~ family F 2 -
{gf} where f E F and F 2 C lFll0..lt0. The reason we do not obtain a family
F 2 C]FnB..tt6 is that the modified Benes transform requires six independent
functions. Hence we can use the first three bits of our functions in F to obtain
eight independent function families for constructing lF 2. The results of [AV96]
show that F 2 is a (t, q/64, e+e')-secure PRF, where e' is neglible for q/64 < 2 tl~

Finally, using F 2 and Luby-Rackoff we can create a final PRP family p2 __
{Pgl,g2,gs) where 9i E F 2 and p2 C P~20. p2 will have nearly identical security
to F2: (t,q/64,e + e' + e") where e" is neglible for q/64 < 25~4.

The primary disadvantage of this construction is that the resulting widened
cipher p2 will be almost 450 times slower than the original cipher P. With a
normal 4-round Luby-Rackoff construction, we will use 4 invocations of functions
from F 2 for each invocation of a permutation in p2. Each function in F 2 uses
6 invocations of functions from F. Finally, for each function in F we will use
64 invocations of a permutation in P. Hence we will require 4 • 6 • 64 = 1536
invocations of Triple-DES per invocation of p2; of course, each invocation of p2
encrypts 220/64 times as many bits as P, so the performance of the widened
cipher p2 will be 1536 �9 64/220 ~ 447 times worse than Triple-DES. This is
definitely very slow, but it is provably secure!

An alternative to using Luby-Rackoff is to use a construction by M. Naor and
O. Reingold [NR96]. There you get a twofold speed-up in execution and we only
require 768 invocations of Triple-DES. This translates to a total of roughly 223
times worse performance than Triple-DES. The advantage, of course, is that the
resulting cipher is that we have removed the 232-texts limitation on the security
of Triple-DES.

4 Note: the security proof of the Luby-l~.~off construction given in [LR88] actually
assume that the g~ are independent; but the proofs in [NR96] remove that restriction.

378

Our construction uses the Benes transform only for technical reasons. The
reason we can't apply the Luby-Rackoff construction directly to our PRF family
F is that a 4-round Luby-Rackoff cipher with m-bit blocks is only secure up to
2 m/4 texts; with m = 2.58, the security level would be too low, so we build
a double-width PRF family F 2 to increase m. However, eliminating the Benes
transform could produce significant performance speedups, so this motivates
the search for PRP constructions with better security. For example, by using
Patarin's recent results on the 6-round Luby-Rackoff construction [P98], we can
build a widened cipher p3 C Pl16 that is secure with up to about rain{q, 243"5}
texts; by using single-DES instead of Triple-DES as our starting point, we can
get a ll6-bit cipher which is provably as secure as DES and has performance
about 212 times worse than DES (or about 71 times worse than Triple-DES),
though it has somewhat less security than our construction of p2.

It would also be possible to use the TRUNCATE(P) n-m construction to build
a double-width block cipher, instead of 0RDER(P)645s:63 as above. This would
provide significantly better performance (the widened cipher could be as fast as
1/3 the performance of the original cipher). However, at present the available
proofs provide no guarantee of security past about 236 texts, which is probably
not a compelling advantage over the 232 birthday bound.

As a third alternative, one could use the re-keying construction of Bellare et.
al. [BKR98] to build F out of Triple-DES (say). Applying the Benes transform
and the Naor-Reingold construction would then provide a 256-bit cipher which
is only 3 times slower than Triple-DES. The disadvantage is that the available
security results are difficult to compare with the figures given above.

The examples we gave here usually resulted in a block cipher with a peculiar
width. It should be clear how to modify this example slightly to generate (say)
a 192-bit block cipher, by truncating F or F 2 to the appropriate size.

3.2 Applications to 1-bit CFB mode

We note that our main construction provides a way to increase the robustness
of 1-bit CFB mode by tweaking the mode slightly.

The standard 1-bit CFB mode builds a function h �9 ~ --+ ~ 2 by letting
h(x) be the least significant bit of the encryption Ek (x) of x under a block cipher
E with key k. Then we build a stream cipher as Cj = Pj ~ h(Cj-64,. �9 �9 ,Cj-1).

The problem is that we are not aware of any proof that CFB mode preserves
the security of the underlying block cipher. Clearly all of the security of 1-bit
CFB mode must come from the non-linear Boolean function h. Theorem 1 (in
Section 4.1) guarantees the security of h against an adversary with access to
q << 2 n/2 chosen-text queries, assuming the underlying block cipher is secure.
However, for typical block ciphers 2 n/2 = 232, which means that the "security
warranty" provided by Theorem 1 is voided after 232 chosen-text queries 5. As

5 Theorem 7 can guarantee security up to q = 0(24n/7), but this is still significantly
smaller than the 0(2 '~) query security we would ideally hope to see. As we shall see,
this hope is not unreasonable.

379

most typical block ciphers are built to resist much more powerful adversaries,
we would prefer to have better reductions.

We do not know of any better security proofs for 1-bit CFB in the literature,
but we can improve the situation with a slight modification to the mode. Replace
h by the function fE~ defined in Section 2.1. (We will need to sacrifice one bit
of feedback, so that Cj = Pj ~ f ~ (C j - 6 s , . . . ,Cj-1), but 63 bits is morethan
sufficient for practical purposes.) This requires two encryptions per invocation
of fE~, so our mode will be twice as slow as the standard 1-bit CFB, but we
do not expect this to be a serious problem, as implementors typically use 1-bit
CFB mode for its resynchronization properties rather than for its performance
characteristics.

Of course, the primary advantage of our 1-bit modified cipher feedback mode
is that we can provide provable security reductions for fE~- If E is a (t, q, e)-PRP,
then]g~ will be a (t, q/2, e)-PRF. In short, our construction of fE, preserves
the security level of the underlying block cipher extremely effectively. Therefore,
this modification to 1-bit CFB mode looks'attractive for practical use.

4 Analysis

In this section we provide analysis of our 0RDER(P)~ :k and TItUNCATE(P)~ -m
constructions. In addition, we evaluate the security of a PRP family when viewed
as a PRF family.

4.1 Previous a t t e m p t s

As we have mentioned earlier, every PRP can be viewed as a PRF with certain
security parameters. We first analyze this trivial construction.

T h e o r e m 1. Let p be a random permutation on n bits. Then p is a (t, q, e)-PRF
/or e = q2 /2n+1.

Proof. Standard; omitted due to lack of space.

Furthermore, it is simple to show that this bound is tight. We can easily
construct an adversary which distinguishes between p and a random function
with advantage approximately q(q - 1)/2 n+l (for q = o(2n/2)): simply look for
collisions and return 0 if you see a collision (where you are supposed to return 1
if you think it's not a random function).

It is worth noting that this analysis also establishes the security of another
related construction. One might naively propose a construction based (loosely)
on the Davies-Meyer hashing mode [MM085]:

f~(=) = p(=) �9 =.

The final xor of x into the ciphertext destroys the bijective property of p, so at
first glance]p might look like a reasonable candidate for a better PRF. However,

380

we note that this construction has no better security than before. It can be
distinguished from a random function with advantage q2/2n+l: merely apply the
adversary of the previous paragraph to the function g defined by g(x) = fp(z)$z.

The security reduction we showed in Theorem 1 is sufficient to show that
PRFs exist if PRPs do, from a complexity-theoretic point of view, since the se-
curity bound it shows is exponential in n. Therefore, complexity theorists inter-
ested only in asymptotics need read no further. However, practical applications
are a bit more demanding: they require concrete security guarantees.

We find this O(2 n/2) level of security inadequate for practical applications.
Most block ciphers today offer 64-bit block widths, thus providing a convenient
and efficient PRP with n = 64. For such ciphers, the above theorem provides no
security assurances when adversaries are allowed to make q ~ 2(n+1)/2 = 232"s
chosen-text queries (or more). This is too weak for serious cryptologic use; we
would prefer something that provides better resistance to chosen-text attacks.
After all, the underlying block cipher typically provides, better security than
that--so it is natural to wonder whether we can do better. Is there a PRF
construction that preserves the security of the underlying block cipher?

We show below that the answer is yes.

4.2 Analysis of 01~ER(P)~z

We gave a description of 0RDER(P)~I in Section 2.1. Let ~r be a (keyed) family
of permutations {Trk : k E K} C lPn+l on Rn+t. Using this construction we
obtain a family f~ = { f~ : k e K} of functions in F,~:I. We can (by a slight
abuse of notation) view ~r as a random variable, taking values in]Pn+l, by
taking k to be a random variable uniformly distributed over K. (We drop the
subscript, writing lr instead of rk as a slight abuse of notation, to avoid an
unwieldy morass of distractingly nested subscripts.) Similarly, f~ can be viewed
as a random variable, too.

We say that p is a random permutation (on Rn+l) to mean that it is a random
variable which is uniformly distributed over all elements of Pn+I. Similarly, we
say that f is a random function (from]Fn:m) when we mean that it is a random
variable which is uniformly distributed over]Fn:rn.

We wish to show that f~ preserves the security level of the underlying PRP
~r. Most of the work to be done is handled by a purely information-theoretic
analysis, which ignores all issues of computational complexity. We tackle this in
Theorem 2.

Theo r e m 2. If p is a random permutation on Rn+t, then fp is a random func-
tion o v e r ~'~n:l.

Proof. Take any g E]Fn:l. It is clear that there exists a p E •n+z such that
g = fp: for example, take the p such that

p(2x) = 2x + g(x) p(2x + 1) = 2x + 1 - g(x) Vx E Rn.

381

Next we show tha t I{P : g = .fp}l is a constant that does not depend on g,
i.e. tha t there are an equal number of representative permutations p for all g.

First, suppose that gl,g2 E Fn: l are two functions that differ at exactly
one point X (i.e. gl(x) = g2(x) for all = r X and gl(X) ~ g2(X)). Then we
construct a bijective mapping r : P n + l -+ P n + l , which has the property that
Jfp = gl exactly when fr = g2. This will show tha t there are an equal number
of representations for any two functions gl, g2 which differ at exactly one point.
Then it will be easy to see that this implies the desired result, since for any two
functions g, h E Fn: l one can construct a sequence g = go, gl ,g2,. . . ,gk-l,gk -"
h such that all the consecutive pairs g~, gi+l differ at exactly one point.

The mapping r is built as follows. Take any input p; we define r -- p' by

p ' (b , x) - f p(b,x)
[p (1 - b , x)

i f=r
i f z = X .

Now it is clear tha t ~fp, = g2 if fp = gl, and vice versa. Furthermore, r is an
involution, so it is clear that it is a bijective mapping, as claimed. This completes
the proof. D

Once we have this nice result, extending it to the setting of computationally-
bounded adversaries is not so hard. I t requires much unravelling of notation, but
essentially no new ideas.

We first introduce the notion of pseudo-randomness, to handle the most im-
portant case where the adversary is computationally bounded. Informally, saying
tha t lr is a pseudo-random permutation (PRP) on Rn+l is supposed to convey
the idea that it is compu~ationally infeasible for an adversary to distinguish lr
from a random permutation on R,~+I. (Some authors use the phrase "pseudo-
random permutation generator" to refer to this object; for conciseness, we will
omit the "generator" term throughout this paper.)

We formalize this notion as follows. An adversary is an oracle machine
B p,p-~'~'~-~ which outputs a 0 or 1 (according to whether it thinks p is truly
random or is drawn from the family {Tr~ : k E K}). It takes four oracles as in-
puts: a test permutation p (which outputs p(x) on input x) along with its inverse
p-Z, and an oracle for 7r (which outputs irk(x) on input k,z) as well as an oracle
for Ir -1 . Its advantage Adv B is

A d v B = IProb(B ~*'*~1'~'~-' = 1) - P r o b (B r'r-l'~'~-* = 1)1 ,

where r is a random permutation and k is uniformly distributed over K. More
formally, we say that Ir is a (t, q, e)-PRP if the advantage of any adversary which
is allowed at most q queries (total) to the first two oracles and t offline work
is at most e. This models a block cipher which is secure with up to q adaptive
chosen-plaintext/ciphertext queries and t trial encryptions. See [BKR94,BGR95]
for more information about (t, q, e) security.

We can define a (t, q, e)-PRF (pseudo-random function) in a similar fashion.
In this definition, an adversary is an oracle machine A g,7,~,~-1 with access to four
oracles: a function g which outputs g(x) on input x, an oracle 7 which outputs

382

7k(z) on input k,z , and two oracles ~r, Tr -1 for the PRP class (as above). We
define its advantage by

AdvA = IProb(A "r~'7'~'~-' = 1) - P r o b (A s'7'~'~-t = 1)1,

where s is a random function and k is uniformly distributed over K. In the cases
that we are most interested in, we have 7k = f ~ . We say that 7 is a (t, q, e)-
PRF if all adversaries A which make at most q oracles queries (total) to g, 7 and
perform at most t computations obey Adv A _< e.

Note that it is important to include the oracles for 7r, ~r -1 in the definition of
a (t, q, e)-PRF. In what follows, we will be interested in PRFs built from a PRP
lr. Here 7r models a block cipher; we assume the algorithm is publicly known (by
Kerchkoff's principle), so anyone trying to attack f~ can freely compute rk(x)
on any chosen inputs k, x. This required us to extend the standard definition of
a PRF to model this situation.

With those preliminaries out of the way, we may proceed to the rest of the
analysis. We get the following pleasing consequence of Theorem 2 whose proof
we leave to the appendices.

Theorem 3. / f rr is a (t, q, e)-PRP on Rn+l, then f~ is a (t, q/2, e)-PRF over
] F n : l �9

Proof. See Appendix A. [3

4.3 Analysis of 0RDER(P)n~ -1

R E rt:2m--1 In Section 2.3 we introduced the general 0 D R(P)n+m construction. There axe
two corresponding theorems whose full proofs we omit due to a lack of space.

Theorem 4. If ~r is a random pe~vnutation on Rn+m, then f~ is a random
function over Fn:2,,-1.

Proof. (sketch) The basic idea is to again consider two functions f l , f2 E Fn:2,~-i
which differ in exactly one output (say fl(0) r]2(0)). We can build a map
r : Pn+m --}]Pn+m such that fp = f l exactly when re(p) = f2. Again this will
show that all f E]Fn:2m-1 have an equal number of representative permutations
p (existmace is trivial).

To build the map r we need merely look at the binary tree we constructed for
x = 0. CActually we must consider a slightly expanded version of the tree in which
the leaf nodes of our original t ree are expanded into two children containing the
values p(0, Z, x) and p(1, Z,x).) Starting with i = 0, we compare bit i of fl(O)
and f2 (0) and swap the left and right subtrees of node i if f l (0) and fz (0) differ
in bit i. Note, this may destroy the original equality of bits j > i for f l (0) and
f2 (0) so in evaluating bit i we assume that f l (0) has the value denoted by the
most recent tree. The end result is a series of subtree swaps for evaluating f l (0)
which are clearly reversible.

The subtree swaps specified will remap values of a permutation to values of
another permutation and we take r to be that map. It is clearly onto and hence
bijective. This completes the proof of the theorem. []

383

Theorem 5. I f ~r is a (t, q, e)-PRP on Rn+m, then f~ is a (t, q/2 ra, e)-PRF
over ~'~n:2rn--Z.

Proof. The proof is nearly identical to tha t of Theorem 3. n

In Section 2.3 we made a claim tha t this construction was optimal. By that
we meant tha t one could not create a map from]Pn+ra to Fn:l for l > 2 rn - 1.
We state this in the following lemma.

L e m m a 1. There exists no map r : Pn+m --~]Fn:t for I > 2 m - 1 such that
N (f) = [{p (5 ~n+rn : r = / } l is constant for all f (5 Fn:l.

Proof. Let r be a map such that N (f) is constant for all f (5 F,,:z, then we will
show that l _< 2 m - 1. There are 2 t2~ functions in Fn:z hence we are dividing
Pn+m into 2 t2" equivalence classes. For any j ,]lPj[= (2J)! and it is not hard

to show that 22#-1 exactly divides (2J)!. Hence the power of 2 dividing the size
of each equivalence class is 22"+'~-1/2 z2" = 22"(2"~-t)-z. In order for N (f) to
be constant, we must have that 2n(2 m - l) - 1 >_ 0, which implies 2 rn - l > 1,
whence l < 2 m - 1. This completes the proof of the lemma, t3

Our analysis above used a strongly information-theoretic framework: first, we
showed that the construction produces a random function when fed a random
permutat ion (Theorem 2), and then all the desired pseudo-randomness results
just fall out trivially from that. This framework is desirable because it makes
the analysis relatively simple; however, we showed in Lemma 1 tha t it imposes
serious limitations on the performance of the resulting constructions. The above
bound essentially shows that, to achieve bet ter performance, we'll need to do
abandon the information-theoretic framework and take another approach. This
we do below.

4.4 Analysis of TRUNCATE(P)~ - rn

The construction of Section 4.2 is probably most attractive because it is so
amenable to theoretical analysis, and because it preserves the security of the
underlying block cipher so efficiently no matter how many chosen-text queries
are issued. However, it also has a severe disadvantage for practical use: it is quite
slow.

In Section 2.4 we defined a PRF family TRUNCATE(P),, n-rn based on truncating
bits of a permutation. The result trades off security for performance. Recall the
construction: for any permutation ~rk on P~, we define a function] E Fn:n- ,n
by

f ~ = g oTrk

where g : Rn -+ Rn-m denotes the function which truncates the high m bits
from its input.

We could instead have taken g to be any fixed function g : Rn ~ Rn-,n
such that each 9 E Rn-rn has 2 m easily-computable preqmages 9-1(y), and the

384

results would still apply. However, bit-truncation is attractive because it is both
fast and amenable to a simple mathematical description 6. Therefore, for clarity
of exposition we concentrate hereafter solely on bit-truncation.

First we show that if r is a random permutation, then f~ is a pseudo-random
function. The following theorem proves that, roughly speaking, Adv A is negli-
gible while q << min{2 (n+m)/2, 2~(n-m)/3}.

T h e o r e m 6. f f 7r is a random permutation on Rn, then f~ is a (t, q, e) -PRF
over Fn:n--m, where e = 5(q2 /2n+m) 1/3 + q3 /2~(n-m)+l.

Proof. See Appendix B. Q

This shows that truncating some bits from the output of ~rk gives slightly
better security. For m < n/7, the theorem says that truncating m bits adds
nearly m / 2 bits of security against adaptive chosen-text attacks to the PRF 7rk.

However, for m > n/7, the second term in e dominates (in that it is largest
and hence limits q), and our analysis does not provide better security reductions
when increasing m past n/7. We believe that these limits are not inherent, but
rather are a reflection of the inadequacy of our analysis. As an illustration, the
best attack we can find needs q = 0 (2 (n+m)/2) texts to distinguish f~ from
random with significant advantage (see Theorem 8), so this leaves a substantial
gap between the upper and lower bounds. We suspect that a better analysis
could provide a better security reduction. (However, we could be wrong.)

The main idea of the proof is to show that the probability of getting any
particular set of outputs Y to a given set of oracle-queries X is roughly the
same whether the oracle is instantiated "under the hood" by a PRF or by a
truncated-PRP. We use this to show that any oracle algorithm A must behave
almost exactly the same regardless of which type of oracle it is given. That
follows just because A's execution can depend only on the list of inputs and
outputs to the oracle. This can then be used to show that Adv A is small. Of
course, our bounds only hold when q is small enough.

The first step in the analysis is to compute the probabilities that a random
function F and a truncated-PRP f~ will map X to Y. For F this is easy, but
for f~ it is substantially harder. In the general case this gets quite messy, so
we restrict ourselves to the special case where there are no three-way collisions
in Y; this makes the calculation tractable. (This restriction adds an artificial
contribution q3/22(n-m)+1 to our bound on the advantage, so we have sacrificed
tightness for tractability.) After that, "all that is left is relatively straightforward
computations (albeit in large quantities).

Theorem 7. I f 7r is a (t, q, e) -PRP on Rn, then f~ is a (t, q, e ') -PRF over
Fn:n-m, where e' = e + 5(q2/2n+m) 1/3 Jr q3/22(n--rn)+l.

6 The study of the properties of bit-truncation may also have some independent in-
terest, as several authors have already suggested applying a bit-truncation output
transform to existing MAC constructions in hopes of improving their security (see,
e.g., [PO95]).

385

Proof. Omitted. Follows directly from Theorem 6 along lines analogous to the
proof of Theorem 3. O

T h e o r e m 8. Let ~ be a permutation.family on Rn. Then for all q = 0(2 (n+m)/2),
there is an adversary which can distinguish f~ from a random function with q
known texts, O(q) work, and advantage Y2(q2 /2n+m).

Proof. (sketch) Let r count the number of collisions in the outputs f~(1), . . . , f~(q).
Then our adversary outputs 1 (guessing that the oracle is f~) if r < q(q -
1)/2 n-re+l, and 0 otherwise. Using the techniques found in the proof of Theo-
rem 6, we find that this adversary operates with advantage ~2(q2/2n+m). I7

5 Conclus ion

We have presented two constructions for generating pseudo-random functions
given pseudo-random permutations: 0RDER(P)~ :k and TRtlNCATE(P)n n-re. The for-
mer had the notable property that it preserved the security of the underlying
pseudo-random permutation whereas the latter had the property that it was
much more efficient. Unfortunately, the gain in speed results in a trade-off in se-
curity and the latter construction fails to preserve the strength of the underlying
pseudo-random permutation.

Using our constructions we were able to solve a few different problems, in-
cluding stretching the width of a block cipher while preserving the security.
We also examined a secure 1-bit cipher feedback mode using a pseudo-random
permutation.

6 Acknowledgements

Thanks to Dan Boneh, Ian Goldberg, and the anonymous referees for many
helpful comments.

References

IAV96] W. Aiello, R. Venkatesan, "Foiling birthday attacks in length doubling
transformations," Advances in Cryptology--EUROCRYPT '96 Proceedings,
Springer-Verlag, pp. 307-320.

[BCK96] M. Bellare, R. Canetti, H. Krawczyk, "Pseudorandom Functions Revisited:
The Cascade Construction and its Concrete Security," Proceedings of the 37th
Symposium on Foundations of Computer Science, IEEE, 1996.

[BDJR97] M. Bellare, A. Desai, E. Jokipii, P. Rogaway, "A Concrete Security Treat-
ment of Symmetric Encryption: Analysis of the DES Modes of Operation,"
Full version, Extended abstract in Proceedings of 38th Annual Symposium on
Foundations of Computer Science (FOGS 97), IEEE, 1997.

[BGR95] M. Bellare, R. Gu~rin, P. Rogaway, "XOR MACs: New methods for
message authentication using finite pseudorandom functions," Advances in
Cryptology--CRYPTO '95 Proceedings, Springer-Verlag, 1995, pp 15-28.

386

[BKR94] M. Bellare, J. Kilian, P. Rogaway, "The security of cipher block chaining,"
Advances in Cryptology--CRYPTO '94 Proceedings, Springer-Verlag, 1994.

[BKR98] M. Billare, T. Krovetz, P. Rogaway, "Luby-Rackoff Backwards: Increasing
Security by Making Block Ciphers Non-Invertible (Extended Abstract)," Ad-
vances in Cryptology--EUROCRYPT '98 Proceedings, Springer-Verlag, 1998.

IBM84] M. Blum, S. Micali, "How to Generate Cryptographically Strong Sequences
of Pseudo-random Bits," SIAM J. Comput., 13 (Nov. 1984), pp. 850-864.

[C97] D. Coppersmith, "Luby-Rackoff: Four rounds is not enough," IBM Research
Report, RC 20674 (12/24/96), Mathematics.

[GGM86] O. Goldreich, S. Goldwasser, S. Micali, "How to Construct Random Func-
tions," Journal of the ACM, Vol. 33, No. 4, October 1986, pp. 792-807.

[LR88] M. Luby, C. Rackoff, "How to Construct Pseudorandom Permutations from
Pseudorandom Functions," SIAM J. Comput., Vol. 17, No. 2, April 1988, pp.
373-386.

[Lub96] M. Luby, Pseudorandomness and Cryptographie Applications, Princeton Uni-
versity Press, 1996.

[Luc96] S. Lucks, "Faster Ruby-Lackoff Ciphers," Proceedings of Third Fast Software
Encryption Workshop, Springer-Verlag, pp. 189-203.

[M92] U.M. Maurer, "A Simplified and Generalized Treatment of Luby-
Rackoff Pseudorandom Permutation Generators," Advances in Cryptology--
EUROCRYPT '92 Proceedings, Springer-Verlag, 1992, pp. 239-255.

[MMO85] S.M. Matyas, C.H. Meyeter, 3. Oseas, "Generating strong one-way functions
with cryptographic algorithm," IBM Technical Disclosure Bulletin, 27 (1985),
5658-5659.

[NR96] M. Naor, O. Reingold, "On the construction of pseudo-random
permutations: Luby-Rackoff revisited.," preliminary version,
http://~av, wisdom, weizmann, ac. il/Papers/trs/CS96-lO/abstract, html

[P90] J. Pieprzyk, "How to Construct Pseudorandom Permutations from Sin-
gle Pseudorandom Functions," Advances in Cryptology--EUROCRYPT '90,
Springer-Verlag, pp. 140-150.

[P91a] J. Patarin, "Etude des gli~ateurs de permutations bas~s sure le Schema du
D.E.S.," Ph.D. Thesis, INRIA, Domaine de Voluceau, Le Chesnay, France,
1991.

[Pglb] J. Patarin, "New Results on Pseudorandom Permutation Generators Based
on the DES Scheme," Advances in Cryptology--CRYPTO '91 Proceedings,
Springer-Verlag, pp. 301-312.

[P92] J. Patarin, "How to Consruct Pseudorandom and Super Pseudorandom
Permutations from One Single Pseudorandom Function," Advances in
Cryptology--EUROURYPT 'g$ Proceedings, Springer-Verlag, pp. 256-266.

[P97] J. Patarin, "Improved Security Bounds for Pseudorandom Permutations,"
Proceedings of the Fourth ACM Conference on Computer and Communica-
tions Security, April 1-4, 1997, pp. 142-150.

[P98] J. Patarin, "About Feistel Schemes with Six (or More) Rounds," Proceedings
of the Fifth Fast Software Encryption Workshop, LNCS 1372, Springer, 1998,
pp. 103-121.
B. Preneel, P. van Oorschot, "MDx MAC and building fast MACs from hash
functions," Advances in Cryptology--CRYPTO '95 Proceedings, LNCS 1070,
Springer-Verlag, 1996.
B. Sadeghiyan, J. Pieprzyk, "On Necessary and Sufficient Conditions for
the Construction of Super Pseudorandom Permutations," Advances in
Cryptology--ASIACRYPT '91, Springer-Verlag, pp. 194-209.

[PO95]

[SPgl]

387

[sP92] B. Sadeghiyan, J. Pieprzyk, "A Construction for Super Pseudorandom Per-
mutations from A Single Pseudorandom Function," Advances in Cryptology--
EUROCRYPT '9~, Springer-Verlag, pp. 267-284.

[Y82] A.C. Yao, "Theory and Applications of Trapdoor Functions," Proceedings of
the P3rd IEEE Symposium on Foundations of Computer Science, IEEE, New
York, 1982, pp. 80-91.

[ZMI89a] , Y. Zheng, T. Matsumoto, H. Imai, "On the Construction of Block Ciphers
Provably Secure and Not Relying on Any Unproved Hypothesis," Advances
in Cryptology~CRYPTO '89 Proceedings, Springer-Verlag, pp. 461-480.

[ZMI89b] Y. Zheng, T. Matsumoto, H. Imai, "Impossibility and Optimality Pmsults
on Constructing Pseudorandom Permutations," Advances in Cryptology--
EUROCRYPT '89, Springer-Verlag, pp. 412-421.

A P r o o f o f T h e o r e m 3

Proof. Our proof proceeds as follows. Suppose we have an adversary A which
(t I, q,, el)_breaks f~.7 We construct an adversary B which (t', 2q ~, e~)-breaks ?r.
The result will follow.

. . . . - - 1 - - 1

The construction for B reqmres very little creativity. B p,p ,~,~ performs
the same computations as Ag,7,~,~-~; anytime A makes an oracle query, we
simulate the oracle and return the result to the computation in progress.

The simulation of oracle queries goes like this. If A queries the g oracle with
x, then B issues two queries to p with inputs (0,x) and (1,x) and compares the
results; if p(0, x) < p(1, x), B uses the result 0, and otherwise uses 1. If A queries
the 7 oracle with k, x, then B issues the two queries k, (0, x) and k, (1, x) to its
oracle for 7r, and constructs the result similarly. Finally, A's oracle queries for 7r
and ?r -1 can be satisfied trivially.

Let e ~ = Adv A, and let t ~, q~ count the time and number of oracle queries
that A requires. Clearly t ~, 2q t counts the time and number of oracle queries
tha t B requires. It merely remains to bound Adv B, which we achieve with the
following series of observations.

L e m m a 2. Let r be a random permutation, and s be a random function. (Recall
that according to our terminology both will be uniformly distributed on their
respective spaces.)

(i) For any permutation p, A fp,f",~,'~-I = Bp,p-l,~,~-l.
(ii) The random variable fr has the same distribution as s; in other words,

fr is a random function.
(iii) With the random variables r, s as before, we have

Prob(A s,f",~,~-~ = 1) = Prob(A y~,f",~,~-~ = 1).
(iv) Prob(A ''s''~'~-~ = 1) = Prob(B r,r-l,~,~-I = 1).
(v) Prob(AY"~"fl'"r"r-1 = 1) = P r o b (B ~ ' ~ ~''r''r-~ = 1).

7 This means that with at most q~ queries and t ~ oi~ine encryptions, there is an ad-
versary who has advantage greater than e ~.

388

Proof. (i) follows by construction of B.
(ii) is exactly Theorem 2.
(iii) follows immediately from (ii).
(iv) follows from (i) and (iii).
(v) is merely a special case of (i), substituting p -- ~rk. []

L e m m a 3. AdvB = AdvA.

Proof. Apply part (v) of Lemma 2 to the first term in Adv B, and apply part
(iv) of Lemma 2 to the second term in Adv B. We get exactly the expression for
Adv A. Q

Now this suffices to prove the theorem. Given that ~r is a (t, q, e)-PRP, we
show that f~ is a (t, q/2, e)-PRF by examining the contrapositive. Suppose there
exists an adversary A who (t, q/2, e*)-breaks f~ with advantage e * > e. We
have shown how to construct an adversary B which breaks ~r. By Lemma 3,
AdvB = AdvA -- e~; also, B requires at most t time and q oracle queries. In
other words, B (t, q, e~)-breaks ~r, for e * > e. But this contradicts our assumption
that 7r is a (t, q, e)-PRP. Therefore, such A cannot exist, and the theorem follows.

[]

B P r o o f o f T h e o r e m 6

Proof. Let AY'~ ,~'~-1 be any adversary that breaks f~h. Let X = (X1,... ,Xq)
be a q-vector over Rn of q different "inputs," and let Y = (YI,. . . ,Xq) be a
q-vector over Rn-m of "outputs." The random variables (X, Y) will be a "tran-
script" of a run of the adversary A: Xj records the j- th query to the f~ oracle,
and Y/records the corresponding output from the oracle.

Without loss of generality, we may take X = (1 , . . . , q), since any adversary
A which makes repeated queries Xi = Xj (i < j) can be easily converted to an
adversary A ~ with the same advantage such that A ~ makes no repeated queries.
(Our construction of A ~ merely simulates the action of A, for each oracle query
Xj made by A: if Xj is a new query, A' behaves identically to A; but if Xj = Xi
for some i < j , then A ~ sets Yj = Yi and continues to simulate the action of A
without querying the f~ oracle.) Furthermore, since ~r is presumed to be a truly
random permutation, the values of the oracle queries don't matter, so long as
they don't repeat.

Let F E]Fn:n-m be a truly random function. Define pF(X, Y) = Prob(F(X) =
Y) to be the probability that F maps each Xj ~ Yj; define pI(X,Y) =
Prob(f~(X) = Y) in a similar fashion. We often leave off the (X, Y) and simply
write Pl or PF when the choice of (X, Y) is clear from context. Also, we some-
times write p! (S) to mean the probability (with respect to f) of a set S, i.e.
pl(S) = ~,(x,Y)esPf(X, Y).

We wish to show that f~ is roughly indistinguishable from F if q is not
too large. The main idea is to show that pf(X, Y) ~ pF(X, Y). Our argument
proceeds as follows. We bound PI/PF, showing that it is close to 1. This bound

389

doesn't hold uniformly for all choices of (X, Y), but it holds for nearly all of
them---or more precisely, the set S where the bound holds has probability very
close to 1. Formally, we prove that IP//PF -- 11 <-- $ for all (X, Y) E S; we also
show that both p/(-~S) and pF('~S) are small. This can be informally viewed as
a sort of "probabilistic bound."

We prove, in another crucial lemma, that

Adv A <_ max(p/(-~S), PF (-~S) } + 5.

This is a generic result that relies only on the bound on Pl/PF; no domain-specific
knowledge is required. Therefore, it suffices to bound Pl/PF tightly enough that
pl(-,S), pF('~S), and 6 are small.

We move to the details of the proof. We take S to be the set of all q-vectors
Y over P~-m which have r repeated values, no triply-repeated values, and for
which

[r - q(q - 1)/2n-m+l I ~_ cq/2 (n-re+l)/2,

where c > 1 is a small constant left free for the moment. Lemma 5 helps us show
that [Pl/Pf -- 1[< 5 for (X , Y) e S. Lemma 6 bounds pF(-~S), and Lemma 7
bounds p/(~S) . Finally, Lemma 4 proves that Adv A <_ max{p/('~S),pF(-~S)} +
5. Combining these four lemmas, we get the big result

Adv A <_ 1/c 2 + 4cq/2 (n+m+l)/2 + qS/22("-m)+l + q2/2"+m

for all c > 1. Finally, we optimize over c to obtain the best bound; taking
c = (2(n+ra-1)/U/q) 1/3 yields

AdvA <_ 4(q2 /2n+m)l/a +q3 /22(n-m)+l +q2 /2 n+m < 5(q2 /2n+m)l/S +q3 /22(n-m)+1,

as claimed.
Due to lack of space, the proofs of the lemmas are omitted; full details are

available at h t t p : / / w ~ , counterpane, com/publish-1998, html.

L e m m a 4. With S defined as above, we have

AdvA < max{pi(-~S),pF(~S)} + 5

when 5 > max(x,x)es [pf(X, Y) /pF(X, Y) - 11.
L e m m a 5. Let Y have r repeated values and no triply-repeated values, with
X = (1,2, . . . ,q). ThenpF = 2 -q(n-m), and

q--1 2m
p, = (1 - r I I 2 - - i "

i=0

We have p , /pF ~-. exp{q(q-1) /2n+l-r /2m} for large q,r. Finally, if (X , Y) 6 S
andq <_ 2("+m)/2/c andq <_ 22'~/3, then [p//pF--11 < 51or5 = 2cq/2("+m+l)/U+
2q3/3.2 -2n + q2/2 n+m+l.

L e m m a 6. We have pF(-~S) < 1/c 2 + q3/6.2-2(n-m).

L e m m a 7. We have pl(-~S) < 1/c 2 + q3/6.2-2('~-m) + 5.

This completes the proof of Theorem 6. []

