
Building PRFs from PRPs* 

Chris Hall I , David Wagner 2, John Kelsey I, and Bruce Schneier a 

I Counterpane Systems 
(hall,kelsey, schneier}@counterpane, corn 

U.C. Berkeley 
daw@cs, berkeley,  edu 

Abstract .  We evaluate constructions for building pseudo-random func- 
tions (PRFs) from pseudo-random permutations (PRPs). We present two 
constructions: a slower construction which preserves the security of the 
PRP and a faster construction which has less security. One application 
of our construction is to build a wider block cipher given a block cipher 
as a building tool. We do not require any additional constructions---e.g. 
pseudo-random generators--to create the wider block cipher. The secu- 
rity of the resulting cipher will be as strong as the original block cipher. 
Keywords .  pseudo-random permutations, pseudo-random functions, con- 
crete security, block ciphers, cipher feedback mode. 

1 Introduction and Background 

In this paper we examine building psuedo-random functions from pseudo-random 
permutations. There are several well known constructions for building pseudo- 
random permutations from pseudo-random functions, notably [LR88]. However, 
the only results we are aware of for going in the reverse directions are the recent 
results of Bellare et. al. in [BKR98] I. 

One primary justification for building pseudo-random functions is that it 
allows one to use the results of Bellare et. al. [BDJR97] to produce an n-bit cipher 
that can be used to encrypt more than 2 n/2 blocks. Due to birthday attacks, n- 
bit permutations will leak information about the plaintext after 2 n/2 blocks. By 
closing the loop between pseudo-random functions and permutations, we can also 
accomplish a number of things: widening the block width of a cipher, creating a 
provably secure 1-bit cipher feedback mode, and building encryption functions 
secure for more than 2 n/2 blocks. Given the plethora of existing practical block 
ciphers, it would be nice to be able to create pseudo-random functions from them 
directly without having to resort to building new primitives from scratch. 

Our work extends previous work on pseudo-random functions (PRFs) and 
permutations (PRPs).  PRFs  and PRPs  were initially defined in [GGM86] as 
functions (resp. permutations) which a polynomially-bounded attacker cannot 
to distinguish from truly random functions (resp. permutations) with more than 

* The full paper is available at http://~r~, counterpane, com/publish-1998.html. 
i We were unaware of these results when we originally wrote our paper, but they were 
instead pointed out to us by an anonymous referee. 
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neglible probability. A more recent paper by Bellare et al. [BDJR97] evaluates 
four different notions of security and applies those notions to the definitions of 
PRFs and PRPs. In addition, M. Luby has written a book on pseudorandomness 
which provides an excellent summary of the theoretical constructions leading up 
to PRFs [Lub96]. 

Some authors have made a distinction between PRPs and super PRPs. With 
a super PRP, an adversary is allowed to query for inverse evaluations of the 
permutation [LR88]. For our applications, we require the "super" variety of 
PRP. Therefore, for the remainder of this paper we shall consider only super 
PRPs; we usually omit the "super" prefix for conciseness. 

Extensive research has been conducted on building PRPs from PRFs. Many 
of the constructions are based on Luby and Rackoff's original work [LR88]. 
Let F( l , r )  = ~Pm(fl , . . .  , fra)(l,r) denote an m-round Feistel network where 
f i  �9 ]Fn:n. Then F(l,  r) �9 ]P2n where ~Pi(fa,... , f i )  is defined by 

~'(f)(1,r) = (r,l ~ f ( r ) )  

k~k(fl, . . . , fk) = ~(Yk) o k~(fk_l) o . . . o  ~(f l ) ( / , r ) .  

Luby and Rackoff [LR88] showed that an adversary has advantage at most 
m ( m  - 1)/2 n if they make m < Q(n) queries for some polynomial Q(x). Recall 
that the advantage is computed as 

AdvA = IP[A p = 1 ] -  P[A l = 1][ 

where A is an adversary who returns 1 if they believe they are looking at a 2n-bit 
permutation from the ~P3(fl, f2, f3) family and 0 otherwise. Then p[Ap = 1] de- 
notes the probability that an attacker returns 1 when given p �9 {~Pa(fx, f2, ]3) : 
f i  �9 Fn:n} and P[A y = 1] denotes the probability that an attacker returns 1 
when given f �9 P2n. The result was generalized for m < 2 n/~ [AV96,M92,Pglb,P92] 
to 

Adv A = O(m2 /2n). 

Many different researchers have investigated variations of this construction 
[AV96,C97,Luc96,M92,P91b] [P92,P97,SP91,SP92,ZMI89a,ZMI89b] and even pro- 
posed different constructions [M92,P97]. The exact nature of these constructions 
is beyond the scope of this document; they investigate building PRPs from PRFs, 
and we are interested in going the other direction. 

In addition to designing PRPs from PRFs, some researchers have studied 
designing PRFs from smaller PRFs. Aiello and Venkatesan built a 2n-bit to 2n- 
bit function from eight n-bit to n-bit functions using a Benes transform [AV96]. 
They achieved the notable bound that 

AdvA = [P[A B = 1] - P[A f = 111 = O(m/2  n) 

after m queries, where A B is the result of executing the adversary A with the 
oracle instantiated by a function B from the Benes family, and A f is the result 
of running the adversary with a random 2n-bit function. 
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Aside from building wider functions, some researchers have examined build- 
ing variable-length input PRFs (VI-PRFs). In [BCK96], BeUare et al. formalize 
the notation of VI-PRFs and analyze the security of several constructions. Their 
functions are constructed using simpler primitives: fixed-length input PRFs (FI- 
PRFs) which were first defined in [BKR94] in order to model the Data Encryp- 
tion Algorithm (DES). One important feature of these papers is that they focus 
on concrete security analysis, which attempts to provide precise estimates of se- 
curity, rather than being satisfied with asymptotic results. Bellare et al. initiated 
this study in [BKR94,BGR95]. 

When it comes to building PRFs from PRPs, though several different people 
have noted that a PRP can be used as a PRF with advantage 0(m2/2 n) for 
m < 2 n/2 (e.g. [AV96]), there has been a notable lack of research in this area. 
One recent exception is the excellent paper of BeUare et. al. [BKR98], which uses 
the notion of data-dependent keying to build a PRF from a PRP. Their results 
present strong evidence for the security of their P R P ~ P R F  construction, and 
they take some initial steps towards a more complete analysis of its strength 
against computationally-bounded adversaries. One of the most appealing fea- 
tures of their construction is its practicality: the construction is very simple, 
and performance is degraded by only a factor of two (or less, when in stream 
cipher modes). It should be possible to use their re-keying construction in the 
applications found in Section 3, as a drop-in replacement for our P R P ~ P R F  
construction. This would provide corresponding improvements in performance; 
the tradeoff is that the available security results are weaker for the re-keying 
construction. 

One interesting motivation for building PRFs from PRPs is that we could 
build larger PRPs from smaller PRPs by first constructing PRFs from the PRPs, 
using the results of [AV96] to strengthen the function, and finally using one of 
the many results available for building PRPs from PRFs. This is in fact the 
approach we take in our paper, and it provides the first useful technique (which 
we are aware of) for securely increasing the block width of a trusted block cipher. 

The format of the rest of our paper is as follows. In Section 2 we intro- 
duce our two constructions for producing PRFs from PRPs: 0RDEtt(P)~ :k and 
TRUNCATE(P)~ -m. In Section 3 we apply our constructions to a few different 
problems and give descriptions of our solutions. Finally, in Section 4 we analyze 
the security of the constructions presented in Section 2. 

1.1 N o t a t i o n  

In this section we introduce some of the notation we will use through the rest of 
the paper: 

Rn Z~, the set of all n-bit blocks. 
lPn The symmetric group on 2 n elements (specifically, the set of all permutations 

on P~). 
]Fn:m The set of all functions with the signature Rn ~ R,n. 
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p(a, b) Denotes the evaluation of a permutation p with the bit concatentation of 
a and b. 

( t, q, e)-secure Captures the notion of a cryptographic primitive which is se- 
cure, in the sense that any adversary who uses at most t units of off]hue work 
and issues at most q chosen-plaintext/ciphertext queries can only get advan- 
tage at most e for distinguishing the primitive from a random function (or 
permutation). This roughly means that an attacker must either do t work or 
implement q chosen-text queries to have any chance of breaking the primi- 
tive; however, even then the attacker is not guaranteed a practically-useful 
attack. Therefore, this is a very strong measure of security, in the sense that 
if a primitive is proven strong under this model, it is likely to be very strong 
indeed. 

2 The Construct ions 

We introduce two constructions: 0RDER(P)~ :k and TRUNCATE(P)n n-re. The former 
uses a permutation p E lPi to produce a function f E Fj..k. The latter uses a 
permutation p E ]Pn to produce a function f E IFn..,~-m. In this section we give 
a brief description of each of these constructions along with their security, but 
leave the analysis of their security until Section 4. 

2.1 0RDER(P),~ I 

Our first construction, 0RDER(P)~I uses the order of entries in a table repre- 
senting a n+ 1-bit permutation to encode a function ~fn E Fn:1. More specifically, 
if p E Pn+i then we assign a function fp E Fn:l where 

h(x)  = ( 0 ifp(0,x) < p(1,x) 
1 otherwise. 

Here the expression p(0, x) stands for the result of applying p to the concatena- 
tion of the bit 0 and the n-bit value x. 

Note, this construction is really a special instance of a much more general 
construction given in the next two sections. However, for our analysis we found 
it much simpler to analyze this simple case (in a later section) and extrapolate 
to the more general case. 

2.2  W i d e r  O u t p u t s :  n'2~-lm 0RDER(P) n+km 

Of course, in practice a PRF with a 1-bit output is rarely useful. Fortunately, 
there are some simple techniques to build wide-output PRFs from PRPs with a 
1-bit output. 

One basic approach is to observe that j = 2 ~ (independent) PRFs from Fn:m 
suffice to build a PRF on ]Fn:#m. This yields the following construction. Given 
a PRF F E ]Fn+k:,n, we build a wider PRF G E lFn:2~,n by 

G(x) = (F(O, x), F(1, x ) , . . . ,  F(2 k - 1, x)). 
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This construction has the disadvantage that  it reduces the input size slightly, 
which can be a problem for some applications. 

Of course, this does not produce an optimal construction. We leave the anal- 
ysis to Section 4, but  in fact the next construction is optimal. By optimal we 
mean that  it divides the set of permutations lPn into equally-sized equivalence 
classes such that  each equivalence class has an odd number of permutations.  
This implies that  we cannot divide the equivalence classes any further and still 
expect to have equally-sized equivalence classes. 

2.3 W i d e r  O u t p u t s ,  Ef f ic ien t ly :  0RDER(p)nn~ -1  

As one might expect, the construction of the previous section falls to extract  all 
of the possible bits from a permutation.  In some cases we can nearly double the 
number of bits tha t  we obtain from a given permutation p by extracting more 
information about  the sorted order of p(x). 

Suppose that  we have a permutat ion p E Pn+m; then we build a function 
f E ]Fn:2m-1 in the following fashion. First we determine 2 m-x bits of f ( x )  by 
using the construction outlined in the previous section. That  is, if [f(x)]i denotes 
bit i of f ( x )  and 0 < i < 2 m- l ,  then 

{ ~  if p(O,i,x) < p(1, i ,x)  
[f(x)]i = otherwise 

Briefly, the remaining bits of information are obtained by comparing the mini- 
mum elements of two pairs of values min (p(xj),p(x~)} for j = 1, 2. 

To be more precise, we star t  by creating 2 n perfectly-balanced binary trees 
with 2 m - 1 nodes (i.e. each one has height m - 1) and uniquely assign each tree 
to a different n-bit value x. Hence tree x will correspond to f (x ) .  For any given 
tree, each node has three values associated with it: a n + m-bit  value X(x) ,  a 
1-bit value Y(x),  and a m-bit  value Z(x),  which serves to identify the node. For 
ease of exposition, we assign Z(x) so that  the root node has Z(x)  = O, the left 
child of a node has the value 2Z(x) + 1, and the right child of a node has the 
value 2Z(x) + 2 (implying Z is independent of x so we can drop it). This assigns 
each node a unique m-bit  value and allows us to associate bit i of f (x )  with the 
Y(x)  value of node i. 2 

Using these particular Z-values, the leaf nodes will have the values 2 m-1 - 1 
to 2 m - 2. Let Xi(x)  and Yi(x) denote the X and Y values respectively of the 
leaf nodes with Z = i. Then for i > 2 m-1 - 1 

Yi(x) = ~0 if p(O, Zi - 2 m - l -  1,x) < p(1, Zi - 2 m-1 - 1, x) 

(1 otherwise. 

Xi(x)  - min{p(O, Zi - 2 m-1 - 1, x),p(1,  Zi - 2 m- t  - 1, x)} 

2 Some other ordering of the nodes will also work, such as one given by a postorder 
traversal of the tree. 
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This is precisely the information obtained by the construction of the previous 
section. For the remaining 2 "~-1 - 1 bits of information, we assign 

Y/(x)={01 otherwise.ifX2i+l(X)<X2i+~(x) 

Xi(x) = min{Y2i+l (x), Y2i+2 (x) } 

It should be clear that  this tree partially encodes the order of p(0, x),. . .  ,p(2 m -  
1,z), but that more than one permutation may produce the same function. It 
requires 2 m invocations of the permutation p to produce the 2 m - 1 bits of fp(x). 
For an example evaluation of ](x) for p e F3, see Figure 1. 

f ( x )  = 0111000 (postorder traversal) 

~ X = 3 ,  Y = O  

...,y"" "..,.. ...''" ".,,,., /...';" ".; /..."" "",,.,. 
P(0,x) := I~(1,xJ :---- 5 P(2,x)" := PC3,xJ := 0 PC4,x)" := ~(5,xJ := 3 P(6,x)" := PCT,xJ := 7 

Fig. 1. Example Function t~om p E ]Pa. 

We can use this latter technique to build a PRF in Fm..n using a permutation 
in lPa where a = [m+Iog2(n+l )+ l  ]. It will require [ log2(n+l)+l  ] invocations 
of E per invocation of F,n:n. Note, if n r 2 z - 1 for some l, we will actually obtain 
a wider output than n bits. In that case we can simply truncate the output to 
n bits and retain the security of the PRF. 

While this construction provably transfers (essentially) all of the security of 
the underlying block cipher to the PRF, the disadvantage is that it has poor 
performance: we can get a 57:127 PRF that's provably as strong as DES (and 
hence a 57:64 PRF), but it requires 128 queries to DES per PRF computation. 

2,4 TRUNCATE(P)~ - ~  

Our second construction has much better performance, but uses a very different 
idea: we merely truncate a few bits of the output of the underlying block cipher, 
so the PRF can be almost as fast as the block cipher. Formally, let p E Pn  be a 
random permutation. We assign a function fp E Fn:n-m by 

fp----gop 

where g : Rn --~ Rn-m denotes the function which truncates the high m bits 
from its input. For a PRP family {rk} the resulting PRF family would be {]~ }. 
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The disadvantage to this approach is that it doesn't preserve the security 
of the underlying block cipher nearly as well: our proofs only work when the 
attacker has at most O(min{2 (n+m)/2, 22(n-'n)/3}) chosen texts available to him, 
where n is the block width of the underlying cipher and m is the number of 
truncated bits. In practice, this means that we can prove security up to 0(24n/7) 
chosen texts by truncating m = n/7 bits, but our analysis degrades too much to 
be provide better bounds for larger m. 

3 A p p l i c a t i o n s  

There are several nice applications of our result. Probably one of the most in- 
teresting is that we "close the loop" between PRFs and PRPs. Luby-Rackoff 
[LR88] gave a nice PRF ~ PRP construction; we have now shown how to go 
the other direction s . 

We explore two additional possibilities in the next sections. There are others 
listed below, but due to a lack of time and space we have omitted further analysis 
of these ideas. Hence we pose them as open problems for further study. 

1. Building MACs (or possibly hash functions) with provable security. The 
disadvantage is that they are likely to be very slow. 

2. Building provably-strong PRNGs out of our constructions for provably-strong 
PRFs. Such a tool might be used for session key derivation, for example. The 
advantage is that in many cases (depending upon the application, of course) 
the PRNG isn't performance-critical, so slow techniques are still interesting 
if they have notable security advantages. 

3. Building provably-strong stream ciphers from our constructions for provably- 
strong PRFs. By running a good PRF in counter mode, you can get security 
past the birthday bound. In contrast, 64-bit block ciphers typically run into 
security problems when used in a standard chaining mode to encrypt more 
than 232 known texts, no matter how strong the cipher is. 
Bellare et. al. have explored this application further in [BKR98]. 

3.1 Building Wider Block Ciphers 

Techniques for building wider block ciphers are especially relevant as the AES 
standards effort ramps up. The problem with most existing ciphers, such as 
Triple-DES, is that they offer only 64-bit blocks, and thus fall prey to certain 
birthday attacks that can work with only 232 texts or so. (The matching cipher- 
text attack is one example.) As network communication speeds rise, this limit 
becomes increasingly concerning: for instance, on a 1 Gbit/sec encrypted link, we 
expect that information about two plaintext blocks will leak after only 6 minutes 
or so. The only solution is to move towards ciphers with wider block lengths, but 
if this involves a full cipher redesign, then we may forfeit the insights provided 

3 We don't consider treating a PRP as a PRF as an example because it won't produce 
more general functions, and because its security level is limited. 
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by more than two decades of analysis on DES and Triple-DES. This motivates 
our search for a construction which can provably retain the time-tested security 
level of Triple-DES while providing a wider block length. 

This paper provides new results in this area. If we have a trusted cipher, 
then we can model it as a PRP family. Using one of our constructions we can 
construct a PRF family, use the Benes transform [AV96] to create a wider PRF 
family, and finally use Luby-tLuckoff to create a PRP family again. The nice 
thing is that the resulting PRP family will be almost four times as wide as the 
original construction. Furthermore, we will be able to provide provable security 
reductions to show that the widened cipher is likely to be strong if the original 
cipher is secure. 

We will focus on a particular example and consider Triple-DES. Hence let 
n = 64 and P = {Ek} be the Triple-DES family where Ek(X) denotes encryption 
with key k and plaintext X. Also suppose that P is (t, q, e) secure. Then using 
0RDER(P)658:63 we can construct a PRF family F = {fE~} C Fss:~s (truncate the 
5 extra bits). As later analysis will show, F is (t, q/64, e) secure. In other words, 
F largely retains the security properties of Triple-DES. 

Using the modified Benes transform, we can form a second PP~ family F 2 - 
{gf} where f E F and F 2 C lFll0..lt0. The reason we do not obtain a family 
F 2 C ]FnB..tt6 is that the modified Benes transform requires six independent 
functions. Hence we can use the first three bits of our functions in F to obtain 
eight independent function families for constructing lF 2. The results of [AV96] 
show that F 2 is a (t, q/64, e+e')-secure PRF, where e' is neglible for q/64 < 2 tl~ 

Finally, using F 2 and Luby-Rackoff we can create a final PRP family p2 __ 
{Pgl,g2,gs ) where 9i E F 2 and p2 C P~20. p2 will have nearly identical security 
to F2: (t,q/64,e + e' + e") where e" is neglible for q/64 < 25~4. 

The primary disadvantage of this construction is that the resulting widened 
cipher p2 will be almost 450 times slower than the original cipher P. With a 
normal 4-round Luby-Rackoff construction, we will use 4 invocations of functions 
from F 2 for each invocation of a permutation in p2. Each function in F 2 uses 
6 invocations of functions from F. Finally, for each function in F we will use 
64 invocations of a permutation in P. Hence we will require 4 • 6 • 64 = 1536 
invocations of Triple-DES per invocation of p2; of course, each invocation of p2 
encrypts 220/64 times as many bits as P, so the performance of the widened 
cipher p2 will be 1536 �9 64/220 ~ 447 times worse than Triple-DES. This is 
definitely very slow, but it is provably secure! 

An alternative to using Luby-Rackoff is to use a construction by M. Naor and 
O. Reingold [NR96]. There you get a twofold speed-up in execution and we only 
require 768 invocations of Triple-DES. This translates to a total of roughly 223 
times worse performance than Triple-DES. The advantage, of course, is that the 
resulting cipher is that we have removed the 232-texts limitation on the security 
of Triple-DES. 

4 Note: the security proof of the Luby-l~.~off construction given in [LR88] actually 
assume that the g~ are independent; but the proofs in [NR96] remove that restriction. 
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Our construction uses the Benes transform only for technical reasons. The 
reason we can't apply the Luby-Rackoff construction directly to our PRF family 
F is that a 4-round Luby-Rackoff cipher with m-bit blocks is only secure up to 
2 m/4 texts; with m = 2.58,  the security level would be too low, so we build 
a double-width PRF family F 2 to increase m. However, eliminating the Benes 
transform could produce significant performance speedups, so this motivates 
the search for PRP constructions with better security. For example, by using 
Patarin's recent results on the 6-round Luby-Rackoff construction [P98], we can 
build a widened cipher p3 C Pl16 that is secure with up to about rain{q, 243"5} 
texts; by using single-DES instead of Triple-DES as our starting point, we can 
get a ll6-bit cipher which is provably as secure as DES and has performance 
about 212 times worse than DES (or about 71 times worse than Triple-DES), 
though it has somewhat less security than our construction of p2. 

It would also be possible to use the TRUNCATE(P) n-m construction to build 
a double-width block cipher, instead of 0RDER(P)645s:63 as above. This would 
provide significantly better performance (the widened cipher could be as fast as 
1/3 the performance of the original cipher). However, at present the available 
proofs provide no guarantee of security past about 236 texts, which is probably 
not a compelling advantage over the 232 birthday bound. 

As a third alternative, one could use the re-keying construction of Bellare et. 
al. [BKR98] to build F out of Triple-DES (say). Applying the Benes transform 
and the Naor-Reingold construction would then provide a 256-bit cipher which 
is only 3 times slower than Triple-DES. The disadvantage is that the available 
security results are difficult to compare with the figures given above. 

The examples we gave here usually resulted in a block cipher with a peculiar 
width. It should be clear how to modify this example slightly to generate (say) 
a 192-bit block cipher, by truncating F or F 2 to the appropriate size. 

3.2 Applications to 1-bit CFB mode 

We note that our main construction provides a way to increase the robustness 
of 1-bit CFB mode by tweaking the mode slightly. 

The standard 1-bit CFB mode builds a function h �9 ~ --+ ~ 2  by letting 
h(x) be the least significant bit of the encryption Ek (x) of x under a block cipher 
E with key k. Then we build a stream cipher as Cj = Pj ~ h(Cj-64,. �9 �9 ,Cj-1). 

The problem is that we are not aware of any proof that CFB mode preserves 
the security of the underlying block cipher. Clearly all of the security of 1-bit 
CFB mode must come from the non-linear Boolean function h. Theorem 1 (in 
Section 4.1) guarantees the security of h against an adversary with access to 
q << 2 n/2 chosen-text queries, assuming the underlying block cipher is secure. 
However, for typical block ciphers 2 n/2 = 232, which means that the "security 
warranty" provided by Theorem 1 is voided after 232 chosen-text queries 5. As 

5 Theorem 7 can guarantee security up to q = 0(24n/7), but this is still significantly 
smaller than the 0(2 '~) query security we would ideally hope to see. As we shall see, 
this hope is not unreasonable. 
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most typical block ciphers are built to resist much more powerful adversaries, 
we would prefer to have better reductions. 

We do not know of any better security proofs for 1-bit CFB in the literature, 
but we can improve the situation with a slight modification to the mode. Replace 
h by the function fE~ defined in Section 2.1. (We will need to sacrifice one bit 
of feedback, so that Cj = Pj ~ f ~ ( C j - 6 s , . . .  ,Cj-1), but 63 bits is morethan 
sufficient for practical purposes.) This requires two encryptions per invocation 
of fE~, so our mode will be twice as slow as the standard 1-bit CFB, but we 
do not expect this to be a serious problem, as implementors typically use 1-bit 
CFB mode for its resynchronization properties rather than for its performance 
characteristics. 

Of course, the primary advantage of our 1-bit modified cipher feedback mode 
is that we can provide provable security reductions for fE~- If E is a (t, q, e)-PRP, 
then ]g~ will be a (t, q/2, e)-PRF. In short, our construction of fE,  preserves 
the security level of the underlying block cipher extremely effectively. Therefore, 
this modification to 1-bit CFB mode looks'attractive for practical use. 

4 Analysis 

In this section we provide analysis of our 0RDER(P)~ :k and TItUNCATE(P)~ -m 
constructions. In addition, we evaluate the security of a PRP family when viewed 
as a PRF family. 

4.1 Previous  a t t e m p t s  

As we have mentioned earlier, every PRP can be viewed as a PRF with certain 
security parameters. We first analyze this trivial construction. 

T h e o r e m  1. Let p be a random permutation on n bits. Then p is a (t, q, e)-PRF 
/or e = q2 /2n+1. 

Proof. Standard; omitted due to lack of space. 

Furthermore, it is simple to show that this bound is tight. We can easily 
construct an adversary which distinguishes between p and a random function 
with advantage approximately q(q - 1)/2 n+l (for q = o(2n/2)): simply look for 
collisions and return 0 if you see a collision (where you are supposed to return 1 
if you think it's not a random function). 

It is worth noting that this analysis also establishes the security of another 
related construction. One might naively propose a construction based (loosely) 
on the Davies-Meyer hashing mode [MM085]: 

f~(=) = p(=) �9 =. 

The final xor of x into the ciphertext destroys the bijective property of p, so at 
first glance ]p might look like a reasonable candidate for a better PRF. However, 
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we note that this construction has no better security than before. It can be 
distinguished from a random function with advantage q2/2n+l: merely apply the 
adversary of the previous paragraph to the function g defined by g(x) = fp(z)$z.  

The security reduction we showed in Theorem 1 is sufficient to show that 
PRFs exist if PRPs do, from a complexity-theoretic point of view, since the se- 
curity bound it shows is exponential in n. Therefore, complexity theorists inter- 
ested only in asymptotics need read no further. However, practical applications 
are a bit more demanding: they require concrete security guarantees. 

We find this O(2 n/2) level of security inadequate for practical applications. 
Most block ciphers today offer 64-bit block widths, thus providing a convenient 
and efficient PRP with n = 64. For such ciphers, the above theorem provides no 
security assurances when adversaries are allowed to make q ~ 2(n+1)/2 = 232"s 
chosen-text queries (or more). This is too weak for serious cryptologic use; we 
would prefer something that provides better resistance to chosen-text attacks. 
After all, the underlying block cipher typically provides, better security than 
that--so it is natural to wonder whether we can do better. Is there a PRF 
construction that preserves the security of the underlying block cipher? 

We show below that the answer is yes. 

4.2 Analysis  of  01~ER(P)~z 

We gave a description of 0RDER(P)~I in Section 2.1. Let ~r be a (keyed) family 
of permutations {Trk : k E K} C lPn+l on Rn+t. Using this construction we 
obtain a family f~ = { f~  : k e K} of functions in F,~:I. We can (by a slight 
abuse of notation) view ~r as a random variable, taking values in ]Pn+l, by 
taking k to be a random variable uniformly distributed over K. (We drop the 
subscript, writing lr instead of rk as a slight abuse of notation, to avoid an 
unwieldy morass of distractingly nested subscripts.) Similarly, f~ can be viewed 
as a random variable, too. 

We say that p is a random permutation (on Rn+l) to mean that it is a random 
variable which is uniformly distributed over all elements of Pn+I.  Similarly, we 
say that f is a random function (from ]Fn:m) when we mean that it is a random 
variable which is uniformly distributed over ]Fn:rn. 

We wish to show that f~ preserves the security level of the underlying PRP 
~r. Most of the work to be done is handled by a purely information-theoretic 
analysis, which ignores all issues of computational complexity. We tackle this in 
Theorem 2. 

Theo r e m 2. If  p is a random permutation on Rn+t, then fp is a random func- 
tion o v e r  ~'~n:l. 

Proof. Take any g E ]Fn:l. It is clear that there exists a p E •n+z such that 
g = fp: for example, take the p such that 

p(2x) = 2x + g(x) p(2x + 1) = 2x + 1 - g(x) Vx E Rn. 
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Next we show tha t  I{P : g = .fp}l is a constant that  does not depend on g, 
i.e. tha t  there are an equal number of representative permutations p for all g. 

First, suppose that  gl,g2 E Fn: l  are two functions that  differ at  exactly 
one point X (i.e. gl(x) = g2(x) for all = r X and gl(X) ~ g2(X)). Then we 
construct a bijective mapping r : P n + l  -+ P n + l ,  which has the property that  
Jfp = gl exactly when fr = g2. This will show tha t  there are an equal number 
of representations for any two functions gl, g2 which differ at exactly one point. 
Then it will be easy to see that  this implies the desired result, since for any two 
functions g, h E Fn: l  one can construct a sequence g = go, gl ,g2,. . .  ,gk-l,gk -" 
h such that  all the consecutive pairs g~, gi+l differ at  exactly one point. 

The mapping r is built as follows. Take any input p; we define r -- p' by 

p ' ( b , x ) -  f p(b,x) 
[ p ( 1 - b , x )  

i f=r  
i f z = X .  

Now it is clear tha t  ~fp, = g2 if fp = gl, and vice versa. Furthermore, r is an 
involution, so it is clear that  it is a bijective mapping, as claimed. This completes 
the proof. D 

Once we have this nice result, extending it to the setting of computationally- 
bounded adversaries is not so hard. I t  requires much unravelling of notation, but 
essentially no new ideas. 

We first introduce the notion of pseudo-randomness, to handle the most im- 
portant  case where the adversary is computationally bounded. Informally, saying 
tha t  lr is a pseudo-random permutation (PRP) on Rn+l is supposed to convey 
the idea that  it is compu~ationally infeasible for an adversary to distinguish lr 
from a random permutation on R,~+I. (Some authors use the phrase "pseudo- 
random permutation generator" to refer to this object; for conciseness, we will 
omit the "generator" term throughout this paper.) 

We formalize this notion as follows. An adversary is an oracle machine 
B p,p-~'~'~-~ which outputs a 0 or 1 (according to whether it thinks p is truly 
random or is drawn from the family {Tr~ : k E K}).  It takes four oracles as in- 
puts: a test permutation p (which outputs p(x) on input x) along with its inverse 
p-Z, and an oracle for 7r (which outputs irk(x) on input k,z) as well as an oracle 
for Ir -1 . Its advantage Adv B is 

A d v B  = IProb(B ~*'*~1'~'~-' = 1) - P r o b ( B  r'r-l'~'~-* = 1)1 , 

where r is a random permutation and k is uniformly distributed over K.  More 
formally, we say that  Ir is a (t, q, e)-PRP if the advantage of any adversary which 
is allowed at most q queries (total) to the first two oracles and t offline work 
is at  most e. This models a block cipher which is secure with up to q adaptive 
chosen-plaintext/ciphertext queries and t trial encryptions. See [BKR94,BGR95] 
for more information about (t, q, e) security. 

We can define a (t, q, e)-PRF (pseudo-random function) in a similar fashion. 
In this definition, an adversary is an oracle machine A g,7,~,~-1 with access to four 
oracles: a function g which outputs g(x) on input x, an oracle 7 which outputs 
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7k(z) on input k,z ,  and two oracles ~r, Tr -1 for the PRP class (as above). We 
define its advantage by 

AdvA = IProb(A "r~'7'~'~-' = 1) - P r o b ( A  s'7'~'~-t = 1)1, 

where s is a random function and k is uniformly distributed over K.  In the cases 
that  we are most interested in, we have 7k = f ~ .  We say that  7 is a (t, q, e)- 
PRF  if all adversaries A which make at most q oracles queries (total) to g, 7 and 
perform at most t computations obey Adv A _< e. 

Note that  it is important to include the oracles for 7r, ~r -1 in the definition of 
a (t, q, e)-PRF. In what follows, we will be interested in PRFs built from a PRP 
lr. Here 7r models a block cipher; we assume the algorithm is publicly known (by 
Kerchkoff's principle), so anyone trying to attack f~ can freely compute rk(x) 
on any chosen inputs k, x. This required us to extend the standard definition of 
a PRF to model this situation. 

With those preliminaries out of the way, we may proceed to the rest of the 
analysis. We get the following pleasing consequence of Theorem 2 whose proof 
we leave to the appendices. 

Theorem 3. / f  rr is a (t, q, e)-PRP on Rn+l, then f~ is a (t, q/2, e)-PRF over 
] F n : l  �9 

Proof. See Appendix A. [3 

4.3 Analysis of  0RDER(P)n~ -1 

R E rt:2m--1 In Section 2.3 we introduced the general 0 D R(P)n+m construction. There axe 
two corresponding theorems whose full proofs we omit due to a lack of space. 

Theorem 4. If  ~r is a random pe~vnutation on Rn+m, then f~ is a random 
function over Fn:2,,-1. 

Proof. (sketch) The basic idea is to again consider two functions f l ,  f2 E Fn:2,~-i 
which differ in exactly one output  (say fl(0) r ]2(0)). We can build a map 
r : Pn+m --} ]Pn+m such that  fp = f l  exactly when re(p) = f2. Again this will 
show that  all f E ]Fn:2m-1 have an equal number of representative permutations 
p (existmace is trivial). 

To build the map r we need merely look at the binary tree we constructed for 
x = 0. CActually we must consider a slightly expanded version of the tree in which 
the leaf nodes of our original t ree are expanded into two children containing the 
values p(0, Z, x) and p(1, Z,x).)  Starting with i = 0, we compare bit i of fl(O) 
and f2 (0) and swap the left and right subtrees of node i if f l  (0) and fz (0) differ 
in bit i. Note, this may destroy the original equality of bits j > i for f l  (0) and 
f2 (0) so in evaluating bit i we assume that  f l  (0) has the value denoted by the 
most recent tree. The end result is a series of subtree swaps for evaluating f l  (0) 
which are clearly reversible. 

The subtree swaps specified will remap values of a permutation to values of 
another permutation and we take r to be that  map. It is clearly onto and hence 
bijective. This completes the proof of the theorem. [] 
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Theorem 5. I f  ~r is a (t, q, e)-PRP on Rn+m, then f~ is a (t, q/2 ra, e)-PRF 
over ~'~n:2rn--Z. 

Proof. The proof is nearly identical to tha t  of Theorem 3. n 

In Section 2.3 we made a claim tha t  this construction was optimal. By that  
we meant tha t  one could not create a map from ]Pn+ra to Fn:l for l > 2 rn - 1. 
We state this in the following lemma. 

L e m m a  1. There exists no map r : Pn+m --~ ]Fn:t for I > 2 m - 1 such that 
N ( f )  = [{p (5 ~n+rn : r = / } l  is constant for all f (5 Fn:l. 

Proof. Let r be a map such that  N ( f )  is constant for all f (5 F,,:z, then we will 
show that  l _< 2 m - 1. There are 2 t2~ functions in Fn:z hence we are dividing 
Pn+m into 2 t2" equivalence classes. For any j ,  ]lPj[ = (2J)! and it is not hard 

to show that  22#-1 exactly divides (2J)!. Hence the power of 2 dividing the size 
of each equivalence class is 22"+'~-1/2 z2" = 22"(2"~-t)-z. In order for N ( f )  to 
be constant, we must have that  2n(2 m - l) - 1 >_ 0, which implies 2 rn - l > 1, 
whence l < 2 m - 1. This completes the proof of the lemma, t3 

Our analysis above used a strongly information-theoretic framework: first, we 
showed that  the construction produces a random function when fed a random 
permutat ion (Theorem 2), and then all the desired pseudo-randomness results 
just  fall out trivially from that.  This framework is desirable because it makes 
the analysis relatively simple; however, we showed in Lemma 1 tha t  it imposes 
serious limitations on the performance of the resulting constructions. The above 
bound essentially shows that,  to achieve bet ter  performance, we'll need to do 
abandon the information-theoretic framework and take another approach. This 
we do below. 

4.4 Analysis of  TRUNCATE(P)~ - rn  

The construction of Section 4.2 is probably most attractive because it is so 
amenable to theoretical analysis, and because it preserves the security of the 
underlying block cipher so efficiently no matter  how many chosen-text queries 
are issued. However, it also has a severe disadvantage for practical use: it is quite 
slow. 

In Section 2.4 we defined a PRF  family TRUNCATE(P),, n-rn based on truncating 
bits of a permutation.  The result trades off security for performance. Recall the 
construction: for any permutation ~rk on P~, we define a function ] E Fn:n- ,n  
by 

f ~  = g oTrk 

where g : Rn -+ Rn-m denotes the function which truncates the high m bits 
from its input. 

We could instead have taken g to be any fixed function g : Rn ~ Rn-,n 
such that  each 9 E Rn-rn has 2 m easily-computable preqmages 9-1(y), and the 
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results would still apply. However, bit-truncation is attractive because it is both 
fast and amenable to a simple mathematical description 6. Therefore, for clarity 
of exposition we concentrate hereafter solely on bit-truncation. 

First we show that if r is a random permutation, then f~ is a pseudo-random 
function. The following theorem proves that, roughly speaking, Adv A is negli- 
gible while q << min{2 (n+m)/2, 2~(n-m)/3}. 

T h e o r e m  6. f f  7r is a random permutation on Rn, then f~ is a (t, q, e ) -PRF 
over Fn:n--m, where e = 5(q2 /2n+m) 1/3 + q3 /2~(n-m)+l. 

Proof. See Appendix B. Q 

This shows that truncating some bits from the output of ~rk gives slightly 
better security. For m < n/7,  the theorem says that truncating m bits adds 
nearly m / 2  bits of security against adaptive chosen-text attacks to the PRF 7rk. 

However, for m > n/7,  the second term in e dominates (in that it is largest 
and hence limits q), and our analysis does not provide better security reductions 
when increasing m past n/7.  We believe that these limits are not inherent, but 
rather are a reflection of the inadequacy of our analysis. As an illustration, the 
best attack we can find needs q = 0 (2  (n+m)/2) texts to distinguish f~ from 
random with significant advantage (see Theorem 8), so this leaves a substantial 
gap between the upper and lower bounds. We suspect that a better analysis 
could provide a better security reduction. (However, we could be wrong.) 

The main idea of the proof is to show that the probability of getting any 
particular set of outputs Y to a given set of oracle-queries X is roughly the 
same whether the oracle is instantiated "under the hood" by a PRF or by a 
truncated-PRP. We use this to show that any oracle algorithm A must behave 
almost exactly the same regardless of which type of oracle it is given. That 
follows just because A's execution can depend only on the list of inputs and 
outputs to the oracle. This can then be used to show that Adv A is small. Of 
course, our bounds only hold when q is small enough. 

The first step in the analysis is to compute the probabilities that a random 
function F and a truncated-PRP f~ will map X to Y. For F this is easy, but 
for f~ it is substantially harder. In the general case this gets quite messy, so 
we restrict ourselves to the special case where there are no three-way collisions 
in Y; this makes the calculation tractable. (This restriction adds an artificial 
contribution q3/22(n-m)+1 to our bound on the advantage, so we have sacrificed 
tightness for tractability.) After that, "all that is left is relatively straightforward 
computations (albeit in large quantities). 

Theorem 7. I f  7r is a (t, q, e ) -PRP on Rn, then f~ is a (t, q, e ' ) -PRF over 
Fn:n-m,  where e' = e + 5(q2/2n+m) 1/3 Jr q3/22(n--rn)+l. 

6 The study of the properties of bit-truncation may also have some independent in- 
terest, as several authors have already suggested applying a bit-truncation output 
transform to existing MAC constructions in hopes of improving their security (see, 
e.g., [PO95]). 
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Proof. Omitted. Follows directly from Theorem 6 along lines analogous to the 
proof of Theorem 3. O 

T h e o r e m  8. Let ~ be a permutation.family on Rn. Then for all q = 0(2 (n+m)/2), 
there is an adversary which can distinguish f~ from a random function with q 
known texts, O(q) work, and advantage Y2(q2 /2n+m). 

Proof. (sketch) Let r count the number of collisions in the outputs f~(1), . . .  , f~(q). 
Then our adversary outputs 1 (guessing that the oracle is f~) if r < q(q - 
1)/2 n-re+l, and 0 otherwise. Using the techniques found in the proof of Theo- 
rem 6, we find that this adversary operates with advantage ~2(q2/2n+m). I7 

5 Conclus ion 

We have presented two constructions for generating pseudo-random functions 
given pseudo-random permutations: 0RDER(P)~ :k and TRtlNCATE(P)n n-re. The for- 
mer had the notable property that it preserved the security of the underlying 
pseudo-random permutation whereas the latter had the property that it was 
much more efficient. Unfortunately, the gain in speed results in a trade-off in se- 
curity and the latter construction fails to preserve the strength of the underlying 
pseudo-random permutation. 

Using our constructions we were able to solve a few different problems, in- 
cluding stretching the width of a block cipher while preserving the security. 
We also examined a secure 1-bit cipher feedback mode using a pseudo-random 
permutation. 
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A P r o o f  o f  T h e o r e m  3 

Proof. Our proof proceeds as follows. Suppose we have an adversary A which 
(t I, q,, el)_breaks f~.7 We construct an adversary B which (t', 2q ~, e~)-breaks ?r. 
The result will follow. 

. . . .  - - 1  - - 1  

The construction for B reqmres very little creativity. B p,p ,~,~ performs 
the same computations as Ag,7,~,~-~; anytime A makes an oracle query, we 
simulate the oracle and return the result to the computation in progress. 

The simulation of oracle queries goes like this. If A queries the g oracle with 
x, then B issues two queries to p with inputs (0,x) and (1,x) and compares the 
results; if p(0, x) < p(1, x), B uses the result 0, and otherwise uses 1. If A queries 
the 7 oracle with k, x, then B issues the two queries k, (0, x) and k, (1, x) to its 
oracle for 7r, and constructs the result similarly. Finally, A's oracle queries for 7r 
and ?r -1 can be satisfied trivially. 

Let e ~ = Adv A, and let t ~, q~ count the time and number of oracle queries 
that  A requires. Clearly t ~, 2q t counts the time and number of oracle queries 
tha t  B requires. It merely remains to bound Adv B, which we achieve with the 
following series of observations. 

L e m m a  2. Let r be a random permutation, and s be a random function. (Recall 
that according to our terminology both will be uniformly distributed on their 
respective spaces.) 

(i) For any permutation p, A fp,f",~,'~-I = Bp,p-l,~,~-l. 
(ii) The random variable fr has the same distribution as s; in other words, 

fr is a random function. 
(iii) With the random variables r, s as before, we have 

Prob(A s,f",~,~-~ = 1) = Prob(A y~,f",~,~-~ = 1). 
(iv) Prob(A ''s''~'~-~ = 1) = Prob(B r,r-l,~,~-I = 1). 
(v) Prob(AY"~"fl'"r"r-1 = 1) = P r o b ( B ~ ' ~  ~''r''r-~ = 1). 

7 This means that with at most q~ queries and t ~ oi~ine encryptions, there is an ad- 
versary who has advantage greater than e ~. 
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Proof. (i) follows by construction of B. 
(ii) is exactly Theorem 2. 
(iii) follows immediately from (ii). 
(iv) follows from (i) and (iii). 
(v) is merely a special case of (i), substituting p -- ~rk. [] 

L e m m a  3. AdvB = AdvA. 

Proof. Apply part (v) of Lemma 2 to the first term in Adv B, and apply part 
(iv) of Lemma 2 to the second term in Adv B. We get exactly the expression for 
Adv A. Q 

Now this suffices to prove the theorem. Given that ~r is a (t, q, e)-PRP, we 
show that f~ is a (t, q/2, e)-PRF by examining the contrapositive. Suppose there 
exists an adversary A who (t, q/2, e*)-breaks f~ with advantage e * > e. We 
have shown how to construct an adversary B which breaks ~r. By Lemma 3, 
AdvB = AdvA -- e~; also, B requires at most t time and q oracle queries. In 
other words, B (t, q, e~)-breaks ~r, for e * > e. But this contradicts our assumption 
that 7r is a (t, q, e)-PRP. Therefore, such A cannot exist, and the theorem follows. 

[] 

B P r o o f  o f  T h e o r e m  6 

Proof. Let AY'~ ,~'~-1 be any adversary that breaks f~h. Let X = (X1,... ,Xq) 
be a q-vector over Rn of q different "inputs," and let Y = (YI,. . .  ,Xq) be a 
q-vector over Rn-m of "outputs." The random variables (X, Y) will be a "tran- 
script" of a run of the adversary A: Xj records the j- th query to the f~ oracle, 
and Y/records the corresponding output from the oracle. 

Without loss of generality, we may take X = (1 , . . . ,  q), since any adversary 
A which makes repeated queries Xi = Xj (i < j )  can be easily converted to an 
adversary A ~ with the same advantage such that A ~ makes no repeated queries. 
(Our construction of A ~ merely simulates the action of A, for each oracle query 
Xj made by A: if Xj is a new query, A' behaves identically to A; but if Xj = Xi 
for some i < j ,  then A ~ sets Yj = Yi and continues to simulate the action of A 
without querying the f~ oracle.) Furthermore, since ~r is presumed to be a truly 
random permutation, the values of the oracle queries don't matter, so long as 
they don't repeat. 

Let F E ]Fn:n-m be a truly random function. Define pF(X, Y) = Prob(F(X) = 
Y) to be the probability that F maps each Xj ~ Yj; define pI(X,Y)  = 
Prob(f~(X) = Y) in a similar fashion. We often leave off the (X, Y) and simply 
write Pl or PF when the choice of (X, Y) is clear from context. Also, we some- 
times write p! (S) to mean the probability (with respect to f )  of a set S, i.e. 
pl(S) = ~,(x,Y)esPf(X, Y). 

We wish to show that f~ is roughly indistinguishable from F if q is not 
too large. The main idea is to show that pf(X, Y) ~ pF(X, Y). Our argument 
proceeds as follows. We bound PI/PF, showing that it is close to 1. This bound 
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doesn't hold uniformly for all choices of (X, Y), but it holds for nearly all of 
them---or more precisely, the set S where the bound holds has probability very 
close to 1. Formally, we prove that IP//PF -- 11 <-- $ for all (X, Y) E S; we also 
show that both p/(-~S) and pF('~S) are small. This can be informally viewed as 
a sort of "probabilistic bound." 

We prove, in another crucial lemma, that 

Adv A <_ max(p/(-~S), PF (-~S) } + 5. 

This is a generic result that relies only on the bound on Pl/PF; no domain-specific 
knowledge is required. Therefore, it suffices to bound Pl/PF tightly enough that 
pl(-,S),  pF('~S), and 6 are small. 

We move to the details of the proof. We take S to be the set of all q-vectors 
Y over P~-m which have r repeated values, no triply-repeated values, and for 
which 

[r - q(q - 1)/2n-m+l I ~_ cq/2 (n-re+l)/2, 

where c > 1 is a small constant left free for the moment. Lemma 5 helps us show 
that [Pl/Pf -- 1[ < 5 for ( X , Y )  e S. Lemma 6 bounds pF(-~S), and Lemma 7 
bounds p/(~S) .  Finally, Lemma 4 proves that Adv A <_ max{p/('~S),pF(-~S)} + 
5. Combining these four lemmas, we get the big result 

Adv A <_ 1/c 2 + 4cq/2 (n+m+l)/2 + qS/22("-m)+l + q2/2"+m 

for all c > 1. Finally, we optimize over c to obtain the best bound; taking 
c = (2(n+ra-1)/U/q) 1/3 yields 

AdvA <_ 4(q2 /2n+m)l/a +q3 /22(n-m)+l +q2 /2 n+m < 5(q2 /2n+m)l/S +q3 /22(n-m)+1, 

as claimed. 
Due to lack of space, the proofs of the lemmas are omitted; full details are 

available at h t t p : / / w ~ ,  counterpane,  com/publish-1998, html. 

L e m m a  4. With S defined as above, we have 

AdvA < max{pi(-~S),pF(~S)} + 5 

when 5 > max(x,x)es [pf(X, Y)  /pF(X,  Y) - 11. 
L e m m a  5. Let Y have r repeated values and no triply-repeated values, with 
X = (1,2, . . .  ,q). ThenpF = 2 -q(n-m), and 

q--1 2m 
p, = ( 1 -  r I I  2 - - i "  

i=0 

We have p ,  /pF ~-. exp{q(q-1) /2n+l-r /2m} for large q,r. Finally, if ( X , Y )  6 S 
andq <_ 2("+m)/2/c andq <_ 22'~/3, then [p//pF--11 < 51or5 = 2cq/2("+m+l)/U+ 
2q3/3.2 -2n + q2/2 n+m+l. 

L e m m a  6. We have pF(-~S) < 1/c 2 + q3/6.2-2(n-m). 

L e m m a  7. We have pl(-~S) < 1/c 2 + q3/6.2-2('~-m) + 5. 

This completes the proof of Theorem 6. [] 


