Skip to main content

The semi-full closure of Pure Type Systems

  • Contributed Papers
  • Conference paper
  • First Online:
Mathematical Foundations of Computer Science 1998 (MFCS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1450))

Abstract

We show that every functional Pure Type System may be extended to a semi-full Pure Type System. Moreover, the extension is conservative and preserves weak normalization. Based on these results, we give a new, conceptually simple type-checking algorithm for functional Pure Type Systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and T. Maibaum, editors, Handbook of Logic in Computer Science, pages 117–309. Oxford Science Publications, 1992. Volume 2.

    Google Scholar 

  2. G. Barthe. Type checking injective pure type systems. Manuscript, 1997.

    Google Scholar 

  3. L.S. van Benthem Jutting, J. McKinna, and R. Pollack. Checking algorithms for pure type systems. In H. Barendregt and T. Nipkow, editors, Proceedings of TYPES'93, volume 806 of Lecture Notes in Computer Science, pages 19–61. Springer-Verlag, 1994.

    Google Scholar 

  4. R. Nederpelt, H. Geuvers, and R. de Vrijer, editors. Selected papers on Automath, volume 133 of Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam, 1994.

    Google Scholar 

  5. S. Peyton Jones and E. Meijer. Henk: a typed intermediate language. Proceedings of the ACM Workshop on Types in Compilation, 1997.

    Google Scholar 

  6. E. Poll. A typechecker for bijective pure type systems. Technical Report CSN93/22, Technical University of Eindhoven, June 1993.

    Google Scholar 

  7. R. Pollack. Typechecking in pure type systems. In B. Nordström, editor, Informal proceedings of LF'92, pages 271–288, 1992. Available from http://www.dcs.ed.ac.uk/lfcsinfo/research/types-bra/proc/index.html.

    Google Scholar 

  8. R. Pollack. The Theory of LEGO: A Proof Checker for the Extended Calculus of Constructions. PhD thesis, University of Edinburgh, 1994.

    Google Scholar 

  9. P. Severi. Normalisation in lambda calculus and its relation to type inference. PhD thesis, Technical University of Eindhoven, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luboš Brim Jozef Gruska Jiří Zlatuška

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barthe, G. (1998). The semi-full closure of Pure Type Systems. In: Brim, L., Gruska, J., Zlatuška, J. (eds) Mathematical Foundations of Computer Science 1998. MFCS 1998. Lecture Notes in Computer Science, vol 1450. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0055781

Download citation

  • DOI: https://doi.org/10.1007/BFb0055781

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64827-7

  • Online ISBN: 978-3-540-68532-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics