Skip to main content

Computationally-sound checkers

  • Invited Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1998 (MFCS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1450))

  • 162 Accesses

Abstract

We show that CS proofs have important implications for validating one-sided heuristics for NP. Namely, generalizing a prior notion of Blum's, we put forward the notion of a CS checker and show that special-type of CS proofs imply CS checkers for NP-complete languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. Proc. CRYPTO 92, Lecture Notes in Computer Science, Vol. 740, Springer Verlag, 1993, pp. 390–420.

    Google Scholar 

  2. M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm for Designing Efficient Protocols. 1st Conference on Computer and Communications Security, ACM, pp. 62–73, 1993.

    Google Scholar 

  3. M. Blum and S. Kannan. Designing Programs that check their work. Proc. 21st Symposium on Theory of Computing, 1989, pp. 86–97.

    Google Scholar 

  4. M. Blum, M. Luby, and R. Rubinfeld. Self-Testing and Self-Correcting Programs, With Applications to Numerical Problems. Proc. 22nd ACM Symp. on Theory of Computing, 1990, pp. 73–83.

    Google Scholar 

  5. M. Blum and S. Micali. How to Generate Cryptographically-Strong Sequences of Pseudo-Random Bits. SIAM J. on Comp. vol 13, 1984

    Google Scholar 

  6. R. Canetti, O. Goldreich, and S. Halevi. In Preparation. 1998

    Google Scholar 

  7. S. Cook. The Complexity of Theorem Proving Procedures. Proc. 3rd Annual ACM Symposium on Theory of Computing, 1971, pp. 151–158.

    Google Scholar 

  8. U. Feige, A. Fiat, and A. Shamir. Zero-knowledge Proofs of Identity. Proc. of 19th Annual Symposium on Theory of Computing, 1987, pp. 1987.

    Google Scholar 

  9. A. Fiat and A. Shamir. How to Prove Yourselves: Practical Solutions of Identification and Signature Problems. Proc. Crypto 86, Springer-Verlag, 263, 1987, pp. 186–194.

    Google Scholar 

  10. O. Goldreich, S. Goldwasser, and S. Micali. How To Construct Random Functions. J. of ACM 1986

    Google Scholar 

  11. S. Goldwasser, S. Micali, and R. Rivest, A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks, SIAM J. Comput., Vol 17, No. 2, April 1988, pp. 281–308. (A preliminary version of this article appeared with the title “A paradoxical solution to the signature problem” in Proc. of 25th Annual IEEE Symposium on the Foundations of Computer Science, FL, November 1984, pp. 464–479.)

    Article  MATH  MathSciNet  Google Scholar 

  12. O. Goldreich, S. Micali, and A. Wigderson.

    Google Scholar 

  13. S. Halevi and S. Micali. A Stronger Notion of Proofs of Knowledge. Unpublished Manuscript, 1997.

    Google Scholar 

  14. J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Generators from any One-Way Function. To appear is SIAM J. On Comp. (This combines the works of Impagliazzo, Luby, and Levin, 21st Annual Symposium On Theory of Computing, 1989, and that of Hastad, 22nd Annual Symposium On Theory of Computing, 1990.)

    Google Scholar 

  15. R. Karp. Reducibility among combinatorial problems. Complexity of Compuyer Computations, R. Miller and J. Thatcher eds., Plenum, New York, 1972, pp. 85–103.

    Google Scholar 

  16. R. Impagliazzo, J. Hastad, L. Levin, and M. Luby. Pseudo-Random Generation under uniform Assumptions. STOC 1990.

    Google Scholar 

  17. L. Levin. Universal Sequential Search Problems. Problems Inform. Transmission, Vol. 9, No. 3, 1973, pp. 265–266.

    Google Scholar 

  18. R. Lipton. New Directions in Testing. Distributed Computing and Cryptography. (J. Feigembaum and M. Merritt Ed.) Vol. 2 of Dimacs Series in Discrete Mathematics and Theory of Computer Science. (Preliminary version: manuscript 1989.)

    Google Scholar 

  19. S. Micali, A Concrete Construction Of Computationally Sound Checkers. MIT-LC TM 579, 1998.

    Google Scholar 

  20. M. Tompa and H. Woll. Random Self-Reducibility and Zero-knowledge Interactive Proofs of Possession of Information. Proc. 28th Conference on Foundations of Computer Science, 1987, pp. 472–482.

    Google Scholar 

  21. C. Cachin, S. Micali and M. Stadler. Computational Private Information Retrieval Systems With Poly-Logarithmic Amount of Communication. Manuscript in preparation. 1998

    Google Scholar 

  22. S. Goldwasser and S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof Systems. SIAM J. Comput., 18, 1989, pp. 186–208. An earlier version of this result informally introducing the notion of a proof of knowledge appeared in Proc. 17th Annual Symposium on Theory of Computing, 1985, pp. 291–304. (Earlier yet versions include “Knowledge Complexity,” submitted to the 25th Annual Symposium on the Foundations of Computer Science, 1984.)

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Lund and L. Fortnow and H. Karloff and N. Nisan. Algebraic Methods for Interactive Proof Systems. Proc. 22nd STOC, 1990.

    Google Scholar 

  24. S. Micali. CS Proofs. Proc. 35th Annual Symposium on Foundations of Computer Science, 1994, pp. (An earlier version of this paper appeared as Technical Memo MIT/LCS/TM-510. Earlier yet versions were submitted to the 25th Annual Symposium on Theory of Computing, 1993, and the 34th Annual Symposium on Foundations of Computer Science, 1993.)

    Google Scholar 

  25. A. Shamir. IP = PSPACE. Proc. 31st IEEE Foundation of Computer Science Conference, 1990, pp. 11–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luboš Brim Jozef Gruska Jiří Zlatuška

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Micali, S. (1998). Computationally-sound checkers. In: Brim, L., Gruska, J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS 1998. Lecture Notes in Computer Science, vol 1450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055760

Download citation

  • DOI: https://doi.org/10.1007/BFb0055760

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64827-7

  • Online ISBN: 978-3-540-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics